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In this paper, the particle size distribution is reconstructed using finite moments based on a converted spline-based method, in
which the number of linear system of equations to be solved reduced from 4m× 4m to (m+ 3)× (m+ 3) for (m+ 1) nodes by using
cubic spline compared to the original method.,e results are verified by comparing with the reference firstly. ,en coupling with
the Taylor-series expansion moment method, the evolution of particle size distribution undergoing Brownian coagulation and its
asymptotic behavior are investigated.

1. Introduction

Particle size distribution (PSD) is one of the most important
properties of aerosol particles, including transport, sedi-
mentation, and so on [1]. It is also of utmost interest in many
industrial applications, such as powder preparation and
particle synthesis [2, 3]. ,e evolution of the PSD un-
dergoing different dynamic processes is usually described in
the framework of population balance equations (PBEs)
mathematically [4], which have a strong nonlinear structure
in most cases and cannot be solved analytically. With a high-
computational efficiency, the moment-based method has
become a powerful tool for investigating aerosol micro-
physical processes, in which cases some statistical charac-
teristics of the PSD, namely, the moments of the PSD, are
obtained [5]. However, the detailed information about the
target PSD is out of reach. ,eoretically, the PSD is equal to
themoments of all orders.,e proof about the uniqueness of
reconstruction in the case all moments are known is given
with an appropriate condition that the range of the PSD is in
a finite interval [6]. But in practice, only a finite number of
moments are obtained.

Using a given number of moments to reconstruct the
PSD is known as the finite-moment problem or inverse
problem in mathematical analysis [7]. Generally, this
problem is distinguished between the three types for the
monovariate case: the Hausdorff moment problem with the
PSD supported on the closed interval [a, b], where [a, b] are
the lower and upper limits of the domain of PSD; the Stieltjes
moment problem with the PSD supported on [0, +∞); and
the Hamburger moment problem with the PSD supported
on (−∞, +∞) [8]. Until now, there exist several frequently
used reconstruction methods in the literature mainly for the
Hausdorff moment problem, including but not limited to
parameter-fitting method, Kernel density function-based
method, maximum entropy method, and spline-based
method. ,e parameter-fitting method is to assume the
PSD as a simple function (i.e., log-normal distribution or
gamma distribution), where the parameters in the function
are determined by the given low-order moments [7]. It is the
fastest and easiest method but with drawbacks that need
a priori knowledge about the solution and limited to simple
shapes, even though a weighted sum of different simple
functions can be used [9]. ,e kernel density function-based
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method is a positivity-preserving representation and can be
regarded as the development of parameter-fitting method,
which approximates the PSD by a superposition of weighted
kernel density functions [10].,is method gives rise to an ill-
posed problem for determining weights, and a large number
of available moments are needed to ensure accuracy. Based
on the maximization of the Shannon entropy or the min-
imization of the relative entropy from information theory,
the maximum entropy method is a notable method which
needs relatively less knowledge of the prior distribution or
the number of moments compared to the previous two
methods [8, 11]. With the advantage of no priori assump-
tions on the shape of the PSD as well as that the needed
number of moments only depends on that of interpolation
nodes, the spline-based method proposed by John et al. [7]
has attracted some researchers’ attention, such as the in-
vestigation on particle aggregation and droplet coalescence
[12, 13]. And an adaptive spline-based algorithm with
a wider application for nonsmooth and multimodal distri-
butions was developed later [6]. More relevant research
about the comparisons between these methods can be found
in the literature [14, 15].

In this paper, we will use the spline-based method to
reconstruct the PSD coupling with PBEs describing Brow-
nian coagulation in the free molecule regime and continuum
regime. Compared to the original method, the number of
linear system of equations to be solved is significantly re-
duced through substituting the continuous conditions. ,e
correctness of this new treatment is verified by comparing
with the reference results in [7]. ,en with the moments
obtained by the Taylor-series expansion moment method
(TEMOM) [16], the evolution of PSD due to Brownian
coagulation and its asymptotic behavior are investigated.

2. Theory and Modeling

2.1. Modeling of Spline-Based Method. In the original
method, the support of the target PSD [a, b] is divided intom
subintervals: a� x1< x2< · · ·< xm+1� b. In each subinterval,
the PSD is approximated by a spline (piecewise polynomial)
si(l)(x) of degree l; thus, there exist (l+ 1)m unknowns. For
cubic spline (l� 3), the splines s(l)(x) and their first and
second derivatives are continuous at each node xi (i� 2,
3,. . ., m), which give 3(m− 1) conditions. With the smooth
boundary conditions, which means s(l)(x) and their first and
second derivatives are null at nodes x1 and xm+1, there still
require m − 3 additional conditions, which have to be
supplemented by the knownmoments.,en, a 4m × 4m ill-
conditioned linear system is obtained. In order to improve
the accuracy of calculation, the interval should be set as
small as possible, which is controlled by tolred. For ex-
ample, the last (or the first) subinterval is divided into n
smaller subintervals: xm � xm1 < xm2 < · · ·< xmn � xm+1; if
the ratio of 2-norm of s(l)(xmn) to the maximum of s(l)(x) is
less than tolred, the last node is reset as xm+1 � (xm + xm
+1)/2. Furthermore, tolneg and tolsing are introduced to
guarantee that the value of s(l)(x) is nonnegative. More de-
tailed procedure is shown in [7].

In this paper, we use a converted ansatz for s(l)(x) to
reduce the number of the linear system. For cubic spline, the
second derivative in each node is set as Li, then s″(x) can be
written in the following form using linear interpolation:

si
″ (x) � Li

x−xi+1

xi −xi+1
+ Li+1

x− xi

xi+1 −xi

,

x ∈ xi, xi+1􏼂 􏼃, (i � 1, 2, . . . , m).

(1)

,en, s(x) and their first derivatives can be gotten
through integrating:

si
′ (x) �

Li

2
x− xi+1( 􏼁

2

xi − xi+1
+

Li+1

2
x−xi( 􏼁

2

xi+1 −xi

+ Ci1,

si(x) �
Li

6
x−xi+1( 􏼁

3

xi −xi+1
+

Li+1

6
x−xi( 􏼁

3

xi+1 − xi

+ Ci1x + Ci2,

(2)

where Ci1 and Ci2 are integral constants. With the continuity of
the spline and their first derivatives at xi (i� 2, 3,. . .,m), we can get

Ci1 � C11 +∑
i

j�2
Lj

Δxj−1 + Δxj􏼐 􏼑

2
,

Ci2 � C12 − ∑
i

j�2
Lj

Δxj−1 + Δxj􏼐 􏼑

2
xj−1 + xj + xj+1􏼐 􏼑

3
,

(3)

in which Δxi is the length of the ith subinterval and C11 and
C12 are related to the left boundary conditions. ,us, the
sum of the number of moments and boundary conditions
needed to solve the equations is m+ 3.

Usually, we consider that the value of PSD out of the
support [a, b] is small enough and can be set as zero:

s1 x1( 􏼁 � 0,

sm xm+1( 􏼁 � 0,
(4)

and the first derivatives are denoted as

s1′ x1( 􏼁 � q1,

sm′ xm+1( 􏼁 � q2,
(5)

where q1 and q2 are zero for smooth boundary conditions.
,en, (3) can be simplified by substituting the left boundary
conditions:

Ci1 � q1 +∑
j�i

j�1
Ljdj,

Ci2 � −q1x1 − ∑
j�i

j�1
Ljdjej.

(6)

Together with the right boundary conditions, we can get
the following formula:

q1 − q2 + ∑
i�m+1

i�1
Lidi � 0,

q1x1 − q2xm+1 + ∑
i�m+1

i�1
Lidiei � 0,

(7)
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in which di and ei are given as follows (i� 2, 3,. . ., m):

di �
Δxi−1 + Δxi

2
,

d1 �
Δx1

2
,

dm+1 �
Δxm

2
,

ei �
xi−1 + xi + xi+1

3
,

e1 �
2x1 + x2

3
,

em+1 �
xm + 2xm+1

3
.

(8)

,e kth order moment Mk of the PSD is defined as
follows:

Mk � 􏽚
∞

0
x

k
f(x)dx. (9)

,us, the kth order moment of s(x) is

􏽚
xi+1

xi

x
k∑

m

i�1
si(x)dx

�∑
m

i�1
􏼠
−Li

6Δxi

Ii4 − 3xi+1Ii3 + 3x
2
i+1Ii2 − x

3
i+1Ii1􏼐 􏼑

+ Ci1Ii2 +
Li+1

6Δxi

Ii4 − 3xiIi3 + 3x
2
i Ii2 −x

3
i Ii1􏼐 􏼑 + Ci2Ii1􏼡,

(10)

in which Ii are

Ii1 �
xk+1

i+1 −xk+1
i

k + 1
,

Ii2 �
xk+2

i+1 −xk+2
i

k + 2
,

Ii3 �
xk+3

i+1 −xk+3
i

k + 3
,

Ii4 �
xk+4

i+1 − xk+4
i

k + 4
.

(11)

In order to represent Li explicitly, (10) is arranged as
follows:

􏽚
xi+1

xi

x
k∑

m

i�1
si(x)dx � q1

xk+2
m+1 − xk+2

1
k + 2

− q1x1
xk+1

m+1 −xk+1
1

k + 1

+∑
m

i�1
GiLi + HiLi+1( 􏼁,

(12)

where

Gi � −
Ii4 − 3xi+1Ii3 + 3x2

i+1Ii2 −x3
i+1Ii1

6Δxi

+ di

xk+2
n+1 −xk+2

i

k + 2
−diei

xk+1
n+1 −xk+1

i

k + 1
,

Hi �
Ii4 − 3xiIi3 + 3x2

i Ii2 − x3
i Ii1

6Δxi

.

(13)

Now together with (7), a (m+ 3)× (m+ 3) linear system
for Li, q1, and q2 is obtained. Next, we will discuss the
number of moments that should be supplemented (note
that, in this paper, all cases calculated with q1 and q2 are
zero):

(1) If q1 and q2 are unknowns, (m+ 1) moments are
needed to solve these equations.

(2) If q1 and q2 are zero or any other constants given,
(m − 1) moments are needed; if the value of s″(x)

at boundary is given (such as smooth conditions
in [7], namely, L1 � Lm+1 �0), (m − 3) moments
are needed. And in this case, the order of the
coefficient matrix is (m + 1) × (m + 1) or (m − 1) ×

(m − 1).

(3) If q1 and q2 obey some relationships, for example,
q1 � (s1(x2)− s1(x1))/Δx1, q2 � (sm(xm+1)− sm(xm))/
Δxm, then L1 �−L2/2 and Lm+1 �−Lm/2 can be de-
rived and (m− 1) moments are needed.

For quadratic spline, we can also get a (m+ 1)× (m+ 1)
linear system in the same way by denoting that

si
′ (x) � li

x−xi+1

xi −xi+1
+ li+1

x−xi

xi+1 − xi

,

x ∈ [xi, xi + 1], (i � 1, 2, . . . , m),

(14)

where li is the first derivative in each node. ,e corre-
sponding s(x) and linear system are as follows:

si(x) �
li

2
x− xi+1( 􏼁

2

xi − xi+1
+

li+1

2
x−xi( 􏼁

2

xi+1 − xi

+ ci1,

∑
j�m+1

j�1
ljdj � 0,

􏽚
xi+1

xi

x
k∑

m

i�1
si(x)dx �∑

m

i�1
gili + hili+1( 􏼁,

(15)

where
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gi � −
Ii3 − 2xi+1Ii2 + x2

i+1Ii1

2Δxi

+ di

xk+1
n+1 −xk+1

i

k + 1
,

hi �
Ii3 − 2xiIi2 + x2

i Ii1

2Δxi

,

ci1 �∑
j�i

j�1
ljdj.

(16)

2.2.Modeling of PBE and TEMOM. ,e population balance
equation describing irreversible Brownian coagulation
with continuous monovariable can be written as follows
[17]:

zn(υ, t)

zt
�
1
2

􏽚
v

0
β υ, υ− υ1( 􏼁n υ1, t( 􏼁n υ− υ1, t( 􏼁dυ1

− 􏽚
∞

0
β υ1, υ( 􏼁n(υ, t)n υ1, t( 􏼁dυ1,

(17)

where n(υ, t) is the number density function of the
particles with volume from υ to υ+ dυ at time t and
β(υ1, υ) is the collision frequency function between
particles with volume υ and υ1. In the free molecule and
continuum regime, β(υ, υ1) are represented separately as

βFM υ, υ1( 􏼁 � B1
1
υ

+
1
υ1

􏼠 􏼡

1/2

υ1/3
+ υ1/3

1􏼐 􏼑
2
,

βCR υ, υ1( 􏼁 � B2
1
υ1/3 +

1
υ1/3
1

􏼠 􏼡 υ1/3
+ υ1/3

1􏼐 􏼑,

(18)

in which B1 � (3/4π)1/6(6kbT/ρp)1/2 and B2 � 2kbT/3μ, where
kb is the Boltzmann constant, T is the temperature, ρp is the
particle density, and μ is the gas viscosity.

With the definition of the kth order moment, Mk, (17) is
transformed to a series of original differential equations by
multiplying both sides with vk and then integrating over all
particle sizes:

dMk

dt
�
1
2

􏽚
∞

0
􏽚
∞

0
υ + υ1( 􏼁

k − υk − υk
1􏽨 􏽩

× β υ, υ1( 􏼁n(υ, t)n υ1, t( 􏼁dυdυ1.

(19)

Using the Taylor-series expansion technology to ap-
proximate the collision frequency function and fractional
moments, themoment equations are closed without any other
artificial assumption [16, 18]. In the original TEMOMmodel,
the first three moments can be obtained easily using the
fourth-order Runge-Kutta method with M1 remaining con-
stant due to the mass conservation requirement. ,e corre-
sponding higher and fractional moments are as follows [19]:

Mk �
Mk

1

Mk−1
0

1 +
k(k− 1) MC − 1( 􏼁

2
􏼢 􏼣, (20)

where MC �M0M2/M1
2 is a dimensionless moment. Obvi-

ously, the reconstruction depends heavily on the reliability
of known moments. Based on the log-normal size distri-
bution assumption, the maximum relative error for Mk of
this model is discussed by Xie [19], and the results dem-
onstrate that the error of Mk for k≤ 2 with a small standard
deviation is acceptable. Furthermore, theoretical analysis of
the PBE is feasible because of the relative simple form of this
model [20, 21], and the explicit asymptotic solutions are as
follows:
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Figure 1: Reconstruction of the PSD for different moments (m) about Example 2.1 in [7] by using (a) quadrature spline and (b) cubic spline.
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M0
􏼌􏼌􏼌􏼌FM⟶ 0.313309932 × B
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1 M

−1/5
1 t
−6/5

,

M2
􏼌􏼌􏼌􏼌FM⟶ 7.022205880 × B

6/5
1 M

11/5
1 t

6/5
,

M0
􏼌􏼌􏼌􏼌CR⟶

81
169

B
−1
2 t
−1

,

M2
􏼌􏼌􏼌􏼌CR⟶

338
81

B2M
2
1t,

(21)

and MC tends to a constant 2.200126847 or 2, respectively.
Using the similarity transformation η� v/(M1/M0), the PSD
can be arranged as follows:

n(υ, t) �
M2

0
M1

ψ(η). (22)

According to the theory of self-preserving, ψ(η) does not
change with time at a large t [1], and its moments only
depend on k and MC:

mk � 􏽚
∞

0
ψ(η)ηk

dη � 1 +
k(k− 1) MC − 1( 􏼁

2
. (23)

,en, ψ(η) can be approximated by s(η) using the spline-
based method, and the asymptotic behavior of n(υ, t) is also
known together with (21) and (22).

3. Results and Discussions

One difficulty of the inverse problem is the ill-conditioned
coefficient matrix of the linear system. Another is that the
value of s(x) is nonnegative. By using the pseudoinverse
routine, a least-squares solution of the linear system is
obtained, in which the singular values smaller than tolsing
are set as zero (see Remark 4.2 in John et al. [7]).
Moreover, the parameter α is introduced to avoid large
difference in the order of magnitude. In this paper, we will
follow this treatment. Figure 1 shows the results of the

reconstruction about Example 2.1 in [7] by using quad-
rature spline and cubic spline proposed in this paper. And
the parameters tolred, tolneg, and tolsing are set as the same
of those in the literature to maintain consistency. It should
be noted that the tolerance values have an influence on the
results [7, 14]. ,e great agreements with the references
verify the validity of this new converted method. How-
ever, an underlying flaw is that only the continuity of s(x)
is necessary in practice. Moreover, the sensitivity of tolsing
to solution may increase when the number of the linear
system sharply decreases. It can also be seen that some
inflexion points appear with m increasing. ,is may be
caused by the increasing condition number of the linear
system.

,e reconstruction of ψ(η) in the free molecule regime
and continuum regime for different moments (m) by cubic
spline is shown in Figure 2, where the references are from Lai
et al. [22] and Friedlander andWang [23].,e initial interval
is set as [1e− 5, 10], and the spacing of adjacent nodes are
equidistant logarithmically. Both the left and right bound-
aries are adjusted according to the comparison results of
||s(ηmn)||2/max(s(η)) and tolred, with tolred � 1e− 2 for m� 6
and 1e− 4 for m� 7 or 8, respectively. Besides,
tolred �−1e− 2 and the initial value of tolsing are set as
1e− 36. In addition to the first three integral moments m0,
m1, and m2, the fractional moments m1/3, m2/3, m4/3, and
m5/3 are chosen to reconstruct ψ(η), for the reason that these
fractional moments with volume-based variable are pro-
portional to the integral moments with length-based vari-
able. It can be seen that the results for m� 7 show relatively
small differences compared to the references. Generally, the
differences may be caused by two parts: one is the error of
TEMOM model and the other is the error of spline-based
method. Scaling the moments Mk and time t by
Mk
∗ �MkM00

(k−1)/M10
k , τ � tB1M00

5/6M10
1/6, or τ � tB2M00, the

evolution of dimensionless n(υ, t) for m� 7 at long time is
presented in Figure 3 with the initial conditions given as
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Figure 2: Reconstruction of ψ(η) for different moments (m) by using cubic spline in the (a) free molecule regime and (b) continuum regime.
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M∗00 � 1, M∗10 � 1, and M∗20 � 4/3. Obviously, the particle
number decreases and the average volume increases with
time advancing due to coagulation.

4. Conclusion

By establishing the ansatz s(x) on the basis of the continuity
of second derivation, the number of linear ill-conditioned
system can be reduced signi�cantly from 4m× 4m to
(m+ 3)× (m+ 3) for (m+ 1) nodes by using cubic spline,
although only the continuity of s(x) is necessary in practice.
 en, coupling with the asymptotic solutions of TEMOM
[20] and the theory of self-preserving, the evolution of the
PSD due to Brownian coagulation in the free molecule
regime and continuum regime and its asymptotic behavior
are obtained easily.
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merical methods for the simulation of a coalescence-driven
droplet size distribution,” Deoretical and Computational
Fluid Dynamics, vol. 27, no. 3-4, pp. 253–271, 2013.

[14] S. Mortier, T. D. Beer, K. V. Gernaey, and I. Nopens, “Com-
parison of techniques for reconstruction of a distribution from
moments in the context of a pharmaceutical drying process,”
Computers and Chemical Engineering, vol. 65, pp. 1–8, 2014.

[15] N. Lebaz, A. Cockx, M. Spérandio, and J. Morchain, “Re-
construction of a distribution fromafinite number of itsmoments:
a comparative study in the case of depolymerization process,”
Computers and Chemical Engineering, vol. 84, pp. 326–337, 2016.

[16] M. Z. Yu, J. Z. Lin, and T. L. Chan, “A new moment method
for solving the coagulation equation for particles in Brownian
motion,” Aerosol Science and Technology, vol. 42, no. 9,
pp. 705–713, 2008.

[17] H. Müller, “Zur allgemeinen theorie ser raschen koagulation,”
Kolloidchemische Beihefte, vol. 27, no. 6, pp. 223–250, 1928.

[18] M. Z. Yu, Y. Y. Liu, J. Z. Lin, and M. Seipenbusch, “Gen-
eralized TEMOM scheme for solving the population balance
equation,” Aerosol Science and Technology, vol. 49, no. 11,
pp. 1021–1036, 2015.

[19] M. L. Xie, “Error estimation of TEMOM for Brownian co-
agulation,” Aerosol Science and Technology, vol. 50, no. 9,
pp. 919–925, 2016.

[20] M. L. Xie and L. P. Wang, “Asymptotic solution of population
balance equation based on TEMOM model,” Chemical En-
gineering Science, vol. 94, pp. 79–83, 2013.

[21] M. L. Xie and Q. He, “Analytical solution of TEMOM model
for particle population balance equation due to brownian
coagulation,” Journal of Aerosol Science, vol. 66, pp. 24–30,
2013.

[22] F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “,e self-
preserving particle size distribution for Brownian coagulation
in the free-molecule regime,” Journal of Colloid and Interface
Science, vol. 39, no. 2, pp. 395–405, 1971.

[23] S. K. Friedlander and C. S. Wang, “,e self-preserving particle
size distribution for coagulation by Brownian motion,”
Journal of Colloid and interface Science, vol. 22, no. 2,
pp. 126–132, 1966.

Journal of Nanotechnology 7



Corrosion
International Journal of

Hindawi
www.hindawi.com Volume 2018

Advances in

Materials Science and Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Journal of

Chemistry

Analytical Chemistry
International Journal of

Hindawi
www.hindawi.com Volume 2018

Scienti�ca
Hindawi
www.hindawi.com Volume 2018

Polymer Science
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Advances in  
Condensed Matter Physics

Hindawi
www.hindawi.com Volume 2018

International Journal of

Biomaterials
Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Applied Chemistry
Journal of

Hindawi
www.hindawi.com Volume 2018

Nanotechnology
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

High Energy Physics
Advances in

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Tribology
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemistry
Advances in

Hindawi
www.hindawi.com Volume 2018

Advances in
Physical Chemistry

Hindawi
www.hindawi.com Volume 2018

BioMed 
Research InternationalMaterials

Journal of

Hindawi
www.hindawi.com Volume 2018

N
a

no
m

a
te

ri
a

ls

Hindawi
www.hindawi.com Volume 2018

Journal ofNanomaterials

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijc/
https://www.hindawi.com/journals/amse/
https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/ijac/
https://www.hindawi.com/journals/scientifica/
https://www.hindawi.com/journals/ijps/
https://www.hindawi.com/journals/acmp/
https://www.hindawi.com/journals/ijbm/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/jac/
https://www.hindawi.com/journals/jnt/
https://www.hindawi.com/journals/ahep/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/at/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/apc/
https://www.hindawi.com/journals/bmri/
https://www.hindawi.com/journals/jma/
https://www.hindawi.com/journals/jnm/
https://www.hindawi.com/
https://www.hindawi.com/

