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This paper presents a technique of evidence maximization for automatic tuning of regularization parameters of elastic nets, which
allows tuning many parameters simultaneously. This technique was applied to handwritten digit recognition. Experiments showed
its ability to train either models with high accuracy of recognition or highly sparse models with reasonable accuracy.

1. Introduction

One of the important aspects of machine learning is to
choose an appropriate subset of the (possibly huge) set of all
virtually available features, such as the trained model which
depends only on this subset of features. A good choice (feature
selection, [1]) can both speed up the training and improve
the quality of its result. It depends not only on the particular
problem, but also on the data available for training.

Feature selection can either precede the learning itself
(e.g., entropy-based or correlation analysis) or be a built-
in part of the learning process (e.g., learning with 𝑙

1
-

regularization, such as LASSO regression and 𝑙
1
-SVM) [2].

This paper deals with the latter case only.
It is known that learning with 𝑙

1
-regularization can

produce rather sparse models which depend on rather few
features, but learning with 𝑙

2
-regularization usually produces

more accurate models. In [3] some mixed regularization
called “elastic net” was proposed. Let 𝐹(𝑥, 𝑤) be a model
parameterized by 𝑤, predicting response 𝑦 by feature vector
𝑥, and let 𝐽(𝐹(𝑥, 𝑤), 𝑦) be the cost of prediction 𝐹(𝑥, 𝑤)
provided the true response is 𝑦. Then training of such a
model with elastic net regularization on the set of samples
{(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑁} using loss minimization (a.k.a. ERM—

empirical risk minimization) method or, briefly, “training of
an elastic net” is the minimization problem:

𝑁

∑

𝑖=1

𝐽 (𝐹 (𝑥
𝑖
, 𝑤) , 𝑦

𝑖
) + 𝜆 |𝑤| +

𝜇

2
‖𝑤‖
2
󳨀→ min

𝑤
, (1)

where ‖ ⋅ ‖ and | ⋅ | stand for 𝑙
2
- and 𝑙

1
-norms, respectively,

and 𝜆 and 𝜇 are nonnegative regularization parameters. It is
shown experimentally in [3] that varying the parameters 𝜆
and 𝜇 one can balance between the sparsity of the model and
the accuracy of its prediction.

In this paper elastic nets are used to regularize multiclass
logistic regression. A method of tuning more general regu-
larization parameters than 𝜆 and 𝜇 above is described. This
method is tested on a handwritten digit recognition problem.

The rest of this paper is organized as follows. Section 2
presents the mathematical model and the elastic net in
details. Section 3 describes the learning algorithm and the
evidence maximization technique for tuning regularization
parameters of the elastic net; this technique is the main
subject of this paper. Section 4 describes experiments with
elastic nets for digit recognition. Section 5 exposes the results
of experiments. Section 6 summarizes the main results of
experiments anddiscusses further possible applications of the
proposed technique.

2. Mathematical Model

Consider multinomial classification in its both deterministic
and probabilistic variants: given a feature vector𝑥 ∈ R𝑑 either
to predict the correct label 𝑦 of one of 𝑞 classes to which the
vector 𝑥 belongs or to estimate the conditional probability
𝑝(𝑦 | 𝑥) of each class label. Probabilistic classification is
considered primary and in deterministic classification a class
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label (usually the class label) 𝑦 ∈ argmax
𝑦
𝑝(𝑦 | 𝑥) will be

predicted.
Let 𝑥⃗ = (1, 𝑥) ∈ R𝑑+1 stand for augmented feature vector.

To estimate 𝑝(𝑦 | 𝑥) multinomial linear logistic regression
model

𝑝 (𝑦 | 𝑥, 𝑤⃗) =
𝑒
𝑤⃗
𝑦
𝑥⃗

∑
𝑞

𝑙=1
𝑒𝑤⃗
𝑙
𝑥⃗

(2)

will be trained. The model parameter matrix 𝑤⃗ consists of
𝑞(𝑑 + 1)-dimensional rows 𝑤⃗𝑙 = (𝑤

𝑙

0
, 𝑤
𝑙

1
, . . . , 𝑤

𝑙

𝑑
). To train

the model means to choose some “good” parameter 𝑤⃗.
To do this we use a training dataset T = {(𝑥

1
, 𝑦
1
),

. . . , (𝑥
𝑁
, 𝑦
𝑁
)} of 𝑁 couples (𝑥

𝑖
, 𝑦
𝑖
) which are supposed to

be i.i.d. random. T can also be written in a transposed way
T = {X,Y} where X = {𝑥

1
, . . . , 𝑥

𝑁
} and Y = {𝑦

1
, . . . , 𝑦

𝑁
}.

Training tries to maximize the posterior of 𝑤⃗ given some
prior 𝑝

0
(𝑤⃗) and the training set T. Since

𝑝 (𝑤⃗ | T) =
𝑝
0
(𝑤⃗) 𝑝 (T | 𝑤⃗)
𝑝 (T)

=
𝑝
0
(𝑤⃗) 𝑝 (Y | X, 𝑤⃗)
𝑝 (Y | X)

(3)

and the denominator does not depend on 𝑤⃗, maximization
of posterior probability is equivalent to maximization of the
numerator or of its logarithm:

ln (𝑝
0
(𝑤⃗) 𝑝 (Y | X, 𝑤⃗))

= ln (𝑝
0
(𝑤⃗)) +

𝑁

∑

𝑖=1

ln𝑝 (𝑦
𝑖
| 𝑥
𝑖
, 𝑤⃗) 󳨀→ max

𝑤⃗

.

(4)

The second summand in (4) is the log likelihood of themodel
𝐿(𝑤⃗;T), while the first one depends on the choice of the prior.

Let (𝑞 × 𝑑)-matrix𝑤 stand for 𝑤⃗ without the bias column
𝑤
0
. The prior is usually taken independent of the bias, so

𝑝
0
(𝑤⃗) = 𝑝

0
(𝑤). In the simplest caseswhen spherical Gaussian

or Laplacian distributions are taken as priors, training (4)
turns to an optimization problemwith 𝑙

2
- or 𝑙
1
-regularization,

respectively.
Similarly, elastic nets are obtained from the prior

𝑝
0
(𝑤⃗) =

1

𝑍 (𝜆, 𝜇)
𝑒
−𝜆|𝑤|−𝜇(‖𝑤‖

2
/2)
, (5)

where

𝑍 (𝜆, 𝜇) = ∫ 𝑒
−𝜆|𝑤|−𝜇(‖𝑤‖

2
/2)
𝑑𝑤

= (∫

∞

−∞

𝑒
−𝜆|𝑡|−𝜇(𝑡

2
/2)
𝑑𝑡)

𝑞𝑑

= (
2𝑒
𝜆
2
/2𝜇

√𝜇
∫

∞

𝜆/√𝜇

𝑒
−𝜏
2
/2
𝑑𝜏)

𝑞𝑑

= (
2𝑒
𝜆
2
/2𝜇

√𝜇
√2𝜋Φ(−

𝜆

√𝜇
))

𝑞𝑑

(6)

(remember that the space of 𝑤 is 𝑞𝑑-dimensional) and
Φ(⋅) denotes the cumulative function of the standard one-
dimensional Gaussian distribution:

Φ (𝑡) = ∫

𝑡

−∞

1

√2𝜋
𝑒
−𝜏
2
/2
𝑑𝜏. (7)

To simplify calculations instead of the functionΦ(⋅) we use

Ψ (𝑡) = 𝑒
𝑡
2
/2
∫

𝑡

−∞

𝑒
−𝜏
2
/2
𝑑𝜏 = √2𝜋𝑒

𝑡
2
/2
Φ (𝑡) . (8)

For instance, the normalization factor 𝑍(𝜆, 𝜇) becomes

𝑍 (𝜆, 𝜇) = (
2

√𝜇
Ψ(−

𝜆

√𝜇
))

𝑞𝑑

. (9)

Plugging (5) into (4) turns training of elastic net into the
optimization problem:

−

𝑁

∑

𝑖=1

ln𝑝 (𝑦
𝑖
| 𝑥
𝑖
⋅ 𝑤⃗) + 𝜆 |𝑤| +

𝜇

2
‖𝑤‖
2
󳨀→ min

𝑤⃗

. (10)

Both prior (5) and regularization summands in (10) are
isotropic with respect to all 𝑑 features. However the features
themselves might be unequal by their nature. To respect
such an inequality we partition all features into 𝐾 groups of
features of the same nature. For example, all pixel values of
the image have the same nature and will belong to the same
group of features, while computed features or the aspect ratio
falls to other groups.

Let us fix a partition of the set of indices

{1, . . . , 𝑑} =

𝐾

⨆

𝑘=1

𝐷
𝑘

(11)

into subsets𝐷
𝑘
of cardinalities 𝑑

𝑘
= #𝐷
𝑘
and define separate

regularization parameters 𝜆
𝑘
and 𝜇

𝑘
for each group. Then

training of generic elastic net (10) turns into

−

𝑁

∑

𝑖=1

ln𝑝 (𝑦
𝑖
| 𝑥
𝑖
⋅ 𝑤⃗)

+

𝐾

∑

𝑘=1

(𝜆
𝑘
∑

𝑗∈𝐷𝑘

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨
+
𝜇
𝑘

2
∑

𝑗∈𝐷𝑘

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑗

󵄩󵄩󵄩󵄩󵄩

2

) 󳨀→ min
𝑤⃗

,

(12)

and training of the elastic net for linear logistic regression (2)
turns into

−

𝑁

∑

𝑖=1

(𝑤
𝑦𝑖 𝑥⃗
𝑖
− ln
𝑞

∑

𝑙=1

𝑒
𝑤
𝑙
𝑥⃗𝑖)

+

𝐾

∑

𝑘=1

(𝜆
𝑘
∑

𝑗∈𝐷𝑘

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨
+
𝜇
𝑘

2
∑

𝑗∈𝐷𝑘

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑗

󵄩󵄩󵄩󵄩󵄩

2

) 󳨀→ min
𝑤⃗

.

(13)

It is easy to see that optimization problem (13) is convex
for any training set T and nonnegative 𝜆

𝑘
and 𝜇

𝑘
. Choice of

values of 2𝐾 regularization parameters 𝜆
𝑘
and 𝜇

𝑘
, which is

the subject of this paper, will be discussed later in Section 3.2.
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3. Learning Technique

3.1. Nonsmooth Convex Optimization. Standard gradient
methods are not applicable to minimization problems (10)
and (13) because they contain nonsmooth terms |𝑤| and
|𝑤
𝑗
|. So the algorithm proposed by Nesterov in [4] for

minimization of sums of smooth and simple nonsmooth
convex functions is used. Nesterov’s algorithm provides the
best convergence rate at moderate number of steps (less than
the number of variables, which is equal to 𝑞(𝑑+1) in (10) and
(13)) among all known methods of nonsmooth optimization
[5].

Nesterov’s algorithm can exploit strong convexity (𝜇-
convexity) of the target function and converges the faster, the
bigger 𝜇 can be guaranteed in advance. The target function
in (13) is not strongly convex in the bias column 𝑤

0
, but it

would be strongly convex if 𝑙
2
-regularization was applied to

all parameters 𝑤⃗ including 𝑤
0
.

Consider the following modification of problem (13).

(1) Estimate the bias column 𝑤̂
0
:

𝑤̂
𝑙

0
= ln

𝑛
𝑙

𝑁
for 𝑙 = 1, . . . , 𝑞, (14)

where 𝑛
𝑙
is the number of training samples of class

𝑙. The estimate 𝑤̂
0
is the solution of minimization

problem:

−

𝑁

∑

𝑖=1

ln𝑝 (𝑦
𝑖
| 𝑤
0
) = −

𝑁

∑

𝑖=1

ln 𝑒
𝑤
𝑦𝑖

0

∑
𝑞

𝑙=1
𝑒𝑤
𝑙

0

󳨀→ min
𝑤0

, (15)

which is nothing but maximum likelihood training of
the featureless logistic regression model.

(2) Choose some 𝜇
0
> 0 and instead of (13) solve

−

𝑁

∑

𝑖=1

(𝑤⃗
𝑦𝑖 𝑥⃗
𝑖
− ln
𝑞

∑

𝑙=1

𝑒
𝑤⃗
𝑙
𝑥⃗𝑖) +

𝜇
0

2

󵄩󵄩󵄩󵄩𝑤0 − 𝑤̂0
󵄩󵄩󵄩󵄩
2

+

𝐾

∑

𝑘=1

(𝜆
𝑘
∑

𝑗∈𝐷𝑘

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨
+
𝜇
𝑘

2
∑

𝑗∈𝐷𝑘

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑗

󵄩󵄩󵄩󵄩󵄩

2

) 󳨀→ min
𝑤⃗

.

(16)

The target function in (16) is strongly convex with
nonnegative parameter 𝜇 = min

𝑘=0,1,...,𝐾
𝜇
𝑘
.

3.2. Evidence Maximization. To train elastic nets (10), (13),
or (16) successfully some reasonable values of regulariza-
tion parameters 𝜆 and 𝜇 (hyperparameters) are required.
In machine learning problems with one or at most two
hyperparameters (e.g., in SVM [1]) their values can be found
by grid search. However, there are 2𝐾+1 hyperparameters in
generalized elastic net (16) and we are interested in the case
𝐾 > 1. In this case, a reasonable way to optimize them is
evidence maximization. The use of evidence maximization
for estimation of hyperparameters of ridge regression and
other Gaussian-based models is well known [6]. For non-
Gaussian elastic nets the evidence of hyperparameters can
be neither computed nor maximized exactly and will be
approximated rather roughly.

Let prior 𝑝
0
(𝑤⃗) depend on two hyperparameters 𝜆 and 𝜇

like in (5).Then posterior (3) with 𝜆 and 𝜇 indicated explicitly
is

𝑝 (𝑤⃗ | T, 𝜆, 𝜇) =
𝑝 (T, 𝑤⃗) 𝑝

0
(𝑤 | 𝜆, 𝜇)

𝑝 (T | 𝜆, 𝜇)

=
𝑝 (Y | X, 𝑤⃗) 𝑝

0
(𝑤 | 𝜆, 𝜇)

𝑝 (Y | X, 𝜆, 𝜇)

=
𝐿 (𝑤⃗;T) 𝑝

0
(𝑤 | 𝜆, 𝜇)

∫ 𝐿 (𝑤⃗;T) 𝑝
0
(𝑤 | 𝜆, 𝜇) 𝑑𝑤⃗

=
𝐿 (𝑤⃗;T) 𝑝

0
(𝑤 | 𝜆, 𝜇)

𝐸 (𝜆, 𝜇;T)
.

(17)

The denominator is ignored in maximization of posterior (3)
because it does not depend on 𝑤⃗. However it depends on
𝜆 and 𝜇. This denominator 𝐸(𝜆, 𝜇;T) is called the evidence
of parameters 𝜆 and 𝜇 with respect to the training set T.
Despite its special name, it is a usual likelihood, not the
likelihood of a single model like 𝐿(𝑤⃗;T) in (4), but the
likelihood of the whole probability space of models defined
by hyperparameters 𝜆 and 𝜇.

For prior (5) the evidence of pair (𝜆, 𝜇) is

𝐸 (𝜆, 𝜇;T) = ∫𝐿 (𝑤⃗;T) 𝑝
0
(𝑤 | 𝜆, 𝜇) 𝑑𝑤⃗

=
1

𝑍 (𝜆, 𝜇)
∫ 𝑒

ln𝐿(𝑤⃗;T)−𝜆|𝑤|−𝜇(‖𝑤‖2/2)
𝑑𝑤⃗

(18)

and the evidencemaximization is equivalent tominimization

− ln𝐸 (𝜆, 𝜇;T) = 𝑞𝑑 ln( 2

√𝜇
Ψ(−

𝜆

√𝜇
))

− ln∫ 𝑒ln𝐿(𝑤⃗;T)−𝜆|𝑤|−𝜇(‖𝑤‖
2
/2)
𝑑𝑤⃗

󳨀→ min
𝜆,𝜇

.

(19)

The normalization factor 𝑍(𝜆, 𝜇) is rewritten using for-
mula (9) here.

The gradient of (19) is

∇
𝜆
(− ln𝐸 (𝜆, 𝜇;T)) = −

𝑞𝑑

𝜆
(

𝜆/√𝜇

Ψ (−𝜆/√𝜇)
−
𝜆
2

𝜇
)

+ E
𝜆,𝜇 [|𝑤|] ,

∇
𝜇
(− ln𝐸 (𝜆, 𝜇;T)) = −

𝑞𝑑

2𝜇
(1 −

𝜆/√𝜇

Ψ (−𝜆/√𝜇)
+
𝜆
2

𝜇
)

+
1

2
E
𝜆,𝜇
[‖𝑤‖
2
] ,

(20)

where E
𝜆,𝜇
[𝑓] stands for the expectation of𝑓(𝑤)with respect

to posterior distribution of 𝑤 proportional to 𝐿(𝑤⃗;T)𝑝
0
(𝑤 |

𝜆, 𝜇):

E
𝜆,𝜇
[𝑓] =

∫𝑓 (𝑤) 𝑒
ln𝐿(𝑤⃗;T)−𝜆|𝑤|−𝜇(‖𝑤‖2/2)

𝑑𝑤⃗

∫ 𝑒ln𝐿(𝑤⃗;T)−𝜆|𝑤|−𝜇(‖𝑤‖
2
/2)𝑑𝑤⃗

. (21)
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To minimize (19) instead of traditional gradient steps the
transformation

𝜆 ←󳨀
𝑞𝑑 (𝜆/√𝜇/Ψ (−𝜆/√𝜇) − 𝜆

2
/𝜇)

E
𝜆,𝜇 [|𝑤|]

,

𝜇 ←󳨀
𝑞𝑑 (1 − 𝜆/√𝜇/Ψ (−𝜆/√𝜇) + 𝜆

2
/𝜇)

E
𝜆,𝜇
[‖𝑤‖
2
]

(22)

is used iteratively.
Formulas (20) imply that each point of maximum of

the evidence is a fixed point of transformation (22). No
convergence of transformation (22) is guaranteed. But in the
experiments several iterations of this transformation allowed
training more accurate model.

For modified elastic net (16), transformation (22) turns
into

𝜆
𝑘
←󳨀

𝑞𝑑
𝑘
(𝜆
𝑘
/√𝜇𝑘/Ψ (−𝜆𝑘/√𝜇𝑘) − 𝜆

2

𝑘
/𝜇
𝑘
)

∑
𝑗∈𝐷𝑘

∑
𝑞

𝑙=1
E
𝜆,𝜇
[
󵄨󵄨󵄨󵄨󵄨
𝑤𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
]

,

𝜇
𝑘
←󳨀

𝑞𝑑
𝑘
(1 − 𝜆

𝑘
/√𝜇𝑘/Ψ (−𝜆𝑘/√𝜇𝑘) + 𝜆

2

𝑘
/𝜇
𝑘
)

∑
𝑗∈𝐷𝑘

∑
𝑞

𝑙=1
E
𝜆,𝜇
[
󵄩󵄩󵄩󵄩󵄩
𝑤𝑙
𝑗

󵄩󵄩󵄩󵄩󵄩

2

]

(23)

for 𝑘 = 1, . . . , 𝐾 and

𝜇
0
←󳨀

𝑞

∑
𝑞

𝑙=1
E
𝜆,𝜇
[
󵄩󵄩󵄩󵄩󵄩
𝑤𝑙
0
− 𝑤̂
𝑙

0

󵄩󵄩󵄩󵄩󵄩

2

]

. (24)

Expectations E
𝜆,𝜇
[|𝑤
𝑙

𝑗
|], E
𝜆,𝜇
[‖𝑤
𝑙

𝑗
‖
2
], and E

𝜆,𝜇
[‖𝑤
𝑙

0
−𝑤̂
𝑙

0
‖
2
]

cannot be computed exactly because posterior 𝑝(𝑤⃗ | 𝜆, 𝜇) is
rather complicated andhigh-dimensional.They are estimated
using diagonal Laplace approximation [7] of posterior 𝑝(𝑤⃗ |
𝜆, 𝜇) at trainedmodel (16)𝑤∗ = 𝑤∗(𝜆, 𝜇) instead of the 𝑝(𝑤⃗ |
𝜆, 𝜇) itself.

3.3. Stopping Criterion. To stop either training (16) with
fixed regularization parameters (𝜆, 𝜇) or iterations of trans-
formations (23) and (24) of (𝜆, 𝜇), the following validation
technique is used. The available dataset T is partitioned into
training set Ttrain of 𝑁train samples and validation set Tval
of 𝑁val samples. The first one is used to train elastic nets
(16) while the second one is used to decide whether further
training becomes senseless and should be stopped. Namely,
training of the elastic net is stopped if likelihood 𝐿(𝑤⃗;Tval)
has not increased after several (about 30) last optimization
steps, and tuning of the regularization parameters (𝜆, 𝜇) is
stopped if likelihood 𝐿(𝑤∗(𝜆, 𝜇);Tval) of the trained model
has not increased after several (about 5) last iterations.

This criterion is a kind of well-known early stopping
method [8]. On one hand, such an early stopping speeds up
the training significantly. On the other hand, it is a regulariza-
tion technique [9] by itself and can hide the effect of tuning
the regularization parameters via evidence maximization,
which is the subject of the study here. To find a balance,
the delays between nonincreasing of the validation likelihood
and stopping were chosen empirically.

4. Experiments

The method described in Sections 2 and 3 was applied to
recognition of handwritten digits fromMNIST database (see
[10]). This database contains grayscale raster images of 28 ×
28 = 784 pixels each, which belong to one of 𝑞 = 10 classes.
Traditionally it is partitioned into 𝑁 = 60000 samples for
training and𝑀 = 10000 for testing. 15% of training samples
were left out for validation, so 𝑁train = 51000 and 𝑁val =
9000.

Both to make linear logistic regression more powerful
and to test the proposed method of estimation of numerous
regularization parameters more features were added to the
model. Besides the 784 primary features (the pixel intensities)
several groups of secondary features were generated.Then all
the features, both secondary and primary, were normalized
to zero mean and unit variance.

The following groups of secondary features were used in
experiments.

(1) Horizontal and vertical components of the gradient of
the pixel intensity (784 + 784 = 1568 features).

(2) Amplitudes and phases of the discrete Fourier trans-
form [11] of the pixel intensity (784 + 784 = 1568

features).

(3) Projection histograms [11], that is, the number of
nonzero pixels and positions of the first and the last
one within each row and each column of the image
(28 + 28 + 28 ∗ 2 + 28 ∗ 2 = 168 features).

(4) The cornermetricmatrix of the image, which for each
pixel of the image contains the estimated “likelihood”
to be its corner point. The corner metric matrix is
calculated by MATLAB function cornermetric [12]
(784 features).

(5) The local standard deviation matrix, which for each
pixel of the image contains the standard deviation
of the intensity over 9-by-9 neighborhood of the
pixel. The local standard deviation is calculated by
MATLAB function stdfilt [12] (784 features ).

This amounts to 𝑑 = 5656 primary and secondary features in
total.

Remember that the proposed learning technique consists
of two levels: the inner level is training of elastic net (16) with
fixed regularization parameters (𝜆, 𝜇) using Nesterov’s opti-
mization algorithm and the outer level inspired bymaximum
evidence principle is iterative transformations (23) and (24)
of 𝜆 and 𝜇. Several different partitions (11) of features into
groups were tried.

Each line in Tables 1, 2, and 3 represents single exper-
iment for training of elastic net. Each row of the table
represents elastic net (16) trained with some 𝜆 and 𝜇. Each
experiment was repeated for 20 times. Estimated intervals of
the measured values, shown in tables, are intervals of two
standard deviations around the mean.
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Table 1: Elastic nets trained with several fixed regularization
parameters 𝜆 and 𝜇.

𝜆 𝜇 Sparseness (%) Mean log likelihood Error (%)
0 0 2.46 ± 0.00 0.0638 ± 0.0007 2.06 ± 0.05
3 10.32 ± 1.56 0.0583 ± 0.0011 1.85 ± 0.05
10 16.84 ± 2.49 0.0609 ± 0.0007 1.81 ± 0.06
30 45.87 ± 4.03 0.0823 ± 0.0005 2.18 ± 0.05
100 63.26 ± 2.90 0.1419 ± 0.0003 3.41 ± 0.05
300 75.77 ± 4.37 0.2503 ± 0.0004 5.19 ± 0.05
1 1 3.75 ± 0.16 0.0621 ± 0.0007 2.00 ± 0.04
1 10 3.81 ± 0.19 0.0621 ± 0.0007 2.00 ± 0.04
1 30 6.71 ± 2.54 0.0607 ± 0.0013 1.95 ± 0.07
10 1 16.73 ± 2.40 0.0609 ± 0.0007 1.81 ± 0.06
10 10 16.56 ± 2.46 0.0613 ± 0.0007 1.81 ± 0.06
10 30 16.25 ± 2.53 0.0621 ± 0.0006 1.82 ± 0.05
10 100 16.20 ± 3.09 0.0649 ± 0.0005 1.86 ± 0.05
30 100 38.42 ± 2.42 0.0862 ± 0.0005 2.20 ± 0.05
100 30 61.51 ± 2.45 0.1428 ± 0.0003 3.41 ± 0.05
100 100 59.18 ± 2.09 0.1445 ± 0.0003 3.41 ± 0.05
0 1 2.46 ± 0.00 0.0638 ± 0.0007 2.06 ± 0.05

10 2.46 ± 0.00 0.0638 ± 0.0007 2.06 ± 0.04
100 2.46 ± 0.00 0.0638 ± 0.0007 2.05 ± 0.04
300 2.46 ± 0.00 0.0659 ± 0.0006 2.05 ± 0.06

Table 2: Elastic nets trained with the evidence maximization
technique.

𝐾 Sparseness (%) Mean log likelihood Error (%)
1 12.53 ± 3.18 0.0580 ± 0.0010 1.83 ± 0.06
8 9.99 ± 1.40 0.0557 ± 0.0008 1.70 ± 0.05
13 9.54 ± 1.22 0.0560 ± 0.0010 1.69 ± 0.04
40 10.17 ± 1.40 0.0555 ± 0.0007 1.71 ± 0.05
136 8.74 ± 1.38 0.0581 ± 0.0006 1.81 ± 0.04
385 8.05 ± 1.28 0.0587 ± 0.0004 1.82 ± 0.04
1456 8.35 ± 1.53 0.0581 ± 0.0005 1.81 ± 0.04
5656 10.82 ± 2.68 0.0582 ± 0.0010 1.80 ± 0.06

Tables 1, 2, and 3 contain the following three columns of
properties of trained models.

Sparseness. It is the share of features unused in the model that
is #{𝑗 ≥ 1 | 𝑤⃗

𝑗
= 0}/𝑑.

Mean Log Likelihood. It is the mean over the𝑀-element test
set ofminus logarithm of the predicted probability of the true
class label of the sample, (1/𝑀)∑𝑀

𝑖=1
(− ln(𝑝(𝑦

𝑖
| 𝑥
𝑖
, 𝑤⃗))).

Error. It is themisclassification ratemeasured on the same𝑀-
element test set, provided themost probable class is predicted,
(1/𝑀)#{𝑖 | 𝑝(𝑦

𝑖
| 𝑥
𝑖
, 𝑤⃗) = max

1≤𝑙≤𝑞
𝑝(𝑙 | 𝑥

𝑖
, 𝑤⃗)}.

Sparseness of the trained model appears due to 𝑙
1
-

regularization in the elastic net and increases with 𝜆.

Table 3: Sparse elastic nets trained with the evidence maximization
technique.

𝐾 Sparseness (%) Mean log likelihood Error (%)
1 56.72 ± 6.94 0.0916 ± 0.0027 2.32 ± 0.08
8 75.04 ± 0.86 0.0898 ± 0.0026 2.70 ± 0.08
13 75.56 ± 1.43 0.0960 ± 0.0029 2.97 ± 0.08
40 84.58 ± 1.21 0.1054 ± 0.0029 3.13 ± 0.14
136 85.41 ± 0.64 0.0816 ± 0.0011 2.32 ± 0.06
385 87.55 ± 1.89 0.0804 ± 0.0032 2.47 ± 0.09
1456 85.72 ± 0.57 0.0745 ± 0.0008 2.28 ± 0.05
5656 (= 𝑑) 88.62 ± 0.50 0.0739 ± 0.0009 2.28 ± 0.04

4.1. Constant Regularization Parameters. First, several con-
trol experiments with fixed scalar values of regularization
parameters 𝜆 and 𝜇 were performed. Their results are shown
in Table 1.

The minimal average test error 1,81% was achieved with
parameters 𝜆 = 10 and 𝜇 = 1.

4.2. Tuning Regularization Parameters by EvidenceMaximiza-
tion. Next, experiments with automatic tuning of regulariza-
tion parameters 𝜆 and 𝜇 were performed. Since all features
had been normalized, the learning was started from 𝜆

0

𝑘
= 1

and 𝜇0
𝑘
= 1 for all 𝑘 = 1, . . . , 𝐾. The results are shown in

Table 2. Each row represents the elastic net obtained by the
described two-level learning process for certain partition (11)
of features.

Several different partition schemes were tested.

𝐾 = 1, trivial partition: all features belong to the same
group.
𝐾 = 8, rough partition: primary features, horizontal
and vertical components of the gradients, amplitudes
and phases of the Fourier transform, and three other
types of secondary features each form a separate
group.
𝐾 = 13, 40, 136, 385, 1456: the whole image (28 × 28
pixels) is split into 𝑘 × 𝑘 equal squares and, roughly
speaking, the groups are formed by features of certain
type calculated for certain squares.The exceptions are
projection histograms calculated not for squares, but
for rows or columns of squares (𝑘 groups for each of 6
histograms) and amplitudes and phases of the Fourier
transform, both partitioned into 𝑘×𝑘 equal squares in
the frequency space. So the total number of groups of
the partition is equal to 7𝑘2 + 6𝑘. For 𝑘 = 1, 2, 4, 7, 14
this gives 𝐾 = 13, 40, 136, 385, 1456.
𝐾 = 5656 = 𝑑, fine partition: each feature forms a
separate group.

These experiments show that the evidence maximization
technique allows one to obtainmore accurate elastic nets than
elastic nets with guessed scalar regularization parameters.
Indeed, compare the last column of Table 1 with lines 𝐾 =

8, 13, and 40 of Table 2. These lines represent elastic nets
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trained with certain values of 17-, 27-, and 81-dimensional
regularization parameters, which can hardly be guessed.

4.3. Sparse Elastic Net. Last, we performed a series of exper-
iments trying to train very sparse but reasonably accurate
models. Sparseness of the model trained with elastic net
depends mostly on its parameter(s) 𝜆 or 𝜆

𝑘
. In the described

technique these parameters are tuned in order to get elastic
nets with higher evidence. However, experiments show that
iterations of the transformations (23) and (24) with the
stopping criterion of Section 3.3 tend to stop before they reach
any (local!) maximum of the evidence, and where they stop
depends on the initial parameters 𝜆0

𝑘
and 𝜇0

𝑘
.

Experiments of Section 4.2 (Table 2) started from 𝜆
0

𝑘
=

1 and 𝜇0
𝑘
= 1 for all 𝑘. Then sparseness was low but the

trained models made more accurate predictions. If 𝜆
𝑘
>

𝜆
max
𝑘

= max
𝑗∈𝐷𝑘,𝑙=1,...,𝑞

|𝜕 ln 𝐿(0;Ttrain)/𝜕𝑤
𝑙

𝑗
|, optimization

problem (16) has unique solution𝑤 = 0, the most sparse one,
but not accurate. Starting iterations from 𝜆

0

𝑘
= 𝜆

max
𝑘

allows
one to get sparse elastic net with reasonable accuracy.

Table 3 shows the results of training elastic net with
starting parameters 𝜆0

𝑘
= 𝜆

max
𝑘

, 𝑘 = 1, . . . , 𝐾. These results
are discussed in the following section.

5. Results and Discussion

5.1. Accuracy of the Trained Model. The best model trained
with the evidence maximization technique shown in Table 2
has 1,69% average test error, which is significantly less
than 1,81% obtained by guessing of scalar regularization
parameters (Table 1). In our experiments each learning with
evidence maximization took only 5–10 reestimations of the
regularization parameters. So the numbers of elastic nets
trained to fill in Tables 1 and 2 are comparable (moreover, not
all guesses are shown in Table 1).

The evidencemaximization technique allows one to guess
only an appropriate partitioning of the features instead of
particularly good values of the regularization parameters.
Still, this technique is not fully automated. None of the
two obvious extreme partitions (the roughest and the finest
ones) leads to the best model. 1,83% in the first line of
Table 2 compared to 1,81% achieved in Table 1 shows that
the evidence maximization not necessarily leads to the best
accuracy. But it can be used when regularization parameters
are multidimensional and naive attempts to guess a good
value of them are unfeasible.

The obtained accuracy is much lower than best state-of-
the-art results obtained by convolutional neural networks,
deep learning, and augmentation of training dataset. But the
elastic net with precisely tuned regularization parameters can
achieve higher accuracy than other traditional models of the
same complexity (e.g., 1- or 2-layer neural networks or SVM
with Gaussian kernel) (see [10]).

5.2. Sparseness of the Trained Model. In some practical
classification problems high sparseness of the model takes
priority over its high accuracy. The proposed method allows

one to train models with various tradeoff between sparsity
and accuracy.

The last elastic net shown in Table 3 provides test error
2,28% and sparseness 88,62%, so only 644 of 5656 features
are used. Compared to the most accurate elastic net from
Table 2, the error increased by 0,59%, while the number of
used features decreased more than sevenfold, from 5116 to
644. This result was achieved by tuning individual regular-
ization parameters for each feature starting from the biggest
reasonable 𝜆0

𝑘
.

6. Conclusion

This paper describes a method of machine learning based
on a technique of adjusting of regularization parameters of
elastic nets inspired by evidence maximization principle.The
method is able to cope with multidimensional regularization
parameters using only rough simple ideas about their initial
values and about the nature of the features used in themodels
to be learned.

This method was tested onMNIST database of handwrit-
ten digits and allowed training more accurate elastic net than
could be trained with traditional grid search of one or two
scalar regularization parameters. It allowed also training very
sparse models with reasonable accuracy.

Still the primary goal of the proposed method of learning
lies beyond the scope of this paper. It is to develop a mecha-
nism of feature selection based on training of elastic nets with
controlled tradeoff between their sparseness and accuracy. In
future the proposed method is going to be applied to other
machine learning problems, including problems with very
large number of features.
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