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Multiwalled carbon nanotubes (MWCNTs)/epoxy thin film nanocomposites were prepared using spin coating technique. The
effects of process parameters such as sonication duration (5–35min) and filler loadings (1-2 vol%) were studied using the design of
experiment (DOE). Full factorial design was used to create the design matrix for the two factors with three-level experimentation,
resulting in a total of 9 runs (32) of experimentation. Response surface methodology (RSM) combined with E.C. Harrington’s
desirability function called desirability optimization methodology (DOM) was used to optimize the multiple properties (tensile
strength, elastic modulus, elongation at break, thermal conductivity, and electrical conductivity) of MWCNTs/epoxy thin film
composites. Based on response surface analysis, quadratic model was developed. Analysis of variance (ANOVA), 𝑅-squared (𝑅-
Sq), and normal plot of residuals were applied to determine the accuracy of the models. The range of lower and upper limits was
determined in an overlaid contour plot. Desirability function was used to optimize the multiple responses of MWCNTs/epoxy thin
film composites. A global solution of 12.88min sonication and 1.67 vol% filler loadings was obtained to have maximum desired
responses with composite desirability of 1.

1. Introduction

In the past 20 years, carbon nanotubes (CNTs) are the
most exciting new materials that have been discovered.
Their remarkable properties have attracted huge interest
from the scientific community and industry [1]. With the
good mechanical properties, a high electrical and thermal
conductivity due to their graphite-like structure of CNTs, and
in combination with a high aspect ratio, it allows the devel-
opment of conductive polymer thin film composites using
only very low filler contents in which the composites retain
or improve on mechanical performance of the matrix [2].
Spin coating method is selected to produce the epoxy-based
thin film instead of various thin filmdepositionmethods such
as dip coating, drop coating, capillary immersion force, and
electrophoretic deposition [3]. Spin coating method is more
prominent in producing high uniformity films with specific
thickness. By controlling the parameters such as spin rate
and viscosity of the mixture, the film in range of micron to
nanometers in thickness can be easily produced [4].

However, there are various types of parameters and
variables involved which may affect the thin film produced,
such as sonication time and filler contents, and the list goes
on. From our previous works [3–5], it is found that all these
varying parameters are not being studied altogether; instead
some parameters are being assumed to be constant and do
not affect one another. As a result, the results shown may
not be totally accurate and are biased in accordance to the
assumptions made.

Design of experiment (DOE) is one widely used exper-
imental study method on many processes in engineering. It
is a statistical approach in which a mathematical model is
developed through experimental runs. Besides, it provides
the researchers or users with the opportunity to optimize
and predict possible output based on the parameters setting
[6, 7]. Response surface methodology (RSM) is a statistical
technique used for mathematical modeling and analysis of
problems in which a response is influenced by multiple
variables and the aim is to optimize the response [7]. RSM
also helps to reduce the number of required experimental
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runs to generate statistically validated results and avoid
repetition of experiment for multiple factors experiments
[8]. A combination of modified formula E.C. Harrington
desirability function and RSM, called desirability optimiza-
tion methodology (DOM), was used to optimize the overall
product quality among multiple quality properties [9]. The
desirability function was used to combine multiple responses
into one response called the “desirability function” by choice
of value from 0 (one or more product characteristics are
unacceptable) to 1 (all product characteristics are on target)
[10]. The method is attractive because it is simple and
intuitive.

Therefore the aim of this work is to verify the factors
which have significant effects on the properties of the MWC-
NTs/epoxy thin film by using DOE.The optimization process
was performed using RSM coupled with desirability function
which is the useful method to optimize multiple responses.
The functional relationships between the independent vari-
ables such as sonication duration and filler loadings were
studied while the interactions between the input variables
were clarified.

2. Experimental

2.1.Materials. Epoxy typeDER™ 332, also knownby its chem-
ical name bisphenol-A-(epichlorohydrin), from Dow Chem-
ical Company was used in the present study. Polyetheramine
D230 (BASF Corporation) was used as curing agent. MWC-
NTs supplied by ShenZhen Nanotech Port Co., Ltd., China,
were used as conductive fillers in the epoxy resin. Lengths
and outer diameters of MWCNTs are 5–15 𝜇m and 1-2𝜇m,
respectively.

2.2. Preparation of Epoxy Thin Film Composites. Filler load-
ing varies from 1 to 2 vol%with respect to epoxy resin.Mixing
of epoxy resin and fillers was done using ultrasonic agitation
method. This method is more efficient at dispersing particles
into viscous systems compared with other techniques, such
as conventional stirring [11]. The mixtures were sonicated
at different sonication duration at room temperature as
shown in Table 1. Then, curing agent was added at a ratio of
100 : 32 by weight.Theywere further sonicated for 10minutes,
followed by degassing in a vacuum oven for 10 minutes to
remove entrapped air. The final mixtures were then ready for
the spin coating process, which was carried out using Desk-
Top Precision Spin Coater model G3P-12. Speed of spinning
was 250–750 rpm.The resulting thin films were cured at 80∘C
for 2 hours.

2.3. Characterization Techniques. The tensile properties (ten-
sile strength, elastic modulus, and elongation at break)
of the composite systems were determined using Instron
3366 according to ASTM D882-02 with the crosshead of
1mm/min. In order to minimize the error, five specimens
were averaged to collect the results. Thermal conductivity of
epoxy thin film composites was determined using a hot disk
thermal constant analyzer (TPS 2500SThermal Conductivity
System) according to ISO 22007-2:2008. The testing time for

Table 1: Experimental range and level of the respective independent
variables.

Variable Notation Unit Level
−1 0 1

Sonication duration 𝐴 min 5 20 35
Filler loadings 𝐵 vol% 1 1.5 2

each sample was varied from 40 s to 70 s and operating power
from 1W to 2W. Electrical resistances of thin film samples
weremeasured usingAdvanTest R8340UltraHighResistance
Meter. Voltage of 10V was used.

2.4. Statistical Analysis Using Design of Experiments. The
Minitab software, version 16.2.1 based on full factorial design,
was used to perform the design matrices for the experiment.
The Minitab software based on RSM was used to perform
the statistical analysis and generate the regression model.
The variables in this study included two numerical factors of
sonication duration (𝐴) and filler loadings (𝐵).

Table 1 shows the ranges of the independent variables
and experimental design levels which were used in this
work. Since the experimental design was developed based
on full factorial design involving two factors with three
levels and one repetition of experiment, therefore the num-
ber of experimental runs was 9 runs in accordance to 32.
Multiple responses were investigated simultaneously and
they were tensile strength, elastic modulus, elongation at
break, thermal conductivity, and electrical conductivity of the
MWCNTs/epoxy thin film composites.

Table 2 shows the complete experimental design and
actual responses of the experiments employed in this study.
The actual responses such as tensile strength, elasticmodulus,
and elongation at break, thermal conductivity, and electrical
conductivity were denoted by 𝑌1, 𝑌2, 𝑌3, 𝑌4, and 𝑌5,
respectively. These data were used as input into the DOE
software for analysis to determine the model equation. The
adequacy of the models was further justified through the
ANOVA, regression analysis, and normal plot of residuals.
The mathematical models for the desired responses as a
function of selected variables were developed by applying the
multiple regression analysis on the experimental data. The
general quadratic equation model is stated by
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error.
The quality of developed models was determined by

the coefficients of determination (𝑅2) while the analysis
of variance (ANOVA) was used to evaluate the statistical
significance of the model.
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Table 2: The experimental design and actual responses of MWCNTs/epoxy thin film composites.

Run number

Variables in decoded levels Actual responses

Sonication
duration (min)
𝐴

Filler
loadings (vol%)
𝐵

Tensile strength
(MPa)
𝑌1

Elastic modulus
(MPa)
𝑌2

Elongation at
break (%)
𝑌3

Thermal
conductivity
(W/mK)
𝑌4

Electrical
conductivity
(ohm−1m−1)
𝑌5

1 35 1.0 48.31 2140.80 2.91 0.05995 2.75 × 10−10

2 35 1.5 53.42 2221.40 2.90 0.06345 3.94 × 10−10

3 5 1.0 22.74 1217.66 2.41 0.05518 2.15 × 10−8

4 20 1.0 40.65 1779.00 2.88 0.05669 7.62 × 10−6

5 5 2.0 20.36 1163.40 2.19 0.09750 4.71 × 10−8

6 35 2.0 35.79 2240.00 2.45 0.07189 8.26 × 10−10

7 5 1.5 36.71 1800.00 2.42 0.08550 2.96 × 10−8

8 20 1.5 52.24 2202.40 2.83 0.08732 6.35 × 10−6

9 20 2.0 50.96 2493.40 2.79 0.10050 1.11 × 10−5

Table 3: ANOVA for tensile strength (𝑌1).

Source Sum of squares DF Mean square 𝐹-value 𝑝 value
Model 1100.88 5 220.18 5.06 0.106
𝐴 555.07 1 555.07 12.74 0.038
𝐵 3.51 1 3.51 0.08 0.795
𝐴
2 275.11 1 275.11 6.32 0.087
𝐵
2 241.49 1 241.49 5.54 0.099
𝐴𝐵 25.70 1 25.70 0.59 0.498
Residual 130.66 3 43.55
Cor total 1231.54 8

Table 4: ANOVA for elastic modulus (𝑌2).

Source Sum of squares DF Mean square 𝐹-value 𝑝 value
Model 1.45 × 106 5 2.90 × 105 2.90 0.205
𝐴 9.77 × 105 1 9.77 × 105 9.78 0.052
𝐵 9.61 × 104 1 9.61 × 104 0.96 0.399
𝐴
2 2.61 × 105 1 2.61 × 105 2.61 0.205
𝐵
2 1.11 × 105 1 1.11 × 105 1.11 0.369
𝐴𝐵 5.89 × 103 1 5.89 × 103 0.06 0.824
Residual 3.00 × 105 3 9.99 × 104

Cor total 1.75 × 106 8

3. Results and Discussion

3.1. Analysis and Model Fitting for Responses

3.1.1. ANOVA. The ANOVA for the quadratic model for ten-
sile strength (𝑌1), elastic modulus (𝑌2), elongation at break
(𝑌3), thermal conductivity (𝑌4), and electrical conductivity
(𝑌5) are summarized in Tables 3, 4, 5, 6, and 7.

Table 3 shows that the “Model 𝐹-value” of 5.06 for 𝑌1
implies that the model is not significant relative to noise.
There is 10.6% chance that a large “Model 𝐹-value” could
occur due to noise. It is noted that 𝑝 value less than
0.05 indicates model terms are significant. In this case, the
significantmodel term for𝑌1 is𝐴 (sonication duration) since

Table 5: ANOVA for elongation at break (𝑌3).

Source Sum of squares DF Mean square 𝐹-value 𝑝 value
Model 0.56 5 0.11 8.87 0.051
𝐴 0.26 1 0.26 20.35 0.020
𝐵 0.099 1 0.099 7.85 0.068
𝐴
2 0.16 1 0.16 13.05 0.036
𝐵
2 0.025 1 0.025 1.98 0.254
𝐴𝐵 0.014 1 0.014 1.14 0.363
Residual 0.038 3 0.013
Cor total 0.60 8

Table 6: ANOVA for thermal conductivity (𝑌4).

Source Sum of squares DF Mean square 𝐹-value 𝑝 value
Model 2.37 × 10−3 5 4.73 × 10−4 9.41 0.047
𝐴 3.07 × 10−4 1 3.07 × 10−4 6.10 0.090
𝐵 1.60 × 10−3 1 1.60 × 10−3 31.91 0.011
𝐴
2 1.71 × 10−4 1 1.71 × 10−4 3.41 0.162
𝐵
2 5.28 × 10−5 1 5.28 × 10−5 1.05 0.381
𝐴𝐵 2.31 × 10−4 1 2.31 × 10−4 4.59 0.122
Residual 1.51 × 10−4 3 5.02 × 10−5

Cor total 2.52 × 10−3 8

that it has 𝑝 value of 0.038 which is less than 0.05.The 𝑝 value
in fact is actually the smallest level of significance, which
could be used to reject the null hypothesis, 𝐻

0
. It provides

a way of testing the relationship between the predictor and
the response.The smaller the value is, the more significant its
corresponding coefficient and the contribution towards the
response variable are [8].

According to Tables 4 and 5, it can be seen that the
“Model 𝐹-value” for 𝑌2 and 𝑌3 is 2.90 and 8.87. These
imply that the models are not significantly relative to noise.
There are 20.5% and 5.1% chances that a “Model 𝐹-value”
this large could occur due to noise, respectively. In these
cases, there are no significant model terms for 𝑌2 and at the
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Table 7: ANOVA for electrical conductivity (𝑌5).

Source Sum of squares DF Mean square 𝐹-value 𝑝 value
Model 1.43 × 10−10 5 2.86 × 10−11 10.70 0.040
𝐴 1.56 × 10−15 1 1.56 × 10−15 0.00 0.982
𝐵 2.05 × 10−12 1 2.05 × 10−12 0.77 0.446
𝐴
2 1.39 × 10−10 1 1.39 × 10−10 51.99 0.005
𝐵
2 2.02 × 10−12 1 2.02 × 10−12 0.75 0.449
𝐴𝐵 1.57 × 10−16 1 1.57 × 10−16 0.00 0.994
Residual 8.03 × 10−12 3 2.68 × 10−12

Cor total 1.51 × 10−10 8

Table 8: Response surface regression for tensile strength (𝑌1).

Term Coef. SE Coef. 𝑡 𝑝

Const. 55.2756 4.919 11.237 0.002
𝐴 9.6183 2.694 3.570 0.038
𝐵 −0.7650 2.694 −0.284 0.795
𝐴
2

−11.7283 4.667 −2.513 0.087
𝐵
2

−10.9883 4.667 −2.355 0.100
𝐴𝐵 −2.5350 3.300 −0.768 0.498

𝑆 = 6.59950, PRESS = 1494.39
𝑅-Sq = 89.39%, 𝑅-Sq(adj) = 71.71%

same time the significant model terms for 𝑌3 are 𝐴 and 𝐴2
(sonication duration ∗ sonication duration). The 𝑝 value for
𝐴 is 0.02 while being 0.036 for 𝐴2. Both of these factor term
and respective quadratic term had the largest effect on the
elongation at break at 95% confidence level of significance as
indicated by the lowest 𝑝 value (<0.05) and relatively high 𝐹-
value.

Meanwhile, it can be observed that “Model 𝐹-value” of
9.41 and 10.70 implies the model is significant for 𝑌4 and 𝑌5
from Tables 6 and 7. There are only 4.7% and 4.0% chances
that a “Model 𝐹-value” this large could occur due to noise for
each case. 𝐵 (filler loadings) is the significant model term for
𝑌4 while 𝐴2 is the significant model term for 𝑌5 as they have
𝑝 value of 0.011 and 0.006, respectively, which is less than 0.05.

3.1.2. Response Surface Regression Analysis. Response surface
regression is used to examine the relationship between a
response and a set of quantitative experimental variables
or factors. The regression analysis for each response was
done using coded units and summarized in Tables 8–12,
respectively.

Table 8 shows that the 𝑅-Sq of the model for 𝑌1 is 89.39%
which means that 89.39% of the total variation in the results
was attributed to the independent variables investigated.𝑅-Sq
is a criterion evaluation in which the correctness of themodel
in explaining themodel is evaluated by its𝑅-Sq value. In other
words, the closer the 𝑅-Sq value is to 100% shows that the
model will give better predicted values which are closer to the
actual values for the response. However, 𝑅-Sq can be made
artificially high by including toomany terms in the regression
model. If unnecessary predictors are added to the model, the

Table 9: Response surface regression for elastic modulus (𝑌2).

Term Coef. SE Coef. 𝑡 𝑝

Const. 2315.30 235.6 9.826 0.002
𝐴 403.52 129.1 3.127 0.052
𝐵 126.56 129.1 0.981 0.399
𝐴
2

−361.06 223.5 −1.615 0.205
𝐵
2

−235.56 223.5 −1.054 0.369
𝐴𝐵 38.36 158.1 0.243 0.824

𝑆 = 316.129, PRESS = 3518810
𝑅-Sq = 82.87%, 𝑅-Sq(adj) = 54.33%

Table 10: Response surface regression for elongation at break (𝑌3).

Term Coef. SE Coef. 𝑡 𝑝

Const. 2.90778 0.08364 34.765 0.000
𝐴 0.20667 0.04581 4.511 0.020
𝐵 −0.12833 0.04581 −2.801 0.068
𝐴
2

−0.28667 0.07935 −3.613 0.036
𝐵
2

−0.11167 0.07935 −1.407 0.254
𝐴𝐵 −0.06000 0.05611 −1.069 0.363

𝑆 = 0.112217, PRESS = 0.395874
𝑅-Sq = 93.67%, 𝑅-Sq(adj) = 83.11%

Table 11: Response surface regression for thermal conductivity (𝑌4).

Term Coef. SE Coef. 𝑡 𝑝

Const. 0.08493 0.005283 16.077 0.001
𝐴 −0.00715 0.002893 −2.471 0.090
𝐵 0.01635 0.002893 5.649 0.011
𝐴
2

−0.00926 0.00501 −1.847 0.162
𝐵
2

−0.00514 0.00501 −1.025 0.381
𝐴𝐵 −0.00756 0.003544 −2.143 0.121

𝑆 = 0.00708733, PRESS = 0.00177598
𝑅-Sq = 94.01%, 𝑅-Sq(adj) = 84.02%

Table 12: Response surface regression for electrical conductivity
(𝑌5).

Term Coef. SE Coef. 𝑡 𝑝

Const. 0.000008 0.000001 6.305 0.008
𝐴 −0.00000 0.000001 −0.024 0.982
𝐵 0.000001 0.000001 0.875 0.446
𝐴
2

−0.000008 0.000001 −7.211 0.005
𝐵
2 0.000001 0.000001 0.869 0.449
𝐴𝐵 −0.00000 0.000001 −0.008 0.994

𝑆 = 1.635721 × 10−6, PRESS = 7.875039 × 10−11

𝑅-Sq = 94.69%, 𝑅-Sq(adj) = 85.84%

𝑅-Sq increases even if no additional information about the
response is gained.

Meanwhile, 𝑌2, 𝑌3, 𝑌4, and 𝑌5 have 𝑅-Sq values of
82.87%, 93.67%, 94.01%, and 94.69%, respectively. Since the
𝑅-Sq values for five responses are reasonably high, it is said
that the accuracy of models is high.
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Figure 1: Normal probability plot for tensile strength (𝑌1) response.

Also, from the response surface regression analysis the
final empirical model in terms of coded factors can be
obtained. For each case, the models are as listed:

𝑌1 = 55.28 + 9.62𝐴 − 0.76𝐵 − 11.73𝐴
2
− 10.99𝐵

2

− 2.54𝐴𝐵,

𝑌2 = 2315.30 + 403.52𝐴 + 126.56𝐵 − 361.06𝐴
2

− 235.56𝐵
2
+ 38.36𝐴𝐵,

𝑌3 = 2.91 + 0.21𝐴 − 0.13𝐵 − 0.29𝐴
2
− 0.11𝐵

2

− 0.06𝐴𝐵,

𝑌4 = 0.085 − 7.148 × 10
−3
𝐴 + 0.016𝐵 − 9.258

× 10
−3
𝐴
2
− 5.138 × 10

−3
𝐵
2
− 7.595

× 10
−3
𝐴𝐵,

𝑌5 = 7.69 × 10
−6
− 1.61 × 10

−8
𝐴 + 5.84 × 10

−7
𝐵

− 8.34 × 10
−6
𝐴
2
+ 1.01 × 10

−6
𝐵
2
− 6.26

× 10
−9
𝐴𝐵.

(2)

3.1.3. Normal Plot of Residuals. A good estimated regression
model will explain the variation of the dependent variable
in the sample. Normal plots have the residuals being plotted
versus their expected values when the distribution is normal.
Residuals are the difference between the observed and the
fitted response value. The residuals from the analysis should
be normally distributed. In practice, for balanced or nearly
balanced designs or for data with a large number of observa-
tions, moderate departures from normality do not seriously
affect the results.

The normal plot of residuals of the two variables (sonica-
tion duration and filler loadings) for tensile strength is plotted
in Figure 1. From Figure 1 it can be seen that the residuals
are plotted around the straight line which indicates that the
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Figure 2: Normal probability plot for elastic modulus (𝑌2)
response.
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Figure 3: Normal probability plot for elongation at break (𝑌3)
response.

residuals are normally distributed. Similarly, from Figures 2–
5, residuals for 𝑌2, 𝑌3, 𝑌4, and 𝑌5 can be observed which are
plotted approximately along the straight line as 𝑌1. Hence, it
can be said that the normality assumption is satisfied for five
of the responses in this study. Therefore, there is no evidence
of nonnormality, skewness, outliers, or unidentified variables
that exist.

3.2. Numerical Optimization. Numerical optimization was
provided by the DOE method using Minitab software to find
out the optimum combinations of parameters to fulfill the
desired requirements. The ultimate goal of this optimization
was to obtain the maximum responses that simultaneously
satisfied all the variables properties.

3.2.1. Desirability Optimization Methodology. In order to
simultaneously optimize several responses, each of the trans-
formed responses, called 𝑑

𝑖
, is a transformation of the

response variable to a 0 to 1 scale which are combined using
the geometric mean to create the overall desirability (𝐷):

𝐷 =
𝑛

√𝑑
1
∗ 𝑑
2
∗ 𝑑
3
∗ ⋅ ⋅ ⋅ ∗ 𝑑

𝑛
. (3)
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Figure 5: Normal probability plot for electrical conductivity (𝑌5)
response.

Using the product of the desirability functions assures
that if any single desirability is 0 (undesirable), the overall
desirability is 0. Therefore, the simultaneous optimization of
several responses has been reduced to optimizing a single
response: the overall desirability, 𝐷 [12]. To perform the
response optimization, firstly the range and the target of the
responses are needed to be selected. An overlaid contour plot
is plotted in order to find the range of lower and upper bounds
for response optimization as shown in Figure 6.

Overlaid contour plot is a plot that places the contours of
each response on top of each other in a single graph. Each
set of contours defines the boundaries of acceptable response
values. The solid contour line is the lower bound and the
dotted contour is the upper bound. The contours of each
response are displayed in a different color. The white region
in the overlaid contour plot is the feasible region. It is an
area such that the acceptable values for each response are
between their respective contours. The possible combination
of parameter settings can be obtained within the feasible
region.

In order to produce MWCNTs/epoxy thin film com-
posites acquired with acceptable properties which are also
known as responses, the ranges of the responses are needed

Point 1

Point 2

Point 3

Point 4

5 15 20 2510 3530

Sonication duration

1.0

1.2

1.4

1.6

1.8

2.0

Fi
lle

r l
oa

di
ng

Y1

Y2

Y3 Y5

Y4

20.36

53.42

1163.4

2493.4

2.19

2.91

0.05518

0.1005

2.75e − 010

1.11e − 005

Figure 6: Overlaid contour plot for responses.

to be determined. In this study, two gradient lines, namely,
Gradient 1 and Gradient 2, were drawn on the feasible region.
However, the gradient lines have to be carefully drawn so
that they do not touch the color region. The gradient line
which connects points 1 and 2 is Gradient 1 while for points
3 and 4 the line is Gradient 2. Table 13 summarizes the data
for parameter settings and responses at four different points,
respectively. Thus, the range of lower and upper bound for
Gradient 1 can be set. By comparing both points 1 and 2,
those having smaller values are selected as lower bound and
vice versa. At the meantime, the center of the range for each
response is set as the target. Similarly, the same thing goes
for Gradient 2. With the range of lower and upper bounds
obtained, response optimizer in the Minitab software was
used to conduct the optimization for responses. A global
solution for each gradient was obtained. Global solution is the
best combination of factor setting for achieving the desired
responses. The optimization plots for multiple responses
stated are plotted in Figures 7 and 8.

From Figures 7 and 8, the single desirability for all the
responses is 1. This means that the predicted responses are
the closest to the target requirements. Also, the composite
desirability of MWCNTs/epoxy thin film composites for
both gradients is 1. This reflects that it has equal relative
importance of the responses. The red solid lines indicate the
global solution for the gradient. Meanwhile, the dotted blue
lines represent the predicted responses. In the interpretation
of optimization plot, both gradients have the same pattern of
curvatures.
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Table 13: Values of the four points on Gradients 1 and 2.

Factors Gradient 1 Gradient 2
Point 1 Point 2 Point 3 Point 4

Sonication duration 6.167 15.136 6.570 27.734
Filler loadings 1.800 1.108 1.599 1.874
𝑌1 33.409 44.140 37.131 49.406
𝑌2 1605.9 1912.7 1673.6 2404.9
𝑌3 2.389 2.827 2.474 2.756
𝑌4 0.0958 0.0684 0.0883 0.0852
𝑌5 1.33 × 10−6 6.97 × 10−6 1.17 × 10−6 6.46 × 10−6
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Figure 7: Optimization plot of multiple responses for Gradient 1.

For the factor of sonication duration, increasing the
sonication duration increases the responses of 𝑌1, 𝑌2, 𝑌3,
and 𝑌5 but decreases 𝑌4. The opposite way goes for 𝑌1, 𝑌2,
𝑌3, and 𝑌5 when decreasing the sonication duration. 𝑌4 can
be observed at its optimal point at 11.97min and 12.88min
sonication duration.Meanwhile, increasing the filler loadings
increases 𝑌4 and 𝑌5 but reduces 𝑌1, 𝑌2, and 𝑌3. Decreasing
the filler loadings increases 𝑌1, 𝑌2, and 𝑌3 but reduces 𝑌4
and 𝑌5. However, 𝑌2 is observed to reach its optimal point at
1.67 vol% filler loadings.

Among the two possible combinations of operating con-
dition, global solution of Gradient 2 is chosen as it produces
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Figure 8: Optimization plot of multiple responses for Gradient 2.

composite with higher predicted responses than that of
Gradient 1. Besides that, Gradient 2 has lower filler loadings
than Gradient 1 and just a slight difference in the sonication
duration. Lower filler loadings will eventually reduce the
cost of composite produced. Hence, the global solution of
12.88min sonication duration and 1.67 vol% filler loadings
is chosen as higher sonication duration and lower loadings
provide better dispersion ofMWCNTs into the epoxymatrix.

After optimization using the proposed method in the
above work, the properties of the MWCNTs/epoxy thin film
nanocomposites increased 17% for tensile strength (MPa), 7%
for elastic modulus (MPa), 2.1% for elongation at break (%),
22.8% for thermal conductivity (W/mK), and no changes in
electrical conductivity (ohm−1m−1).

4. Conclusion

This study showed the use of statistical design to optimize
the multiple properties of the MWCNTs/epoxy thin film
composites. The optimization was carried out to investigate
the effects of parameters (sonication duration and filler load-
ings) on the thin film composites properties. Based on the
optimization through the desirability optimization approach,
the optimal parameter setting was achieved with reinforc-
ing 1.67 vol% MWCNTs by ultrasonication for 12.88min
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to disperse MWCNTs in epoxy matrix. A global solution
of 12.88min sonication and 1.67 vol% filler loadings was
obtained to havemaximumdesired responseswith composite
desirability of 1. The significant amount of improvement
has been made in the results of MWCNTs/epoxy thin film
nanocomposites where 17% for tensile strength (MPa), 7%
for elastic modulus (MPa), 2.1% for elongation at break (%),
and 22.8% for thermal conductivity (W/mK) are as tangible
increment in each response except in electrical conductivity
(ohm−1m−1) without any changes.
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