Hindawi Publishing Corporation

Journal of Optimization

Volume 2016, Article ID 1213949, 19 pages
http://dx.doi.org/10.1155/2016/1213949

Research Article

Hindawi

An Analysis of Robustness Approaches for the Airport Baggage
Sorting Station Assignment Problem

Amadeo Ascé

School of Computer Science, University of Nottingham, Nottingham NG8 IBB, UK

Correspondence should be addressed to Amadeo Asco; a.asco@bocaditos.co.uk

Received 18 December 2015; Revised 11 April 2016; Accepted 10 May 2016

Academic Editor: Wlodzimierz Ogryczak

Copyright © 2016 Amadeo Ascé. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the Airport Baggage Sorting Station Assignment Problem (ABSSAP), the Baggage Sorting Stations (BSSs) are assigned to flights
for the period of time necessary to perform their service for a given flights’ schedule. But the flights schedule may change on the day
of operation which may deem the original assignment of some flights to BSSs infeasible. These changes may create conflicts between
those flights whose schedules have changed and may not be restricted to those flights but propagating to the other flights for different
reasons. Conflicts depend on the original assignments for the real arrival and departure flight times on the day of operation. It is
therefore desirable to consider potential delays on the day of operation when generating the original flight assignments to BSSs,
such that the final flight assignments differ little or do not differ at all from the original assignments on the day of operation.
The term robustness is here used to give an indication of the degree to which this has been achieved. Some existing approaches
originally presented in the Airport Gate Assignment Problem (AGAP) are adapted to the ABSSAP, other approaches are suggested
for generating assignments which take account of potential perturbations on the day of operation for the ABSSAP, and all of them
are then compared. It is shown that the suggested approaches by themselves do not perform better than the other considered

approaches but when combined they enhance the result further compared to when each approach is used alone.

1. Introduction

Flight delays are caused by many factors like airport secu-
rity, weather conditions, unavailability of required resources
(mechanical breakdown), delayed propagation, airport con-
gestion, etc.

The ABSSAP corresponds to the assignments of flights to
BSSs, whereas the BSSs are the end elements in the baggage
system at the ground of the airport terminal where the
baggage is collected from and sorted by the baggage handlers
or to where the baggage from arrived flights are placed to
enter the baggage system. Figure 1 shows an overall simple
view of the airport baggage handling system.

Once the baggage has been loaded into the aircraft hold,
the BSSs assigned to that flight are ready for use on the next
scheduled flights, and any delay on a flight at the gate will
not necessarily have repercussions on these. However, such
delays may affect the BSSs assigned to the flight scheduled
for that gate next if such a flight is held waiting for the gate to

become free. BSSs will then need to hold the baggage longer,
thus potentially affecting the following assignment in turn.

Delays on the day of operation may render some assign-
ments infeasible which need to be reassigned. It is therefore
desirable to account for potential delays on the day of
operation when generating the flight assignments to BSSs in
the planning stage, such that the final flight assignments differ
little or do not differ at all from the original assignments on
the day of operation. The degree to which this is achieved is
an indication of the solution robustness, so a solution which
requires fewer reassignments is said to be more robust than
those solutions requiring more reassignments. Robustness is
the ability of assignments to resist changes consequence of
perturbations by reducing or removing the need to reassign
current assignments. Mulvey et al. [1] characterise the desir-
able properties of a solution to model robustness.

There are different ways of increasing robustness depend-
ing on the intended effect. One of the most simple and widely
used methods is the introduction of a buffer time between
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FIGURE 1: Simple view of an airport baggage handling system with the BSSs.

assignments which allows the absorption of small distur-
bances; implementation of this approach for the ABSSAP
is presented in [2-5]. The amount of buffer time may take
different contributory factors into account, which could
perturb the schedules of handlers, airline, airport origin,
destination, and flight. The size of the flight is normally
related to the travel distance, longer distances presenting a
higher probability of disturbances, which may accumulate
generating a higher level of delays. Shorter distances present
less chance of disturbances. The location of the origin and
destination airports has a direct effect on potential disrup-
tions, given that they place a constraint on the permitted
routes possible and certain circumstances applicable to them,
such as weather patterns during summer and winter or on
the equator. Whereas the buffer time approach considers a
predefined period of time, where its reduction is considered
as a measure of robustness, the “idle time” refers to the time
between two consecutive assignments to the same BSS, from
the end time of one activity to the base starting time of the
following assignment, also called gap. Other approaches for
improving the robustness make use of the distribution of “idle
time” and the reduction of the number of reassignments of
the disrupted schedules.

Buffer time has been used in the scheduling of BSSs and
airport gates, which may be applied between two consecutive
flights to the same BSS in order to absorb small disturbances
in the real system behaviour and was studied in [1, 6]. It
was used in the ABSSAP in [2, 3, 5, 7] where it was used
in the optimization of the aircraft turnaround process. The
AGAP has some characteristics similar to the ABSSAP, and
buffer times have been commonly considered for the AGAP
in [7-11]. Yan and Huo [12] provided a sensitivity analysis
for the AGAP buffer time, noting that the length of buffer
time significantly influences the gate assignment process,
so a reasonable minimum value should be used. Yan et al.
[8] looked at the suitability of Flexible Buffer Times (FBTs)
where, given low delays, short FBTs usually improve real-
time objectives, such as the reassigning of an incoming
aircraft at a minimum distance. Wei and Liu [13] showed
the feasibility and effectiveness of using a fuzzy model in
conjunction with fixed buffer times for the AGAPs. Ascé et al.
[4] used buffer times to cope with small perturbations in

the ABSSAP, and several constructive algorithms were also
studied. Wu and Caves [7, 14] showed the significance of a
correct use of scheduled buffer time in maintaining schedule
punctuality and performance by balancing the trade-offs
between schedule punctuality and aircraft utilisation.

2. Problem under Consideration

The ABSSAP considered in this paper may be summarised as
the assignment of available BSSs to flights which have already
been scheduled. In the ABSSAP, the flights will already have
been assigned to stands, which are often grouped along piers
around the terminals, and there will usually be some bias in
this allocation, such as to airline preferences. This problem
was described and studied in [2-5]. In this paper, we concen-
trate on finding solutions that comply with the constraints
and take into account the objectives concentrating on the
performance of different robustness approaches described in
Section 3.

2.1. Overall Problem. Aircraft are usually parked at their
allocated stand, around an airport terminal. Two layouts are
considered in this paper which were presented in [2].

A list of some of the constants for this problem is
presented in Table 1 and a list of the decision variables is
shown in Table 2.

The aim is to find y;;, values such that the objective func-
tion (3) is maximised, subject to the constraints expressed by
(1) and (2) and the different robustness approaches studied in
this paper which are presented in Section 3.

N
Yvip=P Vjiell,..,M}, ¥Vpe{l,..,P}. ()
i=0

For any pair of different flights where service times
overlap, if the overlap in service times is greater than the
maximum reduction allowed (B, for activity q of flight ),
then both flight activities cannot be assigned to the same BSS.
Thus, inequality (2) applies to any such pair of flights, j and /
(j #1), wheret), <e; < e and (e; —t;,) > By,.

Yiip ¥ Yap < 1. (2)
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TABLE 1: The constants for the model.

Constant Description

N Denotes the number of BSSs.

M Denotes the number of flights.

p. The total number of activities to be serviced by baggage service stations for a given flight j, which also equates
J to the total number of sorting stations required to fully service flight j, P; > 0.

; Denotes a BSS where BSS 0 represents the dummy sorting station to which flights are assigned, if they cannot be

assigned to a real BSS, i € {0,..., N}.

j Denotes a flight, j € {1,..., M}.

T; Denotes the required service time for flight j (1 hour for short haul and 1.33 hours for long haul).

B. Denotes the desired buffer time for flight j—the time for which its BSS should be idle prior to this flight being
] serviced. B ; is considered to be 15 minutes for short haul and 30 minutes for long haul flights.

e; Denotes the end service time for flight j.

t; Denotes the target starting service time for flight j (t; = e, - T, - B)).

T; Denotes the the base starting service time for flight j (z; = ¢, - T)).

TABLE 2: List of the decision variables used in this ABSSAPS model.
Name Description

Specifies the assignment of flights to sorting stations. y;;, = 1 if baggage sorting station i € [1,..., NTis
Yiip allocated to flight j € [1,..., M] for p € [1,..., P;] and 0 otherwise. If each flight only requires one activity,
which means that each flight only requires one BSS, then this variable can be expressed as y;;.

. Specifies the necessary reduction in service time for activity p € [1,..., P;] of flight j € [1,..., M], given the
P service starting time allocated, s ipt

< The service starting time allocated to activity p € [1,..., P;] of flight j € [1,..., M] and given that a sorting
» station can only service one flight at a time. s, can be determined from r;, since s;, = t; — ;.

Equation (1) states that each flight can be assigned either
to exactly one real BSS or to the dummy sorting station.
Inequality (2) states that flights cannot be assigned to the
same real BSS if their service times overlap. If all flights only
require one BSS, then the variables are reduced to y;;, r;, and
s

Although this is inherently a multiobjective problem, the
importance of ensuring maximal assignment of flights to
BSSs (top priority) and the relative importance of obtained
robust solutions (second priority) allow these objectives to be
combined into a single compound objective (3) with weights
W,, W,, and W; chosen to implement these priorities.

N M P
W, * Z Z Z Yijp — W, * Robustness

i=1 j=1 p=1 robustness objective

assignment objective

M P N
Wik} Y <Cj Vi dif>-
j=1p=1 i=1

distance objective

(3)

The first element in (3) aims to maximise the assignment
of flights to BSSs, the second aims to increase the robustness,
and the third aims to minimise some distance cost associated
with the assignments, where C; is a factor related to the
amount of baggage for flight j (assumed to be 1 in all cases

for this paper) and d;; is a measure of the distance or cost
incurred from assigning BSS i to flight j. This aims to ensure
that flights are allocated to appropriate BSSs.

The following two points were originally defined in [4]
and will be observed to be useful later when defining the new
suggested robustness approaches and when interpreting the
results for the ABSSAP.

The Lower Maximum Assignment Point (LMAP) is the
minimum number of resources required to service a certain
number of activities when the service starting time (sjp)
coincides with the base starting service time (T]-).

The Upper Maximum Assignment Point (UMAP) is the
minimum number of resources required to service a certain
number of activities when the service starting time (sjp)
coincides with the target starting service time (% ,).

Two examples of both points are shown in Figure 2,
where the maximum values of each diagram correspond to
the LMAP and UMAP.

2.2. Robustness. A scheduled assignment is said to be in
conflict if the completion of its service time is greater than the
commencement of the service time of the next assignment at
the same BSS. When a delayed flight affects the assignment
of subsequent flights to the BSS, then there are two ways
it can be corrected: either reassign the conflicting flight
or reassign the subsequent flight to the conflicting one.
When reassigning a conflicting flight or subsequent flights
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F1GURE 2: Flights service distribution for the two days’ data sets obtained from the website of British Airports Authority (BAA).

to another BSS, a situation may arise where the reassigned
flight is in conflict with the subsequent flight at the new BSS.
Some reassignment may therefore have a downstream effect
on the overall schedule, producing further conflicting flights
requiring further reassignments, thus potentially increasing
the problem difficulty later on.

In the ABSSAP, those flights which are late in arriving at
their assigned stand are considered to be a perturbation, since
baggage cannot be loaded into the aircraft at the scheduled
time, and it needs to be held longer at the BSS. Any extension
of an aircraft’s stay on its assigned gate should not have an
effect on its assigned BSS, as the baggage should have already
been loaded into the aircraft, such that the BSS is free for use
in its next assignment. This means that not all aircraft delays
will affect their assigned BSS.

The main objective of this is to reduce the number of BSSs
which have to be reassigned on the day the schedule is put
into practice. In the ABSSAP, ¢; is the end of the service time
of flight j, 7; is the base starting service time of flight j, and
the variable y;; has a value of 1 if flight j is assigned to BSS
i, or y;; is zero otherwise, as described in Section 2.1. A new
decision variable x ;. is introduced with a value of 1 if flights
jand k are assigned to the same BSS (i.e., if y;; = y; = 1 for
i€ll,...,N]and j,k € [1,...,M]), or Xj 1s 0 otherwise.
On the day the schedule is implemented, the real times for
the flights j and k correspond to e;., TJ'-, e;, and 7 for flights j
and k, respectively, where TJ'. 2T and T,i > 11, and the flights
ordered by their base starting times, for j < kand j, k €
[1,..., M]; then 7; < 7. A conflict occurs when two flights
jand k with j < kand j, k € [1,..., M] originally assigned
to the same BSS (xj = 1) have overlapping service times;
that is, e; > 7, and T]’- < e;, as shown in Figure 3. Conflicts
depend on the original assignments for the real arrival and
departure flight times on the day of operation. It is therefore
desirable to consider potential delays on the day of operation
when generating the original flight assignments to BSSs, such

Tj ej Tk ek
Scheduled |Pjf Flight; | (B Flight, Bss) | ik =1
—= yij=1
Actual E Flight; Flight; BSS; =1
5 ode o

FIGURE 3: Example of conflict between two flights originally
assigned to the same BSS.

that the final flight assignments differ little or do not differ
at all from the original assignments on the day of operation.
B, refers to the buffer time originally assigned to the flight j,
which may be absorbed by perturbations without raising the
need for a reassignment. But overlapping, T,i < ef, will deem
the assignment infeasible and require reassigning it.

3. Robustness Approaches

In this section, some robustness approaches are presented
and others are suggested. These are then studied and com-
pared in the following section.

3.1. Minimise Reduction in Service Time. It may be possible to
gain robustness by reordering assignments between BSSs so
that “idle time” between flights consecutively assigned to the
same BSS is greater, as shown in Figure 4.

Figure 4 shows two potential solutions with different
robustness. While any delay to flight “a” in the “less robust”
solution will certainly affect flight “b,” which will in turn
have to be reassigned to another BSS, in the “more robust”
solution a delay in flight “a” will not affect flight “b.” So the
“more robust” solution is preferable to that of the “less robust”
solution.
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FIGURE 4: Simple example of two schedules, with the same flights,
where one is obviously more robust in respect of perturbations than
the other.

Mangoubi and Mathaisel [15] proposed the use of “buffer
times” between two flights which are consecutively assigned
to the same gate in order to obtain robust assignments,
defining the reduction in service as that part of buffer time
which overlaps with the previous assignment to the same gate.
Given the detrimental effects that the reduction in service
time has on the robustness of the assignment as against real-
life delays, it is advisable to minimise the total reduction in
service time, thus maximising buffer times. This objective,

(q—q) I
arctan - —
Uijp = B g 2

total reduction in service time (TRS), can be expressed by
formula (4).

s

Mz

min Tip- (4)

1

p

-.
Il
—

If a fitness function is defined as a weighted sum of the
different objectives, as used here, and the robustness uses
the reduction in service time only for assigned flights, then
particular weights may compromise the importance of the
main objective (maximisation of the number of assignments),
where solutions with lower numbers of assignments are
favoured over those with higher numbers of assignments
because of the robustness objective.

The use of formula (4) treats any reduction in service
equally, so it does not make a distinction between reducing all
the assignment buffer time and allocating it to another flight
from another solution where both flights share the available
“idle time,” as shown in Figure 5. However, flight 3 with
maximum reduction in service in solution “b” (Figure 5)
will be unable to absorb any delay on the day of operation,
although the same flight in the alternative solution “a”
(Figure 5) will be able to do so, making it the preferable
choice.

A nonlinear penalty function is required to take account
of this, such as formulas (5) and (6).

i B
if k<, yijp = Yieg = 1> Z Zyilp =1

12k+1 p=1 ()

0 otherwise,

max

Mz

1

I
—_

Formula (5) defines the penalty u;;,, for assigning activity
p of flight j to sorting station i, with the total penalty
being represented by formula (6). There is only a penalty
for consecutive assignments to the same sorting station,
between the assignment and the previous assignment to
the same sorting station. The reason for using arctangent
is based on the properties of this function which imposes
stronger penalties around the point at which the flights are
assigned service time without any buffer time to the point
at which all the buffer time is retained (by dividing the
member of arctangent by By). The effect is reduced as the
time separation between the assignments increases, but the
contribution of any time separation is always considered
negative. The constant 71/2 is used so that there is always a
cost associated with assigning two flights to the same sorting
station; otherwise it would be a benefit. Considering the
arctangent for each flight increases the individual effect on
the overall objective, in contrast to using the arctangent of
the sum of all of the flight contributions.

e

1uijp. (6)

p

The robustness objective represented by formula (6) also
takes account of the objective of “minimising the service
reduction,” as being the sum of the reduction in buffer time
of each flight assigned.

3.2. Distribute Idle Time. Bolat [16] proposed the distribution
of “idle time” uniformly amongst gates for the AGAP. In
the case of the ABSSAP, the distribution of the “idle time”
uniformly amongst BSSs can be considered, where “idle time”
is calculated as the time between the start of service time
on a flight’s assignment to BSS and the end of service time
of the flight assigned immediately before the same baggage
sorting station, as shown in formula (7). Whereas the bufter
time implies preference for a particular gap size between
consecutive assignments to the same sorting station, an “idle
time” does not. When using the “idle time” it is normally
intended that the gap size should be as large as possible. The
reason for this is to increase the probability that, even with a
delay, completion of service time for flight presently assigned
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FIGURE 5: Simple example of a more robust schedule of four flights and two sorting stations using the reduction in buffer time.

Atj = (sj -

e)

for j <k, yip = yiq =1 where A1 € [k,

v+:max{Atj|j€ [1,...
v7=min{Atj|je [1,...

min (v" —v7).

Formulas (8) and (9) refer to the maximum and mini-
mum “idle time” for a solution, respectively, while formula
(10) represents the objective as the difference between both
the maximum (v") and the minimum (v~) “idle times” (At ,
in (7)) for the same solution. Figure 6 shows a simple example
of the robustness of two solutions, where solution “a” is more
robust than solution “b.” In solution “a” the delay of flight 3
will not affect flight 4 and needs to be considerably larger to
affect flight 5, whereas in solution “b” small delays in flight 3
will affect flight 4.

Formula (10) assumes that all flights within a solution
have been assigned, which may not be the case in certain
circumstances, where the maximum possible assignment is
lower than a full assignment (simulation) or where the initial
solution(s) has some flights remaining unassigned, and an
example of this is shown in Figure 7(a). It should also be
observed that this objective may conflict with the maximum
assignment objective (first objective), as shown in Figure 7(b),
where solution “f” has a smaller Av compared to solution
“e,” which is based on formula (10). This means that solution
“f” is considered more robust, but solution “e” would be
preferable because it achieves more assignments. Thus, it will
be necessary to select the objective weights appropriately,
where the fitness is a weighted sum of the different objectives,
in order to ensure the correct selection of the solution.

Bolat [9, 17] extended the model by minimising the
variance of the idle times.

M ZM At

. =12t

min Z At - == (11)
st ] M

mean “idle time”

... M] with 1) < ¢; j,k €[l,

will still be earlier than the start of service time for the next
flight assigned to the same BSS.

M], pe[L,....,P], qe[1,...,Pk], i€ [L,...,N,], 7
M}, (8)
M1}, ©)

(10)

3.3. Reduce Reassignment on Disruption. The ability to reas-
sign all flights directly affected by a disruption is desirable,
without the need to reassign other flights. The intention
here is to generate schedules which take account of this
objective, allowing such reassignment to be performed more
frequently.

One way to achieve this objective would be to count the
number of assignments between which a reassignment could
be placed when necessary. Whether the reassigned flights are
on the same pier/side, as well as how many reassignments
could be absorbed by a pair of assigned flights, must all be
taken into account. Figure 8 shows the ability of the “idle
time” between the two flights 1 and 8 to accommodate flights
3, 4, and 5, should one of them be delayed. Its reassignment
to BSS, may be sufficient, thus avoiding transfer of any delay
to other assignments.

The following model is proposed where the capacity to
absorb reassignments may be achieved by weighting each
reassignment by the Inverse of 1 plus the distance between the
BSSs (dm, presented in Section 2.1), given that such distance
(d._) may be zero, where all flights are ordered by their base
start time (7;), as shown in (12) and (13).

The intention is to use the number of flights which
could be reassigned between two flights already consecutively
assigned to the same BSS, without the need to reassign either
of these flights in order to achieve this. Equation (12) states
that ¢ is equal to 1 if flight k's base service duration does
not overlap with the base service duration of both flights j
and I (j < I), both of which are assigned to BSS;, and there is
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FIGURE 8: An example of the capacity to absorb reassignments.



8 Journal of Optimization

BSS, | CHlight, Flight, b
BSS, ) Flight, Flight,
BSS, | Elight, Flight, | | Flights

Bss, [ Flight, || Flight, |[Fligh Flight, ght; | Flights | Flight,

FIGURE 9: An example of border assignments in baggage sorting stations.

1 ifj<k<l, ejSTk, ekSTl Vj,k,le [1,...,M]£T€(j,..

no other flight r between these (j < r < I) already assigned to
the same BSS as flight j; otherwise ¢, is zero, as shown in

)R

with y;;, = y;,, = 1 for any p € [1,...,Pj], qe(L,....P],

Pik1 =
Yike =0 Vz € [L---,Pk],

0 otherwise.

The objective is to maximise formula (13), which weights
the contribution of each potential reassignment, based on
which BSS the reassigned flight was originally assigned to.
The underlying idea is that closer reassignments are preferred
to more distant ones, but the ability to reassign without
affecting other assignments is preferable.

Yiip * Viig * Piki

N P (13)
Z Ynkz
n#i zzldi,n +1

A —
effect of the BSS assigned

B I-1
quzl Zk=j+1

(12)

The representation in formula (13) also needs to include
the border cases relating to the first and last assignments in
BSS as shown in Figure 9.

The previous formula could be extended to cover the
border cases by assigning two extra dummy flights to all
available BSSs; first, j = 0, with the end time being the start
of the time period studied, and the second flight, j = M + 1,
with the start time being the completion of the time period
studied, which for our time period would be ¢, = 0 and
(enr+1 = Tare1) = 24 hr, with y;o = Y1) =1 Vi€ [1,...,N],
as shown in

(14)

M P; M+1
<Zj=0 ijzl Zl:]-':l

3.4. Area of Reduction in Service (ARS). Bolat [16] examined
the minimisation of the range of idle time and the difference
between the maximum and minimum idle times for the
AGAP, which was later extended in [9] to consider both
minimisation of the idle time range and minimisation of
the idle time variance (Section 3.2). However, these do not
take account of the influence or effect which the disruptions
have on the schedule due to the time of their occurrence,
as all reductions in service time are treated as being the
same, irrespective of the time period considered in the
whole “planned schedule” for the given set of departures.
It is anticipated that the more congested time periods in

455 4 1

P
P Yiip * Vilg * Vnkz * S"ikl)

the “planned schedule” will also represent periods where
disruptions are more likely to occur and propagate, extending
their effect and further increasing costs.

LMAP and UMAP values are an indication of the diffi-
culty of the problem, and these may be obtained from the
distribution of the number of flights requiring service over
time, as shown in Figures 10 and 11.

Delay during a high flight density period is more likely
to propagate given that fewer resources will be available
to absorb any reassignment without repercussions on other
flights. At the same time, it is these cases where it is most
difficult to keep a sufficiently large gap between assignments
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FIGURE 10: Flight distributions with LMAP and UMAP for 194 flights
on 16th December 2009 at Terminal 1 of London Heathrow airport
(identified as H1T(091216).

to the same BSS. In assessing the importance of the time
of day when service reduction is performed, it is suggested
that it would be advisable to increase penalisation of flight
assignments with reduced service time when there is a higher
flight density. This can be accomplished by calculating the
required number of BSSs at different times of the day, as
shown in Figures 10 and 11.

Average Assignments Point. The function f,(t) refers to the
distribution of flights over time with ¢, being the schedule
starting time and ¢, being the schedule end time, as shown
in Figure 12. The Average Assignment Point (AAP) is here
defined as the number of BSSs for which the distribution of
flights would be uniform, which can be calculated by

t
‘. @) dt

AAP = Lf”— (15)

e~ ts

A; is the density distribution area for the time period

from the target service time of flight j (¢;) to the end of

service time for the previous flight assigned to the same BSS;
= _[:Z fu(®)dt. AAP; is here
defined as the mean number of flights over the target start
time for flight j and the end of service time for the previous
flight assigned to the same BSS as flight j; for example,
AAP g = A 5/(eq —t1g). So the contribution to the objective
for assignment j is AAP;/AAP times the reduction in service
previously considered in Section 3.1. This corresponds to
values greater than one for dense flight regions of the schedule
and less than one for underused regions.

The approach proposed intends to penalise more those
reductions in flight service time during time periods where
more flights require servicing compared to those periods with
less service load by means of the AAP and the distribution
of flights over time, as shown in (16). The idea is that flights
which require servicing during congested periods are more
likely to have a knock-on effect compared to those in less
congested periods. It is therefore preferable not to reduce the

for example, in Figure 12 A4
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Service Objective.

service time of flights at more congested times so much, in
order to limit the effect of potential delays:

il

i

1 N M
f2 AAP * ZZ _lyz]p (16)

-
—
>

This approach is compared with some of the other
approaches described here in Section 4.

3.5. Subarea of Reduction in Service (SARS). In this case, the
objective is based on the area between both flight densities
“without reduction in service time” and “with reduction
in service time” shown in Figure 13, being here called a
subarea. The flight density subarea corresponds to the area
from the flight target start time (described in Section 2.1) to
the previously assigned flight's end service time, which lies
between both flight density distributions (f, and f;), where
a reduction in service time is not permitted and when all
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FIGURE 13: Subarea Reduction in Service Objective.

the buffer time has been reduced (considering only the base
service duration, T).

- [ (- fo)a )

The approach now proposed has a fitness which covers the
subarea divided by the difference between the UMAP and the
LMAP for all the assigned flights.

N M b A’]
222 P ¥ UMAP — LMAP" a8)

Similarly to the Area Reduction in Service (Section 3.4),
the main idea is to penalise more heavily those reductions
in flight service time which occur in regions with high
flight density, as these are more likely to further disrupt the
schedule in case of delays. Adding both approaches together
with the TRS will be seen in Section 4 to increase the
robustness as compared to using each approach individually.

Nevertheless, in cases where the LMAP is equal to the
UMAP, the SARS approach cannot be used; an example is
shown in Figure 14. In these cases, the area between both
flight densities could be used, an approach that is here named
Base Subarea Reduction in Service (BSARS). As will be
seen in Section 4.1, this approach significantly increases the
robustness and widens the range of the quantity of BSSs, in
which it performs better when compared to the ARS, TRS,
and SARS.

These approaches are compared with some of the other
approaches introduced in this paper in Section 4.

3.6. Unsupervised Estimated Stochastic Reduction in Service
(UESRS). Lim and Wang [18] proposed a stochastic pro-
gramming model for the AGAP with a robustness cost of
conflicts, which is estimated by a function, v(j, k). Flights
are ordered by their base starting service time, so the gap
between two flights j and k, I(j, k), assigned to the same BSS,
where j < kand j, k € [1,..., M], is the difference between
flight k’s target service time and the prior assigned flight j’s
end service time (19), where I(j,k) = -r; for I(j,k) < 0,
as shown in Figure 15. v(j, k) is used to estimate the mean
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FIGURE 14: Example of distributions with the same LMAP and
UMAP.
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FIGURE 15: Overlap between two flights j and k assigned to the same
BSS.

conflict probability between flights j and k assigned to the
same BSS, which is a function of the gap I(j, k), where larger
gaps between assignments to the same BSSs result in lesser
probability of real flight conflicts. v(j, k) is normalised in (20).

1(jk) =t —e; (=7~ By), (19)
E(p(j.k))
- e v (]’ k) ~ Vmin (]’k) (20)
CE\ T G v G0 )
M-1 M
Y E(p(j.k)). (21)
j=1 k=j+1

The definition of v(j,k) comes from the application
domain, in the absence of historical data; some unsupervised
estimation functions were introduced in [18]. Figure 16 shows
the penalty (y-axis) incurred for different unsupervised
estimation functions as a function of the gap (x-axis). Neg-
ative values refer to reductions in service time between two
assignments to the same BSS, which are heavily penalised as
they may require reassignment should delays occur, whereas
positive gaps are penalised less. Wider gaps between two
assignments reduce the need to reassign delayed flights, given
that the delay has to be larger than the gap in order to affect
the following assignment to the same BSS. Similarly, starting
the service earlier may not require the flight to be reassigned
because the duration of earliness has to be lower than the gap
in order to affect the previous assignment. Both earliness and
delay probabilities decrease as the gap increases. Sufficiently
large gaps may also be used on the day of operation by
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FIGURE 16: Penalty for different unsupervised estimation functions
based on the gap between assignments.

disrupted flights which need to be reassigned, such that the
detrimental effect of disruptions on that day is reduced.

The unsupervised estimation functions introduced in [18]
are presented below and are shown in Figure 16:

(1) Linear estimation is as follows.

v(jk) = =1(j.K). (22)
(2) Exponential estimation is as follows.

v(j k) = e PR, (23)
(3) Inverse estimation is as follows.

b 1
vk = 1TGR s TTER>0 oy
1

otherwise.

The value of the constant “b” changes the penalisation
as shown in Figure 16, so a higher “b” increases
the penalisation and a lower “b” decreases it. An
appropriate value should be selected to properly
weight the influence of the potential conflicts. Lim
and Wang [18] used b = 15 minutes, which proved to
provide rather poor results when compared with the
exponential estimation function, which may partly
be caused by the fixed cost when I(j,k) < 0 (dark
red dash line, Figure 16), whereas in the exponential
estimation function (purple dash line, Figure 16) this
is not the case. The value used for “b” may be too
great, and a lower value would make this estimation
function provide values closer to those provided by
the exponential estimation function which provided
fitter solutions in the results presented in [18]. Con-
sequently, a value b = 6 was seen in the experiments
studied in Section 4.1 to provide better results than
when b = 15. In general, an even lower value did
appear to perform better in some instances but not
as well as b = 6, as shown in Section 4.1.

1

The Inverse estimation function as considered in [18]
treats all gaps smaller than the buffer time equally,
which does not represent a real case since smaller gaps
between flights are more likely to result in conflicts
than larger ones on the day of operation. Given
this and that the exponential estimation function
performs best and treats all gaps differently, it is
proposed that all of the gaps be treated differently, as
shown by the modified version which is herein named
“Offset inverse” (25), which is shown in Figure 16 for
b = 15 (green line).

v(j. k)= b . (25)
1(j,k) —min{l(j,k)} +b
(4) Sublinear estimation is as follows.
mx1(j, k)
— ) if I(j,k) >0,
v (j.k) = °S< - ) HHRR >0 o

1 otherwise.

This estimation also suffers from the same problem
as the Inverse estimation and may be improved by
offsetting its value so that the maximum penalisation
corresponds to [, and the minimum corresponds to
Iin (27), which is shown in Figure 16 for y = 0.

1(j,k)-1_;
V(j,k)=COS T[*((] ) mm+)/) )
lmax_lmin+y

(27)

The gap definition used takes account of the buffer time,
as the target service duration is the base service duration
(T}.) plus the buffer time (By) for the flight. This makes the
estimation functions dependent on the buffer time of each
flight, as shown in Figure 17 for two buffer times of 30 and
15 min each. When the buffer time is the same irrespective of
the flights, B, = B Vk € [1,..., M], as considered in [18],
the cost is the same irrespective of the flight, depending only
on the separation between consecutive flight assignments, but
this is not the situation when the buffer time depends on the
flight, namely, long, medium, or short distance flights, which
are the cases studied here.

3.7 Reduction in the Number of Conflicts (RNC). A stochastic
approach for improving schedule performance is described
here, when disruptions occur on the day of operation. A
similar approach was used in [19] where random delay
scenarios are generated in the “planning stage” which are
used to account for the potential disruptions in the schedule
on the day of implementation by means of calculating the
expected semideviation risk measure [20] for all those delay
scenarios.

This approach is based on reducing the number of con-
flicts on the day of operation. Given that the real perturbed
conditions will not be available until the day the schedule is
implemented, these perturbed conditions are simulated by
examining a set of perturbed base cases, S, which may be
obtained in different ways, such as randomly, for example,
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FIGURE 17: Penalty for different unsupervised estimation functions
based on the gap between assignments for different buffer times.

from historical data or calculated using known distribu-
tion(s) from information available at the time of generating
the assignments.

It is considered a set of perturbed schedules S, which
simulate the perturbations on the day of operation. A new
variable is introduced c;, which for a given solution of
assignments has the value of 1 if flight j is in conflict
with another flight in the perturbed schedule s € S or
zero otherwise. The average number of conflicts in the set
of perturbed schedules S is calculated by (28), which is a
measure of the solution robustness.

-1 M
=g Y e (28)

s€S j=1

When reassigning conflicting flights or subsequent flights
to other BSSs, a situation can arise where the reassigned
flight interferes with the subsequent flight at the new BSS,
a so-called secondary conflict. Some reassignment may
therefore have a downstream effect on the overall schedule,
producing more conflicting flights, in turn requiring further
reassignments, thus potentially increasing the difficulty of the
problem later on.

The above version considers all the conflicts to be of the
same importance, but it is preferable to have conflicts which
do not have repercussions later, that is, can be reassigned to
another BSS without affecting any of the assignments already
in existence. To account for this situation, a new variable
C]’»S is defined which takes the value of 1 if the reassignment
of conflicting flight j in a perturbed schedule “s” affects
other assignments already in existence or zero otherwise. The
objective is presented as (29) where the constant, o, 0 <
a < 1, denotes the importance of the conflicting flight
repercussions on other assignments; & = 0 corresponds to the
case where no account is taken of any repercussion on other
assignments, which corresponds in turn to (28), and o = 1
corresponds to the cases in which both the conflicting flights
and their repercussions on other assignments are considered
to be of the same importance. « > 1 refers to the cases where
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more importance is given to the repercussions of a conflict on
assignments other than the conflict itself.

fzzl-_;'*(ZZ(chm*c;s)). (29)

s€S j=1

Calculation of the conflicts is time consuming and even
more so if the effect of the conflict repercussions is also
calculated, which is further aggravated by the need to use
a large number of schedules in the perturbed set S in
order to achieve a good representation of all the potential
situations. The execution time is one of the disadvantages of
using this approach as was experienced when executing the
experiments presented in Section 4.

3.8. Probability of Conflict Based on the Gap (PCBG). The
previous approach would normally require a large number of
perturbed data sets, which makes its application very slow.
Given that we are still interested in reducing the number of
conflicts, but without the heavy cost in speed imposed by the
RNC approach, then it is proposed to use the probability of
having a conflict in a given “idle time” for each flight. This
can be easily obtained if the delay distribution is known. In
the ABSSAP, the early arrival of a flight does not normally
affect the assignment to the Baggage Sorting Station Selection
(BSSS) as this does not extend the time in which the BSS
is required for servicing the flight, but transportation of the
baggage already in the BSS to the flight may start earlier,
so no earlier arrival is considered here, in the case of a
normal folded distribution (no negative numbers and with
zero mean) and independent delays for flights. This could also
be extended to other distributions and to nonzero means.

Independent delays are considered initially, where a
conflict between two consecutive flights is independent of
other flights assigned to the same BSS. The assignments to
different BSSs are independent from the point of view of
conflicts. The probability of two consecutive flights having
overlapping service times (a conflict) corresponds to the sum
of the product between the probability of a sufficiently large
delay on the part of the previous flight assigned to that BSS
and the probability of the next consecutive assignment to
the same BSS not being sufficiently delayed, as shown in
Figure 18, where #;(t) is the probability density function for
flight jand t, = 7 —e;.

Equation (30) is the probability of a conflict, which is
equal to the probability of exceeding the gap between both
assignments, multiplied by the probability of the following
assignment not being sufficiently delayed to avoid conflicts.
p(j, k) is the probability of a conflict between two flights jand
k assigned consecutively to the same BSS with a gap between
them of t, = 7, —e; given their respective probability density
distribution of delay #;() and 7, (t).

(o)

PG = |

=€

t—(t—e;)
nor (1 - L e (%) dx> dt. (30)

A simplification of the conflict probability is represented
in (31), which uses the “Riemann integral” approach for the
range of delays between (7 — ¢;) and four times the delay
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FIGURE 18: Probability of a conflict between two consecutive flights
based on the intervening gap.

distribution standard deviation of flight j, 0}, and a time
increment of At.

(4*Uj—(‘rk—e]-))/At

p(jsk) = ZO

.1
ar Tk_ej+<’+z> *At)
(1)

(1210 5) <o) ) o

1=0

4. Results

This section looks at the performance from the point of view
of the robustness by measuring the number of conflicts for
a given set of perturbed schedules, for all the approaches
presented in Section 3: firstly when they are used alone,
secondly when combined with the TRS approach, and finally
for the combinations with the approaches which consider the
flight densities. The comparison made between the results
obtained, when applying the different approaches, uses the
Mann-Whitney test to establish the statistical significance of
the different approaches, presented in the summary result
tables as the number of instances in each range of the number
of BSSs which can be said to have no statistically significantly
higher numbers of conflicts compared to any of the other
approaches compared. Regarding an airport, N referring to
the number of BSSs available, three ranges of the number
of BSSs have been defined, based on the LMAP and UMAP,
where the first is for N < LMAP, the second is for LMAP
< N < UMAP, and the third is for UMAP < N. These
are shown within brackets and separated by a comma in the
following tables. Any approach achieving full coverage of a
range of the number of BSSs is presented in bold font and
the approaches with higher numbers for a range, covering
the highest number of BSSs in the range compared, are
presented in underlined font to assist in the interpretation of
the summary result tables.
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The robustness approaches described are applied to the
ABSSAP using the Steady State Evolutionary Algorithm
(SSEA) from [3] and their results are compared and analysed
in this section using the data sets obtained from NATS for
London Heathrow airport Terminal 1, which were also used
in [2, 3].

To compare the performance of each of the robustness
approaches introduced in the previous sections, three sets of
perturbed schedules were generated using a folded normal
distribution with a zero mean and 10-, 20-, and 30-minute
standard deviations. These sets are used to calculate the
average number of conflicts for each robustness approach,
where a lower value represents a more robust solution
compared to those with higher values. Each experiment is
repeated at least 30 times. To calculate the number of conflicts
within a solution in the perturbed schedule, each flight in
the original solution is assigned to the same BSS as in the
original solution where possible; otherwise it is assigned to
the dummy. This is repeated until all of the flights are assigned
to BSS or the dummy. The number of flights assigned to
the dummy represents the number of conflicts. If a solution
does not achieve the maximum assignment possible, then
the number of extra unassigned flights may be accounted for
with a higher contribution, given that they are less desirable
solutions. Nevertheless, all of the solutions having the high-
est fitness in the following experiments achieve maximum
assignments, which simplifies comparison of the different
robustness approaches, based on the described measure. This
is possible since the measure only depends on assignments to
the BSSs and not on any other objective, such as those upon
which the fitness depends.

The number of possible perturbed schedules depends on
the number of flights, and this accounts for an extremely large
number of possible combinations, making it impossible to
consider them all. The number of combinations for 194 flights
corresponds to 194! = 1.3291 % 10°°" which is far greater

than 10®? atoms estimated to exist in the observable universe.
The number of perturbed schedules necessary to calculate the
quality of a solution should therefore be as large as possible
to account for as many potential combinations as possible.
However, as the number of perturbed schedules increases, so
does the time required to perform the calculations, and the
memory requirements also increase likewise: moreover, this
is further multiplied by the number of solutions which will
be used in the comparison. However, not all combinations
are likely to represent a valid schedule. So, 10,000 perturbed
schedules were used based on the number of solutions to be
processed, the time available, and the memory required.

The stochastic robustness approach RNC is time con-
suming when compared with the other approaches reviewed.
It would be desirable to use an approach which provides
solutions closer to, or better than, those provided by the
stochastic robustness approach, without the heavy cost of
the time required. With the aim of assessing the difference
in performance when the number of perturbed schedules
is reduced, two sets of 1,000 and 25 perturbed schedules
used with the RNC were also considered. Initial experiments
were conducted using SSEA with £ = 1 and the RNC
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and Multiexchange between a Fixed Number of 3 Resources
(MEFNR3) for 25 perturbed schedules and 800,000 total
iterations which required an average execution time of 52 min
per instance. These, when extrapolated to 1,000 perturbed
schedules, provide an execution time of around 34 hours
per instance, whereas the other approaches require no more
than two minutes to complete the full set of iterations. Both
applications of RNC required too long an execution time for
the number of iterations specified, so they were run with a
time limit of 30 min, as the other approaches required less
than 2 min.

The objective importance presented in Section 2.1 is
used in the following experiment where the most important
objective is to achieve maximum assignment, with the second
in importance being to maximise robustness and the third
objective being minimisation of the distance between flights
and their assigned BSS being the last objective considered.
The fitness function used to guide the search in the SSEA
is a weighted sum of the different objectives evaluated,
introduced previously in Section 2.1, whose weights are those
calculated in [3]. Both approaches UESRS and PCBG need
their robustness weight (W,) to be recalculated. Thus, given
a maximum distance between a flight and its assigned BSS,
D,.x» which depends on the airport topology, which for
the topologies studied here is D, = 9, a distance of
one unit is assumed between different sides of a pier and a
distance of two units was assumed between different piers.
A new assignment between two previously assigned flights
may incur a service reduction for the new assignment and
next flight, which is used to obtain the decrease in robustness
(the second objective), which for UESRS and PCBG cannot
be greater than 1 for each flight, thus totalling 2 in this case.
Finally, using the objective priorities the following relations
can be established: W % 1 > |W,| %2+ [W;| % D, and |[W,| *
2 > |W;| %D, The original conditions for the weights, when
the “minimise reduction in service time” objective was used
(Section 2.1), are W5 = —1 and W, > 23.4, which together
with the objective priorities obtain |W,| > (1 %9)/2 = 4.5 and
|[W,|#2+|W;| %9 < 23.4 giving |W,| < 14.4/2 = 7.2. The value
used for W, is =7.2 as W; = 90 > 23.4. The value used for W,
is greater than the value originally used to calculate W,, so a
value of —10 was also used.

The unsupervised estimation functions introduced in
Section 3.6 were used for the same parameter values as those
used in [18] and with Offset Inverse b = 6, Offset Inverse
b = 15, Offset Sublinear y = 0, and Offset Sublinear y =
1000. A summary of the robustness approaches studied and
their parameter values is shown in Table 3. In Table 3, the
first column contains the name of the robustness approaches
considered, all of which were introduced in Section 3; the
second column shows the weights for each approach, and
the subsequent columns show the name and value of the
parameters for the corresponding robustness approach. The
SSEA with £ = 1, operator MEFNR3 from [2, 3], a population
size of 10, the replacement strategy being Index Selection with
Elitist Selection and a group size of 1 (ISIES), and a maximum
0f 800,000 iterations for two data sets from London Heathrow
airport Terminal 1 (HIT091216: 16th December 2009 and
HIT100301: 1st March 2010) were used to obtain the solutions
for comparison. The fitness is the sum of the total number
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TABLE 3: Robustness approaches used with their parameter values.

Approach  Weight Parameters
PP (W) Name: values
TRS 0.008 Buffer time: 30 min. long-haul and 15 min.
others
ATRS 0.008 Buffer time: 30 min. long-haul and 15 min.
others
ARS 0.008 Buffer time: 30 min. long-haul and 15 min.
others
BSARS 0.008 Buffer time: 30 min. long-haul and 15 min.
others
SARS 0.008 Buffer time: 30 min. long-haul and 15 min.
others
PCBG 7.2 and 10 Std. deviation: 10, 20 and 30 min.
Std. deviation: 10, 20 and 30 min.
RNC 10 and 14 Num. schedules: 25 and 1000
Max. execution time: 30 min.
Estimation function: Exp 0.03, Exp 0.05,
Inverse 6, Inverse 15, Linear, Offset
UESRS 79 and 10 Inverse 6, Offset Inverse 15, Offset

Sublinear 0, Offset Sublinear 1000, and
Sublinear

Buffer time: 30 min. long-haul and 15 min.
others

TABLE 4: Number of instances with significantly statistically lower
number of conflicts in each range of numbers of BSSs for disruptions
with a delay o = 10 min for ARS, BSARS, SARS + TRS, and TRS for
a significance level of 0.05.

HIT091216 H1T100301
Approach Max. (9, 5, 3) Max. (6, 6, 5)
3-pier 4-pier 3-pier 4-pier
ARS 1,2,2) (2,3,3) (3,3,4) 1,2,1)
BSARS (9,5,3) (8,2,3) (4,6,5) (4,5,5)
SARS + TRS (3,4,2) (3,5,3) (3,3,4) 0,2,1)
TRS (0,1, 1) 1,0,0) (2,3,4) (1,2,0)

of assignments with weight of 90, less the distance between
assigned flights and their assigned BSS with a weight of 1, less
the robustness approach with the appropriate weight, all of
which are shown in Table 3.

The results presented in the following sections were
summarised for simplicity and clarity by considering the
average number of times an approach achieves statistically
significantly lower conflicts, or at least no worse, than the
other approaches, in the different regions of numbers of BSSs,
based on the LMAP and UMAP, which divide the range of
BSSs studied into three areas corresponding to N < LMAP,
LMAP < N < UMAP, and UMAP < N. The values between
brackets correspond to the number of times the approach
provides significantly statistically solutions not worse than
the other approaches used, for each of the BSS ranges. Table 4
shows that the ARS approach for the data set of HIT091216 as
well as a 4-pier topology has the values (2, 3, 3) showing that
it achieves a statistically significant number of conflicts not
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TABLE 5: Number of instances with a significantly statistically lower
number of conflicts in each range of numbers of BSSs for disruptions
with a delay 0 = 10 min and all the approaches alone and combined
with TRS for a significance level of 0.05.
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TABLE 6: Number of instances with a significantly statistically lower
number of conflicts in each range of numbers of BSSs for disruptions
with a delay 0 = 20 min and all the approaches alone and combined
with TRS for a significance level of 0.05.

HI1T091216 HIT100301 HI1T091216 HIT1003010
Approach Max. (9, 5, 3) Max. (6, 6, 5) Approach Max. (9, 5, 3) Max. (6, 6, 5)
3-pier 4-pier 3-pier 4-pier 3-pier 4-pier 3-pier 4-pier
BSARS (2,0,0) 1,0,0) (0,0,0) (3,0,0) BSARS (0,0, 0) (1,0,0) (0,0,0) (2,0,0)
TRS + BSARS (3,0,0) (3,0,0) (0,0,0) (4,0,0) TRS + BSARS (0,0,0) (4,0,0) (0,0,0) (3,0,0)
PCBG PCBG
7.2 (5,2,1) (3,1,0) (1,1,0) (5,2,0) 7.2 (5,1,0) (2,0,0) (3,2,0) (3,0,0)
10 (7.4,0) (8,1,0) (2,4,0) (5.4,0) 10 (7,2,1) 8,51 (1,5,1) 5.6,1)
TRS + UESRS TRS + UESRS
Exp 0.03 Exp 0.03
7.2 (2,1,0) (0,1,0) (2,L,1) 1,2,0) 7.2 (2,1,0) (1,0,0) (2,1,0) (1,0,0)
10 (2,1,0) (1,4,3) (4,2,4) 2,11 10 (5,.3,1) (2,0,3) (5.1, 4) (4,0,1)
Inverse 6 Inverse 6
7.2 (0,0,2) (0,1,0) (0,1,1) (0,0,0) 10 (1,1,3) (0,2,2) 0,1,2) (2,2,5)
10 (0,0,2) 0,1,2) (0,1,4) 0,2,4)

higher in two instances for the range of N < LMAP, three for
the range LMAP < N < UMAP, and three for N > UMAP.
Thus, the larger the number between parenthesis, the better
the performances in respect of robustness.

Bold font is used to identify those cases where the
robustness approach achieves good results for all numbers
of BSSs in a range; for example, in the previous example
the approach performs well for all numbers of BSSs in the
range of N > 27 (UMAP). Underlining is used to identify
those cases where the robustness approach performs well for
greater numbers of BSSs in a range. The maximum quantity of
instances of number of BSSs in a range is presented between
brackets at the top of the table for each of the ranges discussed,
preceded by the word “Max.”; for example, in Table 4 the cell
in the second column and second row of the header shows
that the first range contains nine instances of numbers of BSSs
for N < LMAP, five for LMAP < N < UMAP, and three
for N > UMAP. For simplicity and clarity, those approaches
which do achieve statistically significantly higher number of
conflicts on average than any of the other approaches in all
three BSSs regions are not shown in the tables which followed.

The next sections present the experimental results for the
robustness approaches presented.

4.1. Results for All Robustness Approaches Considered. In this
section, we look at the performance from the point of view of
robustness for all the approaches presented in Section 3; first
when they are used alone and then when combined with the
TRS approach.

The BSARS provides more robust solutions than those
obtained by the other proposed approaches, that is, TRS, ARS,
SARS, and TRS + SARS, as shown in Table 4. Furthermore,
BSARS will be seen to perform even better when combined
with TRS in Tables 5, 6, and 7. ARS and SARS were similarly
seen to improve robustness when combined with TRS.

The results which are summarised in Tables 5, 6, and
7 show that the PCBG does not gain any advantage when

TABLE 7: Number of instances with a significantly statistically lower
number of conflicts in each range of numbers of BSSs for disruptions
with a delay ¢ = 30 min and all the approaches alone and combined
with TRS for a significance level of 0.05.

HIT091216 H1T100301
Approach Max. (9, 5, 3) Max. (6, 6,5)
3-pier 4-pier 3-pier 4-pier
BSARS (0,0,0) (1,0, 0) (0,0,0) (1,0,0)
TRS + BSARS (0,0,0) (2,0,0) (0,0,0) (2,0,0)
PCBG
72 (4,2,0) (0,0,0) (1,4,0) (1,0,0)
10 (1,4,3) %.4,3) (2,6,5 3.6,5)
TRS + UESRS
Exp 0.03
7.2 (3,0,0) (1,0,0) (3,0,0) (1,0,0)
10 9,1,0) (4,1,0) 51,0) (2,0,0)
Inverse 6
72 (1,0,0) (1,0,0) (1,0,0) (2,0,0)
10 (3,3,1) (2,3,0) (0,0,0) (3,0,0)

combined with the TRS, but it appears to be detrimental, as
PCBG alone performs better throughout the whole ranges of
the numbers of BSSs compared to when used combined with
TRS. Even with the RNC for 25 and 1,000 instances taking
account of the distribution of delays, the other approaches
provide a statistically significantly lower number of collisions,
but with a much lower running time. This could be due to
the fact that the number of iterations which it is possible to
execute in the 30 minutes is too low to find promising solu-
tions with a lower number of collisions compared to those
obtained by the other approaches. Around 33,000 to 70,000
iterations were executed for the experiments conducted here
(the numbers depending mainly on the data set and the
number of BSSs).
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TaBLE 8: Terminal 1 with algorithm SSEAL, operator MEFNR3, and population size of 2,000 for perturbations of 0 min average and ¢ = 10 min
deviation, Mann-Whitney test, and significance level of 0.05 and for the TRS, UESRS, and the combination of TRS with UESRS.

HO091216 H100301

Approach 17 (9,5, 3) 17 (6, 6, 5)
3-pier 4-pier 3-pier 4-pier

0.008 x TRS + 10 x UESRS (Exp 0.03) 14(9,4,1) 15(7,5,3) 14 (6,5, 3) 11(6,4,1)
0.008 x TRS + 10 x UESRS (Inverse 2) 1(0,0,1) 2(0,2,0) 1(0,0,1) 0(0,0,0)
0.008 x TRS + 10 x UESRS (Inverse 4) 2(0,0,2) 3(0,2,1) 3(0,1,2) 6(0,2,4)
0.008 x TRS + 10 x UESRS (Inverse 6) 3(0,1,2) 4(0,2,2) 4(0,1,3) 6(0,2,4)
0.008 x TRS + 7.2 x UESRS (Exp 0.03) 8(7,1,0) 5(4,1,0) 9(4,4,1) 8(4,4,0)
0.008 x TRS + 7.2 x UESRS (Inverse 2) 1(0,0,1) 1(0,1,0) 0(0,0,0) 0(0,0,0)
0.008 x TRS + 7.2 x UESRS (Inverse 4) 1(0,0,1) 1(0,1,0) 2(0,1,1) 1(0,1,0)
0.008 x TRS + 7.2 x UESRS (Inverse 6) 2(0,0,2) 1(0,1,0) 2(0,1,1) 0(0,0,0)
10 x UESRS (Exp 0.03) 0(0,0,0) 1(1,0,0) 2(0,0,2) 0(0,0,0)

TaBLE 9: Terminal 1 with algorithm SSEAI, operator MEFNR3, and population size of 2,000 for perturbations of 0 min average and ¢ = 20 min
deviation, Mann-Whitney test, and significance level of 0.05 and for the TRS, UESRS, and the combination of TRS with UESRS.

HO091216 H100301
Approach Max. 17 (9, 5, 3) Max. 17 (6, 6, 5)
3-pier 4-pier 3-pier 4-pier

0.008 x TRS + 10 x UESRS (Exp 0.03) 12(9,3,0) 13(7,3,3) 14 (6, 4, 4) 9(5,3,1)
0.008 x TRS + 10 x UESRS (Inverse 2) 2(2,0,0) 4(4,0,0) 0(0,0,0) 2(2,0,0)
0.008 x TRS + 10 x UESRS (Inverse 4) 5(2,1,2) 5(2,3,0) 1(0,0,1) 5(2,1,2)
0.008 x TRS + 10 x UESRS (Inverse 6) 5(0,2,3) 10 (3,5,2) 4(0,1,3) 12 (3,4, 5)
0.008 x TRS + 7.2 x UESRS (Exp 0.03) 4(3,1,0) 3(3,0,0) 4(3,1,0) 4(2,2,0)
0.008 x TRS + 72 x UESRS (Inverse 2) 1(0,1, 0) 1(1,0,0) 0(0,0,0) 1(1,0,0)
0.008 x TRS + 72 x UESRS (Inverse 4) 1(1, 0, 0) 1(1,0,0) 1(0,1,0) 0(0,0,0)
0.008 x TRS + 72 x UESRS (Inverse 6) 0 (0,0, 0) 0 (0, 0, 0) 1(0,1,0) 1(0,1,0)
10 x UESRS (Exp 0.03) 0 (0,0, 0) 1(1,0,0) 1(0,0,1) 0 (0, 0,0)

The PCBG provides statistically significantly lower num-
ber of conflicts through a wider range of BSSs, and such
a range also includes the range of BSSs used in the real
problems; that is, N > UMAP. Nevertheless, this result
could be regarded as biased, given that the PCBG considers
a normal folded distribution of the same standard deviation
as that from which the perturbed schedules were generated.
The PCBG could consider different standard deviations and
distributions depending on the aircraft, season, route, des-
tination, and time of the day which should further improve
the results in real situations. The running time is also of the
same magnitude as that for the other approaches, with the
exception of the RNC, which has a much higher running time
for the same number of iterations.

There is a possibility of combining the different
approaches, in particular either ARS or BSARS with
UESRS studied below. There is also a question about the
preference as to how these approaches are combined, either
as a sum of each individual with the TRS, as studied in here,
or as a product of their individual contributions.

4.2. Other Combinations of These Approaches. In this section
we study the combination of the UESRS with each of the ARS,
BSARS, and TRS. It may be noted that the SARS is equal to

BSARS divided by (UMAP-LMAP), which it is equivalent to
thus changing the wight (W,) in the fitness function. As seen
previously in Table 4, BSARS provides more robust solutions
compared to when using SARS alone for the same weight
(W,) or when combined with TRS, and these differences
between both similar approaches are even more pronounced
when BSARS is used in combination with TRS.

The combination of TRS and UESRS with exponential
estimation function overall performs better for N < LMAP,
as shown in Tables 8, 9, and 10, which correspond to the
situation when there are no sufficient resources for the num-
ber of flights to service. The results which are summarised
in Tables 11, 12, and 13 and which correspond to the cases
when two robustness approaches are combined show that the
combination of ARS with UESRS for exponential estimation
function overall performs better for LMAP < N < UMAP,
which refers to the situation when there are just sufficient
resources for the number of flights to service, as, in this case,
it is particularly important to consider the distribution of
the flights requiring service which ARS takes into account.
Also the combination of UESRS with BSARS in general
improves the performance more than when using ARS for
all the ranges. Similarly, the combination of BSARS with
UESRS with Inverse estimation function overall performs
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TaBLE 10: Terminal 1 with algorithm SSEAL1, operator MEFNR3, and population size of 2,000 for perturbations of 0 min average and ¢ = 30 min
deviation, Mann-Whitney test, and significance level of 0.05 and for the TRS, UESRS, and the combination of TRS with UESRS.

HO091216 H100301
Approach Max. 17 (9, 5, 3) Max. 17 (6, 6, 5)
3-pier 4-pier 3-pier 4-pier

0.008 x TRS + 10 x UESRS (Exp 0.03) 13(9,3,1) 12 (6,3, 3) 15 (6,5, 4) 6(3,2,1)
0.008 x TRS + 10 x UESRS (Inverse 2) 5(5,0,0) 3(3,0,0) 0(0,0,0) 4(4,0,0)
0.008 x TRS + 10 x UESRS (Inverse 4) 7(5,1,1) 8(5,3,0) 3(1,L1) 3(3,0,0)
0.008 x TRS + 10 x UESRS (Inverse 6) 9(3,3,3) 11(5,51) 10 (2,5,3) 12 (3,4, 5)
0.008 x TRS + 7.2 x UESRS (Exp 0.03) 3(3,0,0) 2(2,0,0) 3(3,0,0) 2(1,1,0)
0.008 x TRS + 7.2 x UESRS (Inverse 2) 1(1,0,0) 3(3,0,0) 0(0,0,0) 2(2,0,0)
0.008 x TRS + 7.2 x UESRS (Inverse 4) 3(3,0,0) 2(2,0,0) 1(0,1,0) 1(1,0,0)
0.008 x TRS + 7.2 x UESRS (Inverse 6) 1(1,0,0) 2(2,0,0) 3(2,1,0) 2(2,0,0)
10 x UESRS (Exp 0.03) 0(0,0,0) 0(0,0,0) 2(1,0,1) 0(0,0,0)

TaBLE 11: Conflicts statistical significance for combined robustness approaches for Terminal 1 with algorithm SSEA1, operator MEFNR3, and
population size of 2,000 for perturbations of 0 min average and ¢ = 10 min deviation, Mann-Whitney test, and significance level of 0.05.

HO091216 H100301
Approach Max. 17 (9, 5, 3) Max. 17 (6, 6, 5)
3-pier 4-pier 3-pier 4-pier

0.008 x ARS + 10 x UESRS (Exp 0.03) 3(1,2,0) 5(0,3,2) 4(0,1,3) 3(0,2,1)
0.008 x ARS + 10 x UESRS (Inverse 6) 1(0,0,1) 4(0,1,3) 3(0,1,2) 6(0,1,5)
0.008 x ARS + 7.2 x UESRS (Inverse 6) 3(0,2,1) 0(0,0,0) 1(0,0,1) 0 (0,0, 0)
0.008 x BSARS + 10 x UESRS (Exp 0.03) 7(4,2,1) 6(0,3,3) 3(0,0,3) 6(3,2,1)
0.008 x BSARS + 10 x UESRS (Inverse 6) 7(1,3,3) 5(0,2,3) 6(0,2,4) 6(0,2,4)
0.008 x BSARS + 7.2 x UESRS (Exp 0.03) 3(2,1,0) 2(2,0,0) 1(0,0,1) 5(4,1,0)
0.008 x BSARS + 7.2 x UESRS (Inverse 6) 5(1,2,2) 0(0,0,0) 2(0,1,1) 0 (0,0, 0)
0.008 x TRS + 0.008 x BSARS 0(0,0,0) 2(2,0,0) 0(0,0,0) 1(1,0,0)
0.008 x TRS + 10 x UESRS (Exp 0.03) 0(0,0,0) 2(0,0,2) 4(2,0,2) 1(0,0,1)
0.008 x TRS + 10 x UESRS (Inverse 2) 1(0,0,1) 0 (0,0, 0) 1(0,0,1) 0 (0,0, 0)
0.008 x TRS + 10 x UESRS (Inverse 4) 1(0,0,1) 0(0,0,0) 2(0,0,2) 4(0,1,3)
0.008 x TRS + 10 x UESRS (Inverse 6) 2(0,0,2) 1(0,0,1) 3(0,0,3) 5(0,1, 4)
0.008 x TRS + 7.2 x PCBG (10) 6 (6,0, 0) 2(2,0,0) 4(2,2,0) 4(2,2,0)
0.008 x TRS + 7.2 x UESRS (Inverse 4) 1(0,0,1) 0(0,0,0) 1(0,0,1) 0 (0,0, 0)
0.008 x TRS + 7.2 x UESRS (Inverse 6) 1(0,0,1) 0(0,0,0) 1(0,0,1) 0 (0,0, 0)
10 x PCBG (10) 5(4,1,0) 5(5,0,0) 6(2,4,0) 5(2,3,0)
7.2 x PCBG (10) 0(0,0,0) 0(0,0,0) 1(0,1,0) 3(1,2,0)

TaBLE 12: Conflicts statistical significance for combined robustness approaches for Terminal 1 with algorithm SSEAI, operator MEFNR3, and
population size of 2,000 for perturbations of 0 min average and ¢ = 20 min deviation, Mann-Whitney test, and significance level of 0.05.

HO091216 H100301
Approach Max. 17 (9, 5, 3) Max. 17 (6, 6, 5)
3-pier 4-pier 3-pier 4-pier

0.008 x ARS + 10 x UESRS (Exp 0.03) 3(1,2,0) 0(0,0,0) 3(0,1,2) 1(0,0,1)
0.008 x ARS + 10 x UESRS (Inverse 6) 3(0,1,2) 0(0,0,0) 3(0,0,3) 7(0,2,5)
0.008 x BSARS + 10 x UESRS (Exp 0.03) 7(3,2,2) 0(0,0,0) 5(0,1,4) 3(3,0,0)
0.008 x BSARS + 10 x UESRS (Inverse 6) 10(3,4,3) 0(0,0,0) 6(0,3,3) 9(2,3,4)
0.008 x BSARS + 7.2 x UESRS (Exp 0.03) 3(2,0,1) 0(0,0,0) 0(0,0,0) 3(3,0,0)
0.008 x BSARS + 7.2 x UESRS (Inverse 6) 2(2,0,0) 0(0,0,0) 0(0,0,0) 1(1,0,0)
0.008 x TRS + 0.008 x ARS 0(0,0,0) 17 (9,5,3) 0(0,0,0) 0(0,0,0)
0.008 x TRS + 10 x UESRS (Exp 0.03) 0(0,0,0) 0(0,0,0) 2(1,0,1) 1(0,0,1)
0.008 x TRS + 10 x UESRS (Inverse 6) 1(0,0,1) 0(0,0,0) 2(0,0,2) 5(0,1,4)
0.008 x TRS + 7.2 x PCBG (20) 7(7,0,0) 0(0,0,0) 8(4,4,0) 3(2,1,0)

10 x PCBG (20) 4(3,1,0) 0 (0, 0, 0) 6(1,4,1) 9(2,6,1)
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TaBLE 13: Conflicts statistical significance for combined robustness approaches for Terminal 1 with algorithm SSEAI, operator MEFNR3, and
population size of 2,000 for perturbations of 0 min average and ¢ = 30 min deviation, Mann-Whitney test, and significance level of 0.05.

HO091216 H100301
Approach Max.17 (9, 5, 3) Max. 17 (6, 6, 5)
3-pier 4-pier 3-pier 4-pier

0.008 x ARS + 10 x UESRS (Exp 0.03) 3(2,1,0) 1(0,1,0) 3(2,1,0) 0(0,0,0)
0.008 x ARS + 10 x UESRS (Inverse 6) 2(0,1,1) 1(0,1,0) 0(0,0,0) 1(1,0,0)
0.008 x ARS + 7.2 x UESRS (Exp 0.03) 0(0,0,0) 1(1,0,0) 1(1,0,0) 0(0,0,0)
0.008 x ARS + 7.2 x UESRS (Inverse 6) 0(0,0,0) 0(0,0,0) 1(1,0,0) 1(1,0,0)
0.008 x BSARS + 10 x UESRS (Exp 0.03) 6(3,2,1) 0(0,0,0) 4(2,1,1) 4(3,1,0)
0.008 x BSARS + 10 x UESRS (Inverse 6) 11 (6, 4,1) 1(0,1,0) 3(1,2,0) 5(3,2,0)
0.008 x BSARS + 7.2 x UESRS (Exp 0.03) 2(2,0,0) 4(4,0,0) 1(1,0,0) 3(3,0,0)
0.008 x BSARS + 7.2 x UESRS (Inverse 6) 2(2,0,0) 5(5,0,0) 1(1,0,0) 2(2,0,0)
0.008 x TRS + 10 x UESRS (Exp 0.03) 1(1,0,0) 1(1,0,0) 3(3,0,0) 1(1,0,0)
0.008 x TRS + 10 x UESRS (Inverse 6) 3(1,1,1) 1(1,0,0) 0(0,0,0) 0(0,0,0)
0.008 x TRS + 7.2 x PCBG (30) 13(7,5,1) 5(3,2,0) 11 (5, 6,0) 5(2,3,0)
0.008 x TRS + 7.2 x UESRS (Exp 0.03) 2(2,0,0) 1(1,0,0) 0(0,0,0) 0(0,0,0)
10 x PCBG (30) 5(0,2,3) 11(4,4,3) 9(2,2,5) 13(2,6,5)

better for UMAP < N and also for N lower than UMAP
but closer to it. This would be the preferable approach for
real problems. Finally, the ARS with UESRS with Inverse
estimation function performance decreases for big delays for
N > UMAP and improves for N < LMAP.

Future studies could look at the dependency of the
robustness objective weight on performance. If other robust-
ness weights are to be considered, all of the weights taking
part in the fitness function should be modified accordingly
to maintain the order of importance of each objective.
When the unassigned flights are not taken into account by
the robustness measure used in the fitness function, then
particular care has to be taken when selecting the appropriate
weights for maximisation of the number of assignments (the
first objective), since incorrect selection of this objective
weight may sometimes deem solutions with a lower number
of assignments to be fitter. This interdependency mainly
between the maximum number of assignments’ objective and
the robustness could also be decoupled by penalising the
unassigned flights in the robustness.

5. Conclusions

Several approaches were presented here to take account
of solution robustness when applying the SSEA. The TRS
approach provides solutions with a statistically significantly
higher number of conflicts than those obtained by many of
the other approaches considered, as shown in [21]. TRS does
not consider the extra increase in conflict, as the service
time is reduced between assignments, thus further penalising
those assignments. Where the service reduction is higher the
Arc Tangent Reduction in Service (ATRS) was also used, but
the results were not very encouraging as some of the other
approaches improved on it.

When looking at the overall schedule it is evident that the
number of flights requiring assignment at each time is not
uniformly distributed, as shown in Figure 2, such that when

the number of flights to be serviced at any one time increases,
the potential for conflict also increases, when perturbed,
such that there is potential for further improving the results
when this is taken into account, so other approaches were
proposed and studied. The approaches examined, which
consider the distribution of flights in time, were the ARS,
BSARS, and SARS. These approaches performed better for a
very low number of BSSs but in general provided solutions
inferior in respect of conflicts compared to the PCBG, as
well as the UESRS with exponential and Inverse estimation
functions. The advantage of the TRS approach in conjunction
with some of the other approaches was anticipated, as was
corroborated by results from the experiments conducted for
the combination of TRS with the ARS, BSARS, SARS, and
UESRS.

Several stochastic approaches were also considered;
namely, UESRS was evaluated for different estimation func-
tions and the exponential function with = 0.03 provided
the best results in respect of robustness for the measure
considered. PCBG provides the best overall performance
regarding robustness but did not seem to improve when
combined with TRS. RNC appeared to provide solutions
with a higher number of conflicts compared to the other
approaches, but this could be a consequence of the low
number of iterations which it was possible to execute given
both the low speed, which is a characteristic of this approach,
and the higher memory requirement. The UESRS approach
also improved when combined with TRS, showing the Inverse
function for b = 6 with TRS providing good results for high
numbers of BSSs (N > LMAP).

When UESRS was combined with BSARS the perfor-
mance improved to when these approaches where used alone
or combined with TRS.

It would be interesting to apply these approaches to some
data sets where the original flight schedules and final real
schedules are known, to see if the solutions obtained by these
approaches did cope well with the changes, but unfortunately
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this was impossible at the time, given the unavailability of
such data. Furthermore, if the data sets contain the real flight
assignments to BSSs on the day of implementation, then it
would be possible to quantify the actual improvement which
could have been achieved by each of the approaches presented
here, if they were implemented. There is also a question about
the preference as to how these approaches are combined,
either as a sum of each individual with the TRS, BSARS,
and ARS, as studied here, or as a product of their individual
contributions.

Future work should consider the use of multiple distri-
butions, in general one per flight, based on the particular
characteristics of each flight, such as aircraft type, airline,
destination, route, and season. This could be applied similarly
to the generation of the buffer times. This approach was not
used, since such information was unavailable at the time
this study was conducted. It is envisaged that the use of
this information in the PCBG and RNC will improve their
performance and may also be used to generate the disrupted
schedules used to measure the solution quality provided by
all of the approaches, thus assisting in the identification of the
best approach for use in the specific problem.

More information about the problem studied here, the
metaheuristic algorithms used, and the application of these
approaches to the ABSSAP and AGAP can be found in [21].
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