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Metastasis is an intricate process by which a small number of cancer cells from the primary tumor site undergo numerous
alterations, which enables them to form secondary tumors at another and often multiple sites in the host. Transition of a cancer cell
from epithelial to mesenchymal phenotype is thought to be the first step in the progression of metastasis. Recently, the recognition
of cancer stem cells has added to the perplexity in understanding metastasis, as studies suggest cancer stem cells to be the originators
of metastasis. All current and investigative drugs have been unable to prevent or reverse metastasis, as a result of which most
metastatic cancers are incurable. A potential drug that can be considered is metformin, an oral hypoglycemic drug. In this review
we discuss the potential of metformin in targeting both epithelial to mesenchymal transition and cancer stem cells in combating

cancer metastases.

1. Introduction

Metastasis is the process by which cancer cells translocate
from their primary site to distant organs and establish sec-
ondary tumors. This simplified definition does not do justice
to the complex enigmatic phenomenon that still lacks clear
understanding. It is mainly because of metastasis that most
cancers become incurable and result in death. It is these
metastatic cells that escape the effects of chemotherapy and
result in poor patient outcomes. Thus, a deeper knowledge of
the process is crucial to devise therapeutic interventions that
will result in better outcomes and survival for patients with
metastatic disease.

Until recently, the initiation of metastasis was solely attri-
buted to the process of epithelial to mesenchymal (EMT)
transition where a differentiated tumor cell transforms into a
more aggressive, motile, and resistant cell. A cell after under-
going EMT was thought to be able to break the confines of
its parent tumor and travel via lymphatic-blood system to a
new receptive environment, where it would establish a new
tumor. A full understanding of the EMT process is lacking.

Recently, research efforts from a number of sources led to the
identification of cancer stem cells (CSCs) [1, 2]. Some of the
data generated suggest that these CSC may be at the origin of
cancer metastasis [3-5].

All current and investigative drugs have been unable to
prevent or reverse metastasis. A better understanding of the
process is prerequisite to design successful drugs and stra-
tegies to manage the presently untreatable metastasis. One
potential drug that can be considered for this aspect is
metformin. Metformin is a well-established and widely pre-
scribed oral hypoglycemic drug. Recently, the drug has gain-
ed attention for its potential anticancer effects [6-8]. In
addition to its antitumorigenic effects, recent reports have
demonstrated inhibition of EMT genes and specific targeting
of stem cells by metformin, thus supporting its potential role
in fighting cancer metastases.

In the present review, we briefly discuss the basis of
metastasis with respect to EMT and CSC and summarize
some of the early studies on metformin showing its potential
to interfere both with the process of EMT and CSC.



2. EMT in Metastasis

Based on the canonical teaching, tumor metastasis is depen-
dent on a small number of cancer cells in the primary
tumor, which have the ability to undergo vast genetic
changes. These changes will ultimately help those cells detach
from the primary tumor location, implant at a separate
site, and generate secondary tumors [9]. In order for the
metastatic process to succeed, a cancer cell should be able
to survive under attachment-free conditions, migrate and
invade through the surrounding stroma, intravasate into the
vascular system, endure and extravasate into an advanta-
geous distant environment, adhere and proliferate [10]. Out
of this complex multistep process, the initial steps of a cell
gaining the ability of surviving adhesion-free, migrating, and
invading the extracellular matrix are the most crucial.

EMT was first defined as a developmental cell program
required in early embryogenesis [11]. In the carcinogenic
process, EMT pertains to an epithelial cancer cell losing its
epithelial makeup and acquiring mesenchymal character-
istics that confer on it survival and migratory advantages
[4, 11]. These include breakdown of the cell-cell junctions
and cytoskeleton alterations, providing the cell with motility
and invasiveness. This process works through a set of driving
transcription factors that include Snail, Slug, Twist, ZEB1/2,
and KLF-8 [3, 12-14]. The initial changes comprise the loss
of expression of the epithelial marker E-Cadherin [15, 16]
and gain in expression of Vimentin, N-Cadherin, and Fibro-
nectin [17, 18], all associated with the mesenchymal pheno-
type. The question of how these cells acquire these genes is
still at large. Investigators have shown that stimulation of
pathways like Wnt [19], Notch [20, 21], hypoxia [21, 22],
integrins [23], and PI3k-Akt [24] results in EMT-related
changes.

Identification of the essential role of microenvironment
has also led to acknowledgement of its contribution in the
metastatic process [25, 26]. Various studies have shown that
tumor cells recruit and interact with the various components
of the stroma to create a microenvironment conducive to
pass and generate signals to initiate EMT [27]. Growth fac-
tors like TNF-a [28], TGF-f [29], FGF [30], EGF [31], PDGF
[32], and even IGF [33] have been shown to induce EMT
in myriad tumor cell lines. It has been suggested that the
surface tumor cells that are in direct contact with the stromal
components have the highest ability to proceed towards
EMT.

A clear pathway as to what initiates or drives EMT is still
unknown. Although EMT offers a plausible explanation of
how cells become metastatic, a lot of questions still need to
be answered. What decides which cells will undergo EMT?
What is the first cue required by a cell to initiate EMT? What
are the minimum alterations required to acquire metastatic
phenotype? What is the process involved in the tumors ori-
ginating from nonepithelial cells? Apart from the complexity
of going through EMT, the cell has to successfully navigate
through the blood vessels and reach a receptive seeding
ground where it needs to turn off the EMT, undergo reverse
mesenchymal to epithelial transition (MET) in order to
adhere and start proliferating [15, 17]. Does the process of
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EMT also grant these additional characteristics? If not, how
do cells acquire these required traits to complete the journey
of metastasis?

Taking into account the intricate and enigmatic process
leading to metastasis, it is astonishing that it occurs frequen-
tly in the clinical setting.

3. Cancer Stem Cells in Metastasis

Recent understanding of the heterogeneous makeup of the
cancer cells in a tumor has revealed the presence of CSCs [1,
2]. The CSCs are distinguished by some major properties that
include (i) self-renewing ability by asymmetric division (ii),
ability to differentiate into diverse phenotypes, (iii) ability to
initiate tumors from minute numbers, and (iv) high chemo-
resistance [1, 34-38]. The discovery of CSCs in cancer has
caused a major shift in the understanding of cancer biology
and is greatly affecting the investigation of new therapeutics
as well. Presently, there is no clear explanation as to the origin
of the CSCs. Many theories exist including that these cells
have changed (mutated) from the hematopoietic or tissue
specific or somatic stem cells, or that they have arisen due
to the regression of a differentiated tumor cell. The first role
of CSC in cancer was described in hematologic malignan-
cies [39]. Lapidot et al. demonstrated that a small subset
of leukemic cells characterized by CD34*CD38" cell surface
markers were able to generate tumors in SCID mice, reflec-
ting disease similar to that seen in the original patient.
Recently, many studies have elegantly demonstrated the
self-renewal, resilient, and tumorigenic properties of CSCs
in tumors like breast [2], head and neck carcinoma [40],
brain tumor [41, 42], colon cancer [43, 44], melanoma
(45, 46], liver [47], prostate [48], and ovarian [49]. CSCs
isolated from different tumors seem to display a variety cell
surface markers: colon and brain CSC have been isolated
using CD133*, prostate CSC with CD44%a2b1" breast with
CD44tCD24", ovarian with ALDH™", and so forth. In addi-
tion, these cells do coexpress pluripotent embryonic cell
markers like c-myc, Nanog, Sox2, Klf-4, Oct 4 and lin 28
[50-52]. The inherent capability to initiate a tumor from
a very small number of CSCs (counts of hundreds) in
immuno-compromised mice has been shown by various
researchers, a property not shared by the regular cancer cells.
Based on these findings, the aggressiveness and recurrence of
tumors are now being attributed to the minute population
of CSCs residing within the cancer cells. Although miniscule
in number, they have been anointed by many to be solely
responsible for driving and maintaining various tumors.
Thus, could it also be possible that it is these CSCs
that are also responsible for metastasis? If we observe the
aspects exhibited by a CSC, like initiating cancer from limit-
ed number of cells, longevity, enhanced resistance to the
apoptotic process, and remarkable motility, they appear to
be the ideal cells to cause metastasis. Supporting this is also
the increasing observations that cells that undergo EMT have
a CSC-like state [3-5, 53, 54], indicating that having pro-
perties germane to a stem cell are required for successful
metastasis. Experts in the field have debated whether the
CSCs acquire/reexpress EMT traits when they are ready to
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metastasize or the differentiated tumor cells revert back to a
more plastic stage based on their gain of EMT signature. Our
speculation is that both types of prospective-metastatic cells
exist within the tumor: the CSCs with inherent metastatic
potential and the acquired-EMT-turned-CSC tumor cells.

This knowledge gives arise to several other questions:
which cell actually initiates the process of metastasis? What
are the cues that would compel the cell (either CSC or EMT
tumor cell) to initiate metastasis? Is it the CSC/tumor cell
that first initiates the cross-talk with the stromal microenvi-
ronment or is it the stroma that provides the initial signals
to the cell to change? These questions further confuse the
already clouded biology of metastasis. One hypothesis in
this regard suggests that the microenvironment around the
CSC specifically initiates the signals. The small population
of CSC seems to reside in a discrete milieu called the
“stem cell niche” [55], an ideal environment that maintains
self-renewing asymmetric dividing capability and provides
protection against stress and toxic insults [56]. Most CSC
niches are found adjoining blood vessels [46, 57], making
it more favorable for cells to intravasate and disseminate. It
has also been postulated that this type of microenvironment
induces the differentiated cancer cells to undergo EMT and
induce a CSC-like phenotype [58], which eventually results
in metastasizing of tumor cells.

This emerging concept of the CSCs being responsible for
metastasis along with their high resistance to conventional
chemotherapy suggests them to be the ultimate foe in combat
against cancer. Thus, it is not surprising that therapies that
would specifically abolish these CSC are being actively inves-
tigated. In this regard, we discuss the potential role of met-
formin in targeting stem cells to control tumor progression
and more importantly limit metastasis.

4. Metformin in Cancer

Metformin belongs to a class of compounds called bigua-
nines that were first isolated from the plant Galega officinalis
(French lilac or goat’s rue) known for its medicinal value
[59]. It was first described in 1922 by Werner and Well, and
its glucose lowering action was first documented in 1929
by Slotta and Tschesche. But it was only in the late 1950s
that metformin was established as a glucose-lowering drug
and became available for human consumption in UK. Slow-
ly, it gained worldwide interest and was approved by the
FDA in 1995 in the US [59, 60]. Today, it is the most wide-
ly prescribed antidiabetic drug for type 2 diabetes in the
world [60]. Metformin’s beneficial effects in diabetic patients
has been shown to be largely through repression of hepatic
gluconeogenesis, which reduces the glucose levels. In addi-
tion, it also increases insulin sensitivity and glucose uptake.
The mechanism behind these actions is largely believed to be
the inhibition of mitochondrial oxidative phosphorylation
leading to an ATP/AMP imbalance, which results in activa-
tion of the LKB1-AMPK pathway [61]. Activation of AMPK,
an enzyme that is the central regulator of metabolic pathways
[62], has been credited with the glucose lowering effects seen
with metformin.

In the past decade, metformin has gained wide attention
for its anticancer properties. Numerous studies have shown
that in vitro treatment with metformin inhibited the growth
of myriad cancer cell lines including breast [6], glioma [7],
renal cell [63], pancreatic [64], colon [65], ovarian [8],
endometrial [8, 66], prostate [67], and lung [68]. Diverse
in vivo models have also been used to demonstrate the
antitumor abilities of metformin. One of the first reports
was by Schneider et al. [69] where they showed metformin
to inhibit carcinogen induced pancreatic cancer in high-fat
diet fed hamsters. Another early study done in breast can-
cer mouse model showed that metformin treatment signif-
icantly decreased the tumor burden and accumulation of
mammary adenocarcinomas accompanied by increase in the
life span of HER-2/neu transgenic mice [70]. Lately, many
other xenograft and genetic in vivo models have been used
to describe the antigrowth effect of metformin in various
tumor types [70-73]. Taking a step further, studies have also
shown the advantages of combining metformin with stand-
ard therapeutics like cisplatin [71], taxol [74], and doxoru-
bicin [75].

The main mechanism of tumor growth inhibition by
metformin has been attributed to activation of AMPK
leading to various downstream effects that work together to
restrain tumor growth. Figure 1 briefly enumerates the vari-
ous downstream effects of metformin-mediated AMPK acti-
vation that have been inspected as being the mechanism(s)
by which tumor growth is inhibited. One of the established
and most investigated is the inhibition of the mTOR path-
way [76]. Other modulators of the cancer inhibitory effects of
metformin via AMPK activation include cyclin D1, p21, p27,
Akt and p53 [8, 67]. AMPK has also been emerging as a chief
player in autophagy, a phenomenon shown to be involved in
tumor regulation [62, 77-81]. In addition, AMPK is required
in some tumors for the transcriptional activity of HIF-1, a
transcription factor that is crucial for adaptation of tumors to
hypoxic environment [82]. Metformin-mediated activation
of LKB1 could also result in the activation of other AMPK-
related kinases [83]. These AMPK-related kinases may be
performing functions similar to AMPK as shown by NUAK2
studies [84, 85].

Studies have also suggested that some of the effects of
metformin are due to lowering of insulin levels [86], which
acts as a tumor-promoting factor. Metformin intake has also
been shown to create conditions of calorie restriction in the
host, an ameliorating factor for tumor growth [87]. Some
recently published data also shows metformin to be acting
through AMPK-independent mechanisms [8, 88, 89].

A strong body of epidemiologic evidence that supports
the anticancer benefits of metformin comes from data col-
lected in diabetic patients. One of the first studies published
by Evans et al. reported an association between metformin
intake and lower cancer incidence [90]. Another large 1000-
person retrospective study showed a significant decrease in
cancer mortality for patients on metformin [91]. Recently,
this was supported by an analysis of the ZODIAC trial
data, where metformin takers were found to have a lower
cancer-related mortality [92]. In a single center retrospective
study, long-term intake of metformin (>36 months) was also



associated with significant decrease in cancer risk [93]. Libby
et al. reported that metformin users had lower incidence
of cancer and delayed cancer occurrence time compared to
nonusers [94]. Many other studies have also shown similar
significant correlations in pancreatic [95] and breast cancer
[96]. However, few other investigators failed to confirm this
significant trend of lower frequency of cancer in diabetic
patients [97-99].

A recent study of diabetic patients with colorectal cancer
showed decreased cancer-related mortality in patients on
metformin [100]. Studies have also inspected the association
between metformin use and outcomes after chemotherapy in
different cancers types. Jiralerspong et al. found that diabetic
breast cancer patients receiving metformin along with taxane
chemotherapy had a significant improvement in pathologic
complete remission rate [101]. On the other hand, another
study showed no additional benefit of metformin when
combined with neoadjuvant chemotherapy [102]. It is
important to realize that all of these reports present number
of limitations. Most of the patients included have type 2
diabetes mellitus but may also be taking other medication to
manage their diabetes or other illnesses. This confounds the
data as to the true effects of metformin intake by itself.

The very interesting results of these retrospective studies
have prompted researchers to plan clinical trials that may
help further elucidate the antineoplastic effect of metformin.
While many of them focus on breast cancer patients, few
include other tumors like prostate, endometrial, kidney, pan-
creatic, and lung. A complete list as of October 2011 obtained
from http://www.clinicaltrials.gov/ is compiled in Table 1. A
couple of initial reports from these pilot studies show pro-
mising outcomes. In one study, nondiabetic breast cancer
patients were randomized to metformin or no treatment
for 2 weeks prior to undergoing breast surgery. Tumors of
patients on metformin showed a significant reduction in the
proliferation marker, Ki-67, suggesting that metformin may
slow tumor cells proliferation. [103]. Another randomized
pilot study showed that the intake of metformin for one
month reduced the number of rectal aberrant crypt foci, an
endoscopic surrogate marker of colorectal cancer [104]. The
results of other clinical trials are eagerly awaited and would
hopefully provide further insights on the anticancer benefits
of metformin.

5. Metformin against Metastasis

Two theories have been proposed to explain metastasis: EMT
and CSC. Regardless which mechanism prevails, reports
showing metformin mitigating both EMT and CSC support
the potential use of metformin in preventing metastasis. Few
reports investigate the action of metformin against metastasis
or stem cells.

5.1. Metformin Inhibits EMT. One of the first studies on this
topic was by Beckner et al. where they reported metformin
to inhibit in vitro migration of glycolytic glioma cells [105].
Hwang et al. detailed the antimetastatic ability of metformin
in an in vitro study with fibrosarcoma cells [106]. They
demonstrated that metformin inhibited in vitro migration
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and invasion of fibrosarcoma cells by a CamK-dependent
pathway. Phoenix et al. studied the effect of high calorie
diet on aggressiveness and metastasis of triple negative breast
cancer in a syngeneic in vivo model and its amelioration with
calorie restriction and metformin. In mice that were fed a
high-energy diet, metformin was able to limit the growth of
breast primary tumor but was unable to restrict metastatic
nodules in the lung [107]. On the other hand, a report from
Vazquez-Martin et al. [108] reported metformin to repress
the metastasis-associated protein CD24, in a triple negative
breast cancer cell line. Another interesting study was done
in endometrial adenocarcinoma cells [109], using sera from
polycystic ovarian syndrome (PCOS) patients before and
after 6-month metformin therapy. PCOS is a major risk fac-
tor for endometrial cancer and is associated with metabolic
syndrome and inflammation [110]. The investigators report-
ed that sera from PCOS patients caused increased migration
in endometrial cancer cells, while sera from PCOS metform-
in-treated patients caused significant inhibition of migration.
This was also associated with inhibition in NFxB, MMP-9,
and MMP-2 activities and decreased Akt and Erk1/2 phos-
phorylation. We have recently shown that metformin
reduced the number and size of metastatic lung nodules
in a xenograft model of ovarian cancer [71]. Activation
of the mTOR-S6K pathway has been associated with the
epithelial-mesenchymal transition phenotype. Overexpres-
sion of p70S6K has been correlated with underexpression of
E-cadherin and overexpression of N-cadherin and vimentin,
shown to be mediated by Snail [111]. Since treatment with
metformin has been shown to inhibit the mTOR-S6K path-
way, this could also be one possible mechanism by which
metformin inhibits EMT and metastasis. In a recent clinical
study, patients with triple negative breast cancer who were on
metformin had a lower risk of distant metastasis compared to
women who were not on the drug [102].

5.2. Metformin Targets Stem Cells. The first report defining
metformin’s specific action against stem cells was published
by Hirsch et al. The authors demonstrated that breast cancer
stem cells, characterized by CD44hish CD24low phenotype,
are susceptible to metformin at low doses that do not affect
the tumor cells. They showed in vitro and in vivo that met-
formin can eliminate CSCs and virtually eradicates breast
tumors in mice when given along with doxorubicin [75].
Vaquez-Martin et al. presented evidence that CD44+*CD24~
CSCs in HER2-positive breast cancer cells lines, that are resis-
tant to trastuzumab, have selective sensitivity to low doses of
metformin. They further showed metformin to act synergis-
tically with trastuzumab to repress proliferation and survival
of CSC in HER2-positive breast cancer cell lines [112]. The
same group also demonstrated that metformin delays the
EMT-driven acquisition of stem cell phenotype and the
formation of self-renewing mammospheres that may repre-
sent “micro-tumors.” This occurred by inhibition of key
EMT transcription factors like ZEB1, TWIST, Slug, and TGEF-
B. TGF-f3 has been found to be involved in closely regulating
the process of EMT as well as appearance of CSC-like cells,
[3, 113, 114], particularly in breast cancer cells [115, 116].
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TABLE 1

Identification & Title

Primary Goals

Status

NCT01340300

Randomized Phase II study of exercise and metformin in
colorectal cancer survivors

NCT01266486

A Phase 2 single arm study to examine the effects of
metformin on cancer metabolism in patients with early
stage breast cancer receiving neoadjuvant chemotherapy

NCT01302002

A Phase 0 study regarding the biological effects of use of
metformin in early breast cancer patients pre-surgery

NCT00897884

Interventional study of clinical and biologic effects of
metformin in early stage breast cancer

NCT01210911

A Phase IT, randomized, placebo controlled study to
evaluate the efficacy of the combination of gemcitabine,
erlotinib and metformin in patients with locally
advanced and metastatic pancreatic cancer

NCT01440127

Phase I randomized clinical trial evaluating the impact of
pretreatment with metformin on colorectal cancer stem
cells and related pharmacodynamic markers

NCT01205672

Interventional non-randomized evaluation of the
molecular effects of metformin on the endometrium in
patients with endometrial cancer

NCT00984490

Interventional pre-surgical trial of metformin in patients
with operable breast cancer

NCT01310231

A randomized Phase I, double blind, trial of standard
chemotherapy with metformin (vs. placebo) in women
with metastatic breast cancer receiving first or second
line chemotherapy with anthracycline, taxane, platinum
or capecitabine based regimens

Randomized study will compare interventions with
exercise and/or metformin, with a control arm. Insulin
levels and other blood markers will be estimated which
may indicate ecurrences

Pre-surgery metformin will be given to patients for 3
weeks. Lipid metabolism of the tumor will be studied.
Patients will have option of taking metformin along with
neoadjuvant chemotherapy. Metformin induced effects
in phosphorylation of S6K, 4E-BP-1 and AMPK will be
estimated by IHC

After 3 weeks of metformin intake, in situ effects of
metformin will be determined in women with operable
stage I or II breast cancer. Pre and post tissues will be
compared for proliferation (Ki67), apoptosis (TUNEL)
and fosforilate AKT

After 2-3 weeks of metformin intake, pre- and
post-operative biopsy samples will be compared for
proliferation

Survival after 6 months of combinational therapy will be
determined

Pateints will randomly receive metformin pre-procedure
for approximately 1 week. Cancer stem cells will be
isolated from blood. Glucose will be measured

30 days before surgery patients will be given metformin.
Molecular effects of metformin will be measured by
changes in insulin/glucose metabolism on the mTOR
signaling in endometrium of women with endometrial
cancer and high body mass index

After 1-3 weeks of metformin intake, pre- and
post-operative biopsy samples will be compared for
proliferation ( Ki67) in women with stage I or stage II
breast cancer that can be removed by surgery

Metformin will be given along with standard
chemotherapy. Progression free survival will be assessed
up to 3 years

Not yet recruiting

Recruiting

Recruiting

Recruiting

Recruiting

Recruiting

Recruiting

Recruiting

Recruiting
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Identification & Title

Primary Goals

Status

NCT01433913

Phase II study of metformin in a pre-prostatectomy
prostate cancer cohort

NCT01333852

Randomized Phase II study of paclitaxel plus metformin
or placebo for the treatment of platinum-refractory,
recurrent or metastatic head and neck neoplasms

NCT00659568

A Phase I study of temsirolimus in combination with
metformin in advanced solid tumours

NCT01215032

Prospective study of metformin in castration-resistant
prostate cancer

NCT01101438

A Phase III randomized trial of metformin versus
placebo on recurrence and survival in early stage breast
cancer

NCT00881725

A Phase I, open label assessment of neoadjuvant
intervention with metformin against tumour expression
of signaling prostate cancer

NCT01087983

Phase 1 trial of lapatinib in combination with (1)
sirolimus or (2) metformin in advanced cancer

NCT01243385

Metformin in castration resistant prostate cancer. A
multicenter Phase II trial

NCT01341886

Effect of metformin on decrement in levothyroxin dose
required for thyroid stimulating hormone (TSH)
suppression in patients with differentiated thyroid cancer

NCT01430351

A Phase I lead-in to a 2 X2 X 2 factorial rrial of dose
dense temozolomide (TMZ), memantine (MEMTN),
mefloquine (MFLOQ), and metformin as post-radiation
adjuvant therapy of glioblastoma multiforme

Metformin will be given for 4 to 12 weeks before surgical
removal of the prostate gland. Levels of metformin will
be detected in prostate tissue. Physiological and cellular
abnormalities in prostate tissue removed at surgery will
be measured

Various combinations will be given to patients and
Disease Progression-free survival at 12 weeks and 6
months will be recorded

Maximum tolerated dose and recommended phase II
dose of metformin along with temsirolimus will be
estimated. Antitumor activity, including tumor response
rate and time to progression will be recorded

Metformin will be given along with androgen
deprivation therapy in a 2-year study. PSA (prostate
specific antigen) response will be monitored

Patients will intake metformin for 5 years. Invasive
disease-free survival and Overall survival will be
recorded

Patients will take metformin for 4-12 weeks prior to
Radical Prostatectomy. Difference in P-AKT staining and
other parameters will be measured under pre- and
post-surgery conditions

Maximum Tolerated Dose (MTD) of Lapatinib with the
combinations will be calculated

Safety of giving metformin as first-line therapy in
treating patients with locally advanced or metastatic
prostate cancer will be assesed. Progression-free survival
(PFS) at 12 weeks and at later time points with
continuation of therapy will be recorded

Metformin will be given as an additional drug to
levothyroxin in order to decrease levothyroxine dosage
by 30%. Metformin’s effect in inducing TSH suppression
without change in T3 and T4 concentration will be
estimated

The study will determine the safety and tolerability of
TMZ in combination with Metformin and/or (MFLOQ)
and/or MEMTN in patients receiving adjuvant therapy
after completing external beam radiotherapy for newly
diagnosed glioblastoma multiforme. Median progression
free survival at 6, 12, and 18 months will be measured

Not yet recruiting

Recruiting

Completed

Recruiting

Recruiting

Active, not
recruiting

Recruiting

Recruiting

Completed

Recruiting
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TaBLE 1: Continued.

Identification & Title Primary Goals Status
NCT01167738

Studying giving cisplatin, epirubicin, capecitabine, and

gemcitabine together with metformin to see how well it
A randomized Phase II study of chemotherapy and/or works compared to chemotherapy alone in treating Recruiting

not metformin in metastatic pancreatic cancer

NCT01447927

A Phase II trial of metformin in preventing esophageal
cancer in patients with barrett esophagus

NCT01312467

A Phase IIA trial of metformin for colorectal cancer risk
reduction among patients with a history of colorectal
adenomas and elevated body mass index

NCT00909506

A Phase II trial of efficacy and safety of adjuvant
metformin for operable breast cancer patients

NCT00930579

A Phase II pre-surgical intervention study for evaluating
the effect of metformin on breast cancer proliferation

NCT01442870

A Phase I prospective evaluation of clinical safety of
combining metformin with anticancer chemotherapy

NCT01324180

A Phase I window, dose escalating and safety trial of
metformin in combination with induction
chemotherapy in relapsed refractory acute lymphoblastic
leukemia: metformin with induction chemotherapy of
vincristine, dexamethasone, doxorubicin, and
PEG-asparaginase (VPLD)

patients with metastatic pancreatic cancer.
Progression-free survival at 6 months and overall
survival will be estimated

Effect of metformin intake for 2—12 weeks in preventing
esophageal cancer in patients with Barrett esophagus will
be observed. Percent change in the mean pS6K1
immunostaining will be taken as marker

To determine if a 12-week intervention of oral
metformin treatment among obese patients with a
history of colorectal adenomas results in at least a 35%
decrease in colorectal mucosa. Activated pS6serine235
from baseline as assessed via immunostaining in pre and
post biopsies

Metformin will be given to patients of operable breast
cancer patients with overweight or pre-DM for 24 weeks,
to test the efficacy and safety of adjuvant metformin and
weight loss

Effects of metformin on AMPK/mTOR signaling
pathway and insulin levels will be measured after 2 weeks
on metformin

Cytologically documented cancer patients will be given
metformin for 3 weeks to determine whether metformin
can be safely added to a chemotherapy regimen that is
previously well tolerated. The rate of dose limiting
toxicities will be compared

Clinical and biological effects of metformin in
combination with standard systemic chemotherapy in
relapsed ALL patients that have a dismal outcome will be
estimated. A dose escalation study to find the Maximum
Tolerated Dose (MTD) of metformin in conjunction
with ALL therapy. Complete Remission will be taken as
end point

Not yet recruiting

Recruiting

Recruiting

Recruiting

Recruiting

Recruiting

Metformin was also able to inhibit the progression of TGF-
p-induced EMT changes by retaining the expression of E-
cadherin and preventing concurrent appearance of vimentin
expression, two events that occur when an epithelial cancer
cell converts into a mesenchymal cell [116].

There has been some suggestions that cancer stem cells
may be regulated by the mitochondria and metabolic repro-
gramming [117, 118]. Certain metabolites like high-energy
lactanes and ketones promote the “stemness” of cancer
cells by upregulating stemness-associated genes as well as

genes found in embryonic stem cells. These gene signatures,
induced ketone and lactate, were correlated with poor patient
survival. It was speculated that this was due to fueling of the
tumors by pushing them towards oxidative phosphorylation
[119]. With this respect, metformin is known to interfere
with the mitochondrial process and can attenuate the meta-
bolic changes enabled by ketone/lactate metabolites (or other
metabolites).

These initial studies demonstrating the effects of met-
formin against CSCs look promising and need to be
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FIGURE 2: Metformin can inhibit appearance of metastasis by (1) limiting growth of the primary tumor; (2) inhibiting EMT; (3) eradicating

cancer stem cells.

expanded to gain further insight into the specific action and
the mechanism involved. Overall, metformin seems to be a
viable therapeutic choice to target metastasis as it seems to
affect both the EMT and cancer stem cells (Figure 2), both
believed to be focal points for metastasis.

6. Concluding Remarks

Our present knowledge is far from a complete understanding
of the complex and multifaceted process of metastasis. The
discovery of CSC population offers an explanation for some
of the unique behaviors seen in cancer. The emerging studies

showing eradication of animal tumors by double targeting of
cancer cells and CSCs provide significant hope for the future.
The emergence of metformin as a potential anticancer
and cancer-preventive therapeutic tool is exciting. With the
added benefits of being readily available, economical, and
easily tolerated with good safety profile, it can be effortlessly
transitioned from bench to bedside for cancer therapy.
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