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A series of open-tip carbon nanotubes (CNTs) were obtained by HNO3 modification with various concentrations of as-prepared
carbon nanotubes via the CVD method, and this work aimed at investigating the structural features of open-tip CNTs for the
methane capability. Modified CNTs had higher specific surface area and larger total pore volume, and importantly, greater
micropore volume was obtained through HNO3 modification of the as-prepared CNTs.+e remarkably high methane adsorption
capacities were measured on the modified CNTs under pressure ranges of 0∼4.0MPa at 298K. +e resulted H-CNT, which
exhibited highest specific surface area and micropore volume, showed high methane uptake of 26.15mg/g from the D-A model.
+is value was nearly as twice as the methane uptake of original CNTs (13.62mg/g), along with an initial adsorption heat of 19.4 kJ/
mol at lower coverage and 9.5 kJ/mol at higher methane coverage for H-CNT, indicating the physical nature for methane
adsorption over open-tip CNTs.

1. Introduction

Methane (CH4) produced by coal seam and shale is widely
regarded as one of the main greenhouse gases contributing
to global warming, which is one of the most significant
challenges today [1–3]. +e ongoing use of fossil fuels makes
it compelling to store CH4 via the adsorption technology. In
recent decades, there has been an increasing interest to
develop CH4 storage systems for environmental purposes
and energy applications [4, 5]. It is therefore highly desirable
to develop adsorption materials with moderate adsorption
capacity and good stability [6–10].

Structurally carbon materials, depending on their
properties, can be used in CH4 storage, due to their high
specific surface area and pore volume that is able to host
large amounts of CH4 [2, 3, 11, 12]. More importantly, the
textural property and surface chemistry of carbon materials
for effectively increasing the amounts of stored gas can be
appropriately tailored. Among the diverse adsorbents, CNTs

are considered to be one of the most promising candidates
for CH4 storage due to their low cost, high surface area,
excellent thermal stability, and high amenability to pore
structure tailoring [13–15]. However, CH4 adsorption on the
as-prepared CNTs is generally a weak physisorption process,
which means that the uptake capacity can be low. A higher
adsorption capacity in CH4 storage of the open-tip CNTs
than the as-prepared ones was obtained due to the larger
specific surface area. Hence, it is necessary to open the tips of
the as-grown CNTs before application. Generally, there are
several approaches to achieve the purpose, such as strong
acid oxidation and plasma treatment [16, 17].+ere has been
currently intensive research efforts focused on enhancing the
adsorbate-adsorbent interaction and CH4 storage via the
increase of the specific surface area of adsorbents. One
simple approach is to fabricate the adsorbents having in-
creased surface area by HNO3 modification [18].

In the present study, we investigated the open-tip effect
of the as-prepared CNTs on their structure and adsorption
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performance. +e pristine CNTs was synthesized by CVD in
a quartz tube reactor, and a series of open-tip carbon
nanotubes (CNTs) were obtained by HNO3 modification
with various concentrations of as-prepared CNTs. +e
structural property was determined by N2 adsorption/
desorption at 77K, scanning electron microscopy (SEM),
X-ray diffraction (XRD), Raman spectroscopy, Fourier-
transform infrared spectroscopy (FT-IR), and thermogra-
vimetric analysis (TGA), respectively. +e data of methane
adsorption equilibrium were measured by a volumetric
method, and experimental results of methane adsorption by
CNTs were described by the model isotherms such as
Langmuir and Dubinin–Astakhov (D-A) models. Further-
more, heat of adsorption was evaluated based on the
Clausius–Clapeyron equation.

2. Experimental

2.1. Synthesis of the Adsorbents. +e pristine CNTs was
synthesized by CVD in a quartz tube reactor (inner diameter
� 3.5 cm) laid in a horizontal furnace with a thermocouple in
its central zone [19–21].+e catalyst loaded in a ceramic boat
was reduced at 550°C in H2 gas for 1 h and then raised to the
reaction temperature of 650°C. Subsequently, the system was
switched to methane of high purity (50mL/min) for 1 h.
After the reaction, the as-grown CNTs were cooled to room
temperature in N2 atmosphere. +e product was collected
and labeled as O-CNT.

2.1.1. Synthesis of L-CNTs. 3.0 g of O-CNTs was modified in
200mL of 4.0M HNO3 refluxing at 110°C for 4 h. After
cooling to room temperature, it was filtered and washed with
deionized water until the pH of the filtrate was around 7.
Finally, the product was dried at 60°C for 12 h and named as
L-CNT.

2.1.2. Synthesis of M-CNTs. 3.0 g of O-CNTs was modified in
200mL of 10.0M HNO3 refluxing at 110°C for 10 h. Others
were similar to the above. Finally, the product was dried at
60°C for 12 h and represented by M-CNT.

2.1.3. Synthesis of H-CNTs. 3.0 g of O-CNTs was modified in
200mL of 14.8M (68 wt.%) HNO3 refluxing at 110°C for
15 h. Others were similar to the above, and the sample was
dried at 60°C for 12 h and denoted as H-CNT.

2.2. Characterization. +e textural characterization of the
samples was obtained by N2 adsorption/desorption iso-
therms, determined at 77K with a NOVA1000e surface area
and pore size analyzer (Quantachrome Company) [19, 22].
+e specific surface areas were determined according to the
BET method. Total pore volume was calculated from the
nitrogen volume held at p/p0 � 0.98∼0.99, and the micro-
pore volume was estimated using the HK equation.

Surface morphology was investigated by scanning
electron microscopy (SEM) (Hitachi S-4800, Japan).

X-ray diffraction of the samples was recorded in DX-
1000 powder diffractometer equipped with Cu Kα X-ray
source and an internal standard of silicon power.

Raman studies of the CNTs samples were conducted
using a Renishaw inVia Raman spectrometer (UK) with an
excitation source of 532 nm.

FT-IR analysis of the samples was performed on a
Nicolet DXC20 FTIR spectrometer.

TGA of the samples was performed on a thermogravi-
metric analyzer (TGA Q500). +e samples were heated at a
rate of 10°C/min under N2 atmosphere.

2.3. Methane Adsorption Evaluation. Methane adsorption
isotherms were conducted using a volumetric method
similar to that previously described [10, 13, 22]. Prior to each
experiment, the samples were degassed for 3 h at 323K, and
after the samples were cooled down to the required tem-
perature, helium was introduced into the system in order to
calibrate the void volume in the adsorption setup via helium
expansion. +e purities of helium and methane were
99.999% and 99.99%, respectively. Methane adsorption test
was operated under pressure ranges of 0∼4.0MPa at 298K,
and the adsorption process was repeated three times to
guarantee the validity of the experimental data.

3. Results and Discussion

3.1. Textural and Structural Characteristics. +e porosity
parameters of the samples were studied by adsorption
analysis using N2 as the adsorbate molecule [1]. Figure 1
shows the N2 adsorption/desorption isotherms at 77K for
the as-prepared CNTs and the corresponding open-tip
samples. From the shapes and type of the obtained iso-
therms (type II of the IUPAC classification), it can be
concluded that all the samples presented a micro-
mesoporous character, for the isotherms displayed small
hysteresis loops reflecting a minimum presence of meso-
pores. Furthermore, the HNO3 modification process carried
out provoked a continuous increase in the adsorption ca-
pacity of N2. As exhibited in Figure 1, the volume amount
adsorbed (cm3/g) increased with the increase of HNO3
concentration.

Table 1 summarizes the textural characterization results
for the pristine and modified adsorbents, as calculated from
N2 adsorption/desorption isotherms. +e specific surface
area for the pristine CNTs (O-CNT) was the lowest (98.7m2/
g) with a micropore volume of 0.0392 cm3/g which was less
than half of the total pore volume (0.120 cm3/g). +e
modified CNTs suffered a drastic increase in all textural
properties, indicating that HNO3 may have opened the tips
of the as-prepared sample. For the sample H-CNTmodified
with 14.8MHNO3 refluxing at 110°C for 15 h, a BETspecific
surface area of 174.4m2/g and a HK micropore volume of
0.0682 cm3/g were reached.

To investigate the effect of HNO3 modification with
various concentrations and treating times on the modified
CNTs, SEM observation was employed to obtain the mor-
phology of the resulted samples. As shown in Figure 2, some
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tips of the modi�ed CNTs were open, and the external di-
ameter of CNTs was mainly distributed in the range of
10∼34 nm, illustrating the carbon nanotubes were multi-
walled. It could be seen that, in spite of various HNO3
concentrations, the samples of L-CNT,M-CNT, andH-CNT
presented no apparent dierence in morphology. Com-
paratively, the H-CNT sample displayed a much larger
amount of open-tip due to the accelerated activation process
at higher HNO3 concentration.

In order to study the in�uence of HNO3 concentrations
on crystalline phase, the X-ray diraction (XRD) analysis

was conducted to characterize the structural property of the
samples [23–26], and the results are shown in Figure 3. �e
(002) peak emerged at 26°, corresponding to the interplanar
spacing of 0.34 nm. Also, the (100) peak at 43° was observed.
Furthermore, the crystalline structure of the samples was not
signi�cantly altered by HNO3 concentrations, suggesting the
concentration of HNO3 had no obvious eect on the
structural property of the modi�ed CNTs.

Raman spectra of the samples, shown in Figure 4,
presented a prominent D-band (defects) at 1350 cm−1 and a
G-band at 1575 cm−1. �e increase of the G-band relative

Table 1: Textural characteristics obtained by N2 adsorption analyses of the samples.

Sample SBET (m2/g) Vt (cm3/g) VHK (cm3/g)
O-CNT 98.7 0.120 0.0392
L-CNT 128.6 0.349 0.0495
M-CNT 150.2 0.471 0.0608
H-CNT 174.4 0.562 0.0682

(a) (b) (c)

Figure 2: SEM images of L-CNT (a), M-CNT (b), and H-CNT (c).
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Figure 1: N2 adsorption/desorption isotherms at 77 K corresponding to the samples.
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intensity indicated an improvement of the crystallite ori-
entation; however, the increasing D-band relative intensity
suggested more defects and an increasing amount of dis-
ordered structure. �e pertinent Raman parameter ID/IG,
mentioned to account for the degree of structural order, as
displayed in Figure 4, con�rmed the structure development
of the samples (ID/IG values of O-CNT, L-CNT, M-CNT,
and H-CNT were 0.983, 1.113, 1.222, and 1.313, re-
spectively). �e HNO3 oxidation of CNTs opened the tube
tips, and according to the results of Raman spectra, HNO3
modi�cation can produce some structural defects in addi-
tion to eliminating tube ends.

FT-IR pro�les for the modi�ed CNTs are displayed in
Figure 5. �e samples exhibited similar FT-IR spectra,
suggesting that they had similar structures and functional
groups. A strong absorption band appeared at around
3400 cm−1 which was assigned to -OH stretching. �e ad-
sorption peaks observed at 2900 cm−1∼3000 cm−1 and
1670 cm−1∼1760 cm−1 were attributed to -COOH group
vibrations. �e peak appearing at 1000 cm−1∼1200 cm−1 can
be attributed to esters, such as those in ethers, phenols, and
hydroxyl groups. However, all those peaks were more
pronounced in H-CNT, suggesting the presence of more
oxygen functional groups.
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Figure 3: XRD patterns of the samples.
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Figure 4: Raman spectra of the CNT samples.
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�ermogravimetric analysis (TGA) measured from
room temperature to 800°C at N2 atmosphere with a
heating rate of 10°C/min has been used to study the
structural changes for the samples modi�ed by HNO3
modi�cation with various concentrations [27]. �e initial
sample weight was measured at room temperature. As
con�rmed in Figure 6, the weight loss for H-CNT
(13.62%) due to oxygen functional groups was generally
higher than those for other CNTs (9.45% for L-CNT and
12.36% for M-CNT), which was consistent with the FT-IR
results.

3.2. Methane Adsorption Performance. �e CH4 adsorption
data measured at 298K and up to 4.0MPa on the CNT
samples are displayed in Figure 7. It was noteworthy that the
H-CNT sample exhibited a higher CH4 uptake due to its
higher surface area and abundant micropores, followed by
M-CNT and L-CNT, and the sample O-CNT had the
smallest adsorption capacity among all the prepared ad-
sorbents. �e CH4 adsorption isotherms were type I of
IUPAC and described by Langmuir and Dubinin–Astakhov
(D-A) models, respectively. �e corresponding adsorption
parameters of the models are given in Tables 2 and 3, and it
can be concluded that the D-A model �tted the data better
than the Langmuir model, for the mean relative deviation δ
for D-A model was smaller than that for Langmuir model.

�e parameter t in the D-A model describes the surface
heterogeneity. It has been reported that the surface of the
adsorbent is less heterogeneous when the t value is
approaching 3 more (t < 3). Table 3 shows the value of t
decreased with the modi�cation concentration increasing.
�e higher the HNO3 concentration was, the more

heterogeneous the sample was, which ultimately led to a
greater CH4 uptake.

It is well known that themethane adsorption is a physical
process, mainly dependent on the speci�c surface area and
micropore volume (shown in Figure 8). �e relationship
between n0 (from the D-A model) and BET speci�c surface
area (BET SSA) is presented in Figure 8. �e result showed
BET SSA was roughly proportional to n0 and the correlation
coe¨cient R2 was 0.962. Also, the relationship between n0
and micropore volume is exhibited in Figure 8, and the
correlation coe¨cient R2 was 0.989, which was higher than
that for BET SSA. �is was because the micropore volume
not speci�c surface area was a more important factor for gas
adsorption on carbon materials.

Figure 9 shows the heat of adsorption Hads as a function
of surface loading (n/n0). As shown in Figure 9, the Hads
varied largely with the surface loading for all the samples,
and it lay in the range of 9.5∼19.4 kJ/mol, indicating the
physical nature of the adsorption process. Due to the surface
heterogeneity of the adsorbents and the stronger interaction
between the CNTs and methane, the Hads decreased with
surface loading increasing. However, when n/n0 approached
above 0.75, the Hads of the O-CNT, L-CNT, and M-CNT
increased to a little higher value, indicating that the in-
teraction between the adsorbent and methane was weaker
and methane/methane interactions within the adsorption
layer became obvious.

4. Conclusions

To investigate the structural features of open-tip CNTs for
the methane adsorption capacity, the as-prepared CNTs
synthesized via the CVD method were treated by HNO3
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Figure 5: FT-IR spectra for the samples.

Journal of Nanotechnology 5



20

15

10

5

0

O-CNT
M-CNT

L-CNT
H-CNT

0
Pressure (MPa)

Langumuir

M
et

ha
ne

 u
pt

ak
e (

m
g/

g)

1 2 3 4

(a)

20

15

10

O-CNT
M-CNT

L-CNT
H-CNT

5

0
0

Pressure (MPa)

M
et

ha
ne

 u
pt

ak
e (

m
g/

g)

D-A

1 2 3 4

(b)

Figure 7: Equilibrium isotherms of methane adsorption on the samples at 298K: (a) Langmuir model; (b) D-A model.

Table 2: Langmuir parameters of equilibrium isotherms for methane adsorption.

Sample Mean relative deviation δ (%) nL (mg/g) b (MPa−1)
O-CNT 3.88 19.75 0.287
L-CNT 2.27 24.23 0.297
M-CNT 6.06 25.84 0.350
H-CNT 3.79 27.55 0.429
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Figure 6: Weight loss of the modi�ed CNTs under N2 atmosphere.

6 Journal of Nanotechnology



modi�cation with various concentrations. �e modi�ed
CNTs had higher speci�c surface area, larger total pore
volume, and greater micropore volume than those of the as-
prepared CNTs. Such unique structural features allowed
remarkably high methane uptakes, which was an eective
way to improve the adsorption capacity when compared
with the original CNTs. �e resultant H-CNTexhibited high
methane uptake of 26.15mg/g from the D-A model, which
was nearly as twice as the uptake of original CNTs (13.62mg/
g). �e heat of adsorption was initially 19.4 kJ/mol at lower
coverage and 9.5 kJ/mol at higher methane coverage for
H-CNT, indicating the physical nature of methane ad-
sorption over open-tip CNTs.�e current studymay have an
impact on the advance of CNTs for practical application of
CH4 storage.
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