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,e method for the detection of 2,4-dinitrophenol (DNP) in solution is proposed. ,is method employs the sensors based on
silicon nanowire field-effect transistors with protective layers of high-k dielectrics, whose surface is functionalized with an amino
silane. Direct highly sensitive detection of DNP has been demonstrated, and the lowest detectable concentration of DNP was
determined to be 10−14M. Silicon-on-insulator nanowire (SOI-NW) sensors can well be employed for the rapid detection of
a wide range of toxic and explosive compounds by selection of sensor surface modification techniques.

1. Introduction

2,4-Dinitrophenol (DNP) pertains to nitroaromatic com-
pounds. It represents a crystalline solid, which is slightly
soluble in water and readily soluble in boiling water and in
organic solvents, such as ethanol and diethyl ether [1]. DNP
is widely used in chemical industry [2] as a component of
explosives and fungicides, as well as in textile industry as
a dye for fabrics [3–6]. Regarding the physiological effect,
DNP is reported to cause rapid loss of weight, but un-
fortunately is associated with an unacceptably high rate of
significant adverse effects [7] due to its toxicity (lethal dose
low 36mg/kg (human) [8]). DNP poisoning can result in
death in some cases [4, 7, 9, 10]. Clinical symptoms of DNP
poisoning include anorexia, nausea, vomiting, headache,
dizziness, feeling of suffocation, as well as general weakness,
and weight loss [4, 11, 12]. In this respect, modern
nanotechnology-based sensor platforms can well be of use in
order to provide rapid monitoring of toxic organic

compounds in human biomaterial. For instance, Madur-
aiveeran et al. recently developed a bimetallic nanoparticle-
based amperometric sensor for the rapid detection of
acetaminophen (a drug for the relief of fever and pain, which
sometimes develops a fatal hepatoxicity and nephrotoxicity
[13]) in human serum with subnanomolar concentration
sensitivity [14].

Moreover, it is to be noted that DNP is highly explosive
[15]. ,is is the reason why the development of highly
sensitive, rapid, cheap, and easy-to-use detectors for the
revelation of DNP in the environment is crucial.,e optimal
solution of this problem is the use of silicon nanowire (NW)
field-effect transistor sensors. As the size of a nanowire is
comparable with that of a biological macromolecule [16],
most attention is paid to the use of silicon-on-insulator
nanowire (SOI-NW) sensors for the detection of protein and
nucleic acid disease markers [17–20]; the possibility of ap-
plication of these sensors for cancer diagnosis in exhaled
air was also shown [21]. With respect to biological
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macromolecules, nanotechnology-based electrochemical
methods allow one to attain very low detection limits [22], in
contrast to small molecules and ions, when the detection
limits are commonly in nanomolar to micromolar range
[23].

Nevertheless, silicon NW-based devices are also suc-
cessfully employed for the detection of small molecules and
ions. In this regard, it is worth noting that SOI-NW sensor
structures display pH sensitivity [24]. ,e silicon NW-based
detection of mercury ions at 10−7M concentration was
demonstrated by Luo et al. [25]. ,e studies concerning
NW-based gas-phase detection of small-molecule analytes,
including inorganic gases and vapors, organic explosives,
nerve agents, and volatile organic compounds, are reviewed
in the paper by Cao et al. [26]. ,e liquid-phase detection of
aromatic compounds was demonstrated by Talin et al. with
examples of nitrobenzene and phenol in cyclohexane [27];
however, in this study, the analyte concentrations <10−3M
were not tested. Engel et al. demonstrated the use of NW
sensors for the detection of DNP, 2,4,6-trinitrotoluene and
other nitroaromatic chemicals in solution with 5×10−13 N

concentration sensitivity. ,ese authors also showed that
careful selection of surface chemistry of SOI-NW sensor can
provide detection specificity [28]. For another nitroaromatic
explosive, trinitrotoluene (TNT), even lower detection limit
(∼10−14M) was attained by Lichtenstein et al. [29].

It is to be noted that the NW sensors used by Engel et al.
[28] were fabricated by «bottom-up» method; with regard to
mass production, this method is insufficiently feasible. In
our present study, lower-submicron complementary metal-
oxide-semiconductor (CMOS)-compatible technology
employing subgate dielectrics with high dielectric constant
(high-k) has been used for fabrication of SOI-NW sensors.
,is technology allows one to fabricate highly sensitive SOI-
NW sensors. In this connection, it is to be noted that de-
position of ultrathin dielectric layers onto NW sensor ele-
ments significantly improves their chemical stability (which
directly influences the sensor performance). ,is was
demonstrated in the study by Peled et al. with the example of
deposition of 3 to 10 nm-thick Al2O3 layers onto silicon NW
sensors [30].

Herein, we have demonstrated that, using such sensors,
the lower limit of DNP detection in solution can be shifted
down to 3×10−14 N; this value is an order of magnitude
lower than that reported by Engel et al. [28], and comparable
with that obtained for TNT by Lichtenstein et al. [29]. In this
way, further development of SOI-NW-based sensing, in-
cluding techniques of chemical modification of SOI-NW
sensor surface, will provide selective detection of DNP and
other toxic and explosive compounds with high concen-
tration sensitivity.

2. Materials and Methods

2.1. Chemicals. 2,4-Dinitrophenol, ethanol (S2O5PO,
96%), and isopropanol (S3O7PO, 99.999%) were purchased
from Reakhim (Russia). 3,3’-dithiobis (sulfosuccinimidyl
propionate) (DTSSP cross-linker) was purchased from
Pierce (USA). 3-aminopropyltriethoxysilane (APTES) was

purchased from Sigma-Aldrich (USA). Deionized water was
obtained using the Milli-Q system (Millipore, USA).

2.2. Fabrication of SOI-NW Sensors. SOI-NW sensors with
n-type conductivity were fabricated by optical lithography.
,e initial silicon layer thickness was 45 nm, and buried oxide
(BOX) thickness was 200nm. ,e SOI-NW sensor elements
had the following dimensions: 250nmwidth, 32 nm thickness,
and 14 μm length; the number of SOI-NW sensors on the
sensor chip crystal was 12 (Figure 1). ,e surface of SOI-NW
sensor chip was entirely coated with a dielectric layer using
the FlexAl reactor (Oxford Instruments, UK) by plasma-
enhanced atomic layer deposition (PEALD). Prior to di-
electric deposition, immediately before PEALD procedure, the
surface of SOI-NW sensors was cleaned first in H2O2/NH3
solution and then in NH3 plasma at 500W power and
50mTorr working pressure for 2min. Deposition of HfO2 and
Al2O3 was carried out by cycles in oxygen plasma. An 8nm-
thick HfO2 layer was formed from tetrakis(ethylmethylamino)
hafnium(IV) precursor at 270°S. A 4nm-thick Al2O3 layer
was formed from trimethylaluminum precursor at 300°S.
After PEALD procedure, SOI-NW sensors were annealed in
the forming gas (N2 :H2 � 95 : 5) at 425°S and 200mTorr for
30min. In the SOI-NW sensor system, a 500μLmeasuring cell
was employed, and the SOI-NW sensor chip served as its
bottom. ,e diameter of the sensor area was ∼2mm. ,e cell
was equipped with a stirrer. ,e stirring rate was 3000 rpm.

2.3. Sensor Surface Modification. To remove organic con-
taminants, the surface of SOI-NW sensor chip was treated
with isopropanol and then silanized in 3% APTES solution
during 60min at room temperature to provide amino
functionality of the surface analogously to the technique
described by Shehada et al. [31]. After silanization, the
surface of SOI-NW sensor chip was treated with ethanol.,e
surface of control SOI-NW sensors was additionally mod-
ified with DTSSP cross-linker [20, 32]. Figure 2 displays the
schematic representation of DNP detection with APTES-
modified nanowires.

2.4. Preparation of Solutions. A series of test solutions of
DNP with concentrations ranging from 10−12M to 10−15M
were prepared from 0.05N stock solution of DNP in ethanol
by serial tenfold dilution. On each dilution stage, the so-
lution was incubated in a shaker for 30min at 10°C. Control
experiments were carried out with solutions that did not
contain DNP. All liquids used in the experiments were
filtered using Vivaspin Turbo 15 centrifuge filters (3000
MWCO; Millipore, USA). ,e solutions were prepared
directly before measurements.

2.5. Electrical Measurements. Electrical measurements were
carried out using Keithley 6487 picoammeter (Keithley
Instruments Inc., USA). During measurements, the support
of SOI structures was used as a control electrode (transistor
gate). ,e dependence of drain-source current on gate
voltage Ids(Vg) for n-type SOI-NWs was obtained at
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Vg � 0/70V and Vds � 0.2V. For the detection of DNP with
the SOI-NW sensor, 150 μL of test solution of DNP was
added into the measuring cell containing 300 μL of water. To
account for the nonspecific signal, control experiments with
use of DNP-free solutions were carried out in the same
conditions. Time dependencies of normalized differential
drain-source current signal ΔIds/Ids0(t) were measured at
Vg � 20V and Vds � 0.2V. Normalized differential drain-
source current was calculated as ΔIds/Ids0, where ΔIds is
the difference between the signal obtained fromworking and
control nanowires, and Ids0 is the value of the signal before
DNP addition. To improve time stability of SOI-NW sen-
sors’ operation, an additional Pt electrode was immersed
into the solution in the measuring cell analogously [33, 34].
Differential signal was obtained by subtracting the non-
specific signal from that obtained upon addition of test DNP
solution.

3. Results and Discussion

Time dependencies of normalized differential drain-source
current signal ΔIds/Ids0(t) were obtained for DNP con-
centrations from 3×10−15M to 3×10−13 N. Figure 3 dis-
plays typical time dependencies of the normalized
differential signal from the SOI-NW sensor obtained upon
DNP detection. Upon the addition of DNP into the mea-
suring cell of the sensor system, an increase in the signal (due
to the increase in nanowire conductivity caused by the in-
fluence of DNP) was observed (Figure 3). At that the signal

value decreases with the decrease of DNP concentration.,e
lowest detectable DNP concentration was 3×10−14 N.

Inset in Figure 3 displays typical ΔIds/Ids0(t) curves
obtained in control experiments, when either DNP-free
ethanol solution or pure deionized water was added into
the measuring cell instead of DNP solution. ,ese curves
clearly indicate that upon addition of DNP-free test solution,
the response from the sensor was either indistinguishable or
exceeded the initial signal level insignificantly by no more
than 2% (what is comparable with the noise level, whichmade
up ±5%). ,is fact indicates specificity of interaction between
silane layer on the sensor surface and DNP molecules.

To demonstrate the reproducibility of DNP detection,
experiments on repeated detection of DNP with recording
the signal from one and the same SOI-NW sensor have been
carried out. Figure 4 displays typical ΔIds/Ids0(t) curves
demonstrating the changes in the signal from one and the
same SOI-NW upon repeated detection of DNP.

,e curves displayed in Figure 4 indicate that upon
repeated detection of DNP, the signal level changes by
∼15–20% with sufficient reproducibility.

,us, SOI-NW sensors fabricated using CMOS-
compatible technology display the concentration limit of
DNP detection at the level of 3×10−14 N. ,is value is an
order of magnitude lower than that demonstrated by Engel
et al. [28] and comparable with the detection limit attained
for TNT by Lichtenstein et al. [29]. Engel et al. [28]
employed sensors fabricated using «bottom-up» technology
without any special protective coating. As is known, SOI-
NW sensors devoid of protective oxide coatings are lacking
stability, what was demonstrated in a number of studies
(including the study by Peled et al. [30] and our previous
paper [18]). In the present study, we have employed SOI-
NW sensors with protective layers of high-k dielectrics. ,is
has allowed us to obtain more stable and, at the same time,
more sensitive structures [35].,e signal, observed upon the
addition of DNP, is caused by the formation of complexes
with a charge transfer between the DNP molecules and the
amino groups of the silane layer; this leads to the change in
surface potential of the silicon channel of the transistor [17].

(a)
(b)

(c)

Figure 1: (a) Sensor chip with an array of SOI–NWs, (b) optical image of 12 SOI–NWs arranged in pairs on the chip surface, and (c) electron
microscopy image of a single SOI-NW.
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Figure 2: Scheme of DNP detection with APTES-modified
nanowires.
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It is worth noting that high stability of SOI-NW sensors with
a protective layer has allowed us to reveal the desired signal
against the background of a nonspecific signal from the
ethanol-containing solution, which increases the transistor
current (Figure 3, curve 2).

As was demonstrated by Engel et al., careful selection of
surface modification can lead to an increase in sensor
specificity and in sensitivity against nitrophenol analyte to be
detected [28]. ,erefore, in the future, to provide the
specificity and to increase the sensitivity of DNP detection,
various modifications of SOI-NW sensor surface can also be
used. Accordingly, due to low price and manufacturability,

the developed sensors based on lower-submicron CMOS-
compatible technology can well find application in highly
sensitive detection of poisons and explosives. Moreover,
these sensors can be arranged in multichannel arrays, from
which separate sensitive units for detection of different
target compounds can be formed.

4. Conclusions

Our study has demonstrated that SOI-NW sensors, fabri-
cated using CMOS-compatible technology, allow direct
highly sensitive detection of DNP with 3×10−14 N detection
limit. ,ese sensors can well be used for rapid monitoring of
toxic compounds. SOI-NW sensors are cheap, easy to use,
and can be adapted for detection of a wide range of toxic and
explosive compounds by selection of sensor surface modi-
fication techniques.
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