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Young’s modulus of nanocrystalline metal coatings is measured using the oscillating, that is, tapping, mode of a cantilever with a
diamond tip. The resonant frequency of the cantilever changes when the diamond tip comes in contact with a sample surface. A
Hertz-contact-based model is further developed using higher-order terms in a Taylor series expansion to determine a relationship
between the reduced elastic modulus and the shift in the resonant frequency of the cantilever during elastic contact between
the diamond tip and sample surface. The tapping mode technique can be used to accurately determine Young’s modulus that
corresponds with the crystalline orientation of the sample surface as demonstrated for nanocrystalline nickel, vanadium, and

tantalum coatings.

1. Introduction

A variety of indentation-based test methods are used to eval-
uate strengthening effects [1-4] in materials at the nanoscale.
Nanoindentation normal to the surface is routinely used
to measure the hardness and Young’s modulus. Triboin-
dentation tests are used [5-7] to measure both hardness
and shear strength as well as quantify strain-rate sensitivity
[8, 9] effects in the evaluation of deformation mechanisms
in nanocrystalline alloys. The standard approach [10-12]
to determine the elastic modulus during nanoindentation
evaluates the load (P) versus displacement (h) curve during
unloading after plastic deformation. It remains difficult to
collect a sufficient quantity of P versus h data during elastic
loading since elastic displacements (z) are commonly limited
to depths of only a few nanometers or less in many hard
materials. The initial linear slope (S) of the power-law-shaped
unloading curve is used [11, 12] to determine the reduced
elastic modulus (E¥) as
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The contact area (A,) equals the square of the contact
depth (hz) multiplied by the tip area (¢,) coefficient, and
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the shape parameter f3 equals 1.00 for flat punch, 1.034 for
Berkovich, and 1.012 for Vickers indenter tips. The reduced
elastic modulus (E™) of the indenter tip and sample surface
system is related to the elastic moduli of the indenter tip and
sample surface as
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Here, the subscripts t and s represent the probe tip and
sample, respectively, for the Poisson ratio (v) and Young’s
modulus (E) values. Indentation size effects (ISEs) are
found with the directional loading of the indenter tip. For
example, beyond an indentation depth, that is, ~10% of the
film thickness, the use of a Meyer plot indicates [13, 14]
that the substrate material contributes to the elastic and
plastic property measurements of the coating. Also, the
sensitivity of the nanoindentation measurement to accurately
measure anisotropic elastic behavior is shown [15-17] to
be a function of the indenter tip shape. For example, a
triangular indenter can give values that are much higher
than axisymmetric tips such as spheroconical, but with less
sensitivity than that obtained using axisymmetric shapes.
Nanoindentation measurements with Berkovich diamond



tips may not quantify the full effect of anisotropic behavior;
that is, the anisotropic response can be underestimated in
both modeling and experimental efforts. For example, a 10%
difference from 125 to 140 GPa is reported [15] between
Cu(100) and Cu(1ll), whereas the known elastic moduli
E(hkl) along different crystalline directions [hkI] vary by
300% with values from 66 to 192 GPa. Similarly, different
effects are found [18, 19] for the effect of tip shape on plastic
flow wherein spheroconical shapes evidence work hardening
of material during indentation as opposed to well-defined
pyramidal indentations that produce a near-perfect plastic
response.

The torsion-resonance mode of atomic force acoustic
microscope is used [20] to measure the elastic constants of
anisotropic materials. A piezoelectric device is excited using
an alternating current voltage to induce vibrations in the
atomic force microscopy (AFM) cantilever while the tip is
in contact with the sample surface. Indentation elastic mod-
ulus is extracted from the tip-surface interaction assuming
Hertzian contact mechanics. In a similar technique [21], the
deflection of the AFM cantilever is used to determine the
localized modulus. Vibrating reed measurements [22] have
similarities to the AFM technique where the major difference
is that the sample along with the substrate in the vibrating
reed method is exposed to piezoelectric vibrations whereas
the probe cantilever is vibrated in the AFM technique. The
oscillating bubble method [23] is another technique for
measuring surface elasticity of liquids. The tapping mode
elastic modulus measurement technique [24-29] provides
another relatively new method for measuring the reduced
elastic modulus. The measurement is based on the oscillation
frequency of a probe that is in elastic contact with the surface.
The tapping mode technique is nondestructive, which pro-
vides an advantage of measuring the elastic modulus prior to
plastic deformation whereas nanoindentation measures the
elastic-plastically deformed material.

The tapping mode method is now pursued for evaluating
the Young’s modulus of nanocrystalline metal coatings. Vapor
deposited coatings of cubic metals can have a single-growth
texture that is of interest for assessing the sensitivity of
the measurement technique to anisotropic elastic behavior
in nanocrystalline metals such as nickel. For this purpose,
polycrystalline samples provide a basis for measurement
calibration along with single-crystal wafer specimens. Fur-
ther development of the classic Hertz-contact solution using
higher-order terms of a Taylors series expansion shows
a quadratic rather than a linear relationship between the
reduced elastic modulus and the resonant frequency shift.
The new solution can be used to simulate the magnitude of the
shift in the resonant frequency as a function of the reduced
elastic modulus using the cantilever bending stiffness and the
indenter tip radius of curvature.

2. Materials and Methods

2.1. Materials. The materials for the tapping mode measure-
ment should have smooth surfaces. If there is a high ampli-
tude to short-wavelength surface roughness, then multiple
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point contact can occur which could appear to artificially
stiffen the mechanical response. Smooth surfaces and a
nanocrystalline structure for tantalum (Ta), vanadium (V),
and nickel (Ni) coatings are produced from the high-quench
rates (>10°K-s™') of the sputter deposition method [30-
34]. The metals are coated onto polished flats such as
semiconductor-grade silicon and sapphire wafers. In brief,
the 0.3-0.6 ym thick coatings were synthesized by planar-
magnetron sputter deposition in a vacuum chamber cryo-
genically pumped to a 2 x 107> Pa base pressure. The native
Si oxide on the substrate is not removed prior to deposition
of the coating from target materials of >0.999 purity. The
cathodes are operated in the DC mode with a typical
discharge potential of 2 x 10> Volts. The source-to-substrate
separation is 7-10 cm and the 1Pa working-gas pressure of
argon is maintained with a 35 cm®-s™" flow rate. The measured
surface temperature of the substrate remains below 473 K
during the deposition process. The deposition rates and
thickness accumulation during deposition are recorded using
calibrated Au-coated quartz-crystal microbalances.

Details of the structural characterization for the Ta, V, and
Ni sputter deposited coatings are reported elsewhere [30, 35].
The characterization methods consisted of X-ray diffraction
(XRD), transmission electron microscopy (TEM), and atomic
force microscopy (AFM). The XRD measurements were
conducted in the /26 mode to determine both the crystalline
structure and orientation. The sputter deposited metal coat-
ings have a single growth orientation of close-packed planes.
The body-center-cubic (bcc) metals of Ta and V are (110), and
the face-center-cubic (fcc) Ni is (111). TEM imaging in bright
field, in the electron-diffraction mode, and the use of high
resolution lattice imaging conditions [36, 37] enable a closer
look at the grain size, grain boundary structure, and defect
structure. Selected area diffraction patterns (SADPs) confirm
the (110) growth for the Ta and V coatings as well as the
(111) growth for the Ni coating. Also, the SADPs indicate that
the coatings are polycrystalline in plane, that is, randomly
oriented parallel to the surface. The grain sizes determined
from the average width to the columnar growth as seen in
the bright field TEM images range from 14 to 20 nm for the
Ta and V coatings to less than 150 nm for the Ni coating.
AFM images [35] of the Ta and V surfaces indicate a smooth
surface with less than a 1-2 nm variation in amplitude over
1 pum length scales, that is, a surface smooth for establishing a
Hertz-contact condition.

Semiconductor-grade, single-side polished wafers of sil-
icon Si(100), Si(111), and sapphire Al,05(00.2) are used to
provide smooth single-crystal reference materials. Also, pol-
ished polycrystalline samples of polycarbonate (pC), quartz
(Si0,), hydroxyapatite (HA), and sapphire (Al,O;) are used
as reference standards with known elastic constants for the
establishment of the calibration curve from the tapping mode
measurements.

2.2. Tapping Mode Experiment. The tapping mode use [24,
26, 28] of a nanoprobe, in the configuration of a scan-
ning force microscope, provides a method for measuring
elastic deformation. A universal micro-nano-materials tester
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(UMNT), as manufactured by Bruker-Nano CETR, Inc., is
equipped with a NanoAnalyzer (NA)-II test module that
contains a ceramic cantilever with a Berkovich diamond tip.
Both the 14 kHz resonant frequency ( f;) of the free-standing
cantilever with a spring constant (k) of 22.229kN-m™" and
the initial 5 nm amplitude (A,,) of motion are changed as the
probe is lowered so that contact is made with the specimen
surface. The frequency ( f) and amplitude (A,,) of the probe
oscillation are quantitatively measured as a function of the
vertical displacement (x) of the probe tip. A frequency
feedback system [29] moves the probe into the material
surface until a predefined frequency shift (Af) is achieved
that is typically less than 500-900 Hz. In the elastic regime,
the net elastic displacement (z) beyond the initial surface
contact is only a few nanometers, that is, 1-6 nm, for most
metals that accompany a decrease in the vibration amplitude
from 5 to less than 0.2 nm. A series of frequency shift curves,
often a dozen or more, are used to achieve accuracy. The
limited range of frequency shift (Af) available for elastic
deformation from the free-standing resonant frequency ( f;)
in the NA-II precludes access to an examination of higher-
order harmonics.

The Af versus z variation of the tip-surface system can
be equated as a function of the reduced elastic modulus (E*).
The dynamic behavior of the indenter probe in contact with
the surface is derived from the equation of motion and the
equation for the frequency of oscillation of the system. A
formulation of the a-parameter is determined [24, 25] from a
Taylor series expansion of the equations to the Hertz-contact
model for the variation of Af with z as

2
o= &) ®)
z
The relationship between the square of the resonant fre-
quency shift (Af)? and the vertical displacement (x) of the
cantilever is seen in the schematic in Figure 1 that has four
distinct regions where (1) the tip oscillates without surface
contact, (2) there is contact between the tip and a viscous
(contamination) surface layer, (3) direct interaction of the tip
occurs with atoms of the specimen surface, and (4) damping
of the probe oscillation is seen due to plastic deformation.
Region 3 has two portions. The amplitude of the tip oscillation
is still large and the probe base is far from the surface in region
3'; that is, the tip is bouncing off the surface. As x increases,
the tip and surface begin to oscillate in region 3" without
separation in a strict contact mode, that is, the elastic regime
corresponding with (3). In almost all cases, the amplitude
of the oscillation can have a significant role in determining
the extent of the linear regime in region 3". The length of
the linear elastic regime is reduced when the amplitude of
oscillation is large with respect to the tip radius. In general,
the amplitude-to-tip radius ratio is in the order of 5% or
less. An initial vibration amplitude of 5 nm works well for a
wide range of materials using a Berkovich-shaped diamond
tip. The material starts to plastically deform in region 4 of
Figure 1 as the probe is pressed further into the surface where
the associated deformation imparts a damping action on the
vibration of the probe. The result is a sudden change in the
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FIGURE 1: A plot of the characteristic regions observed for variation
in the square of the resonant frequency shift (Af,)* with displace-
ment (x) when the probe tip mounted to a vibrating cantilever comes
in contact with a surface.

frequency shift from the linear regime of region 3" as the
amplitude fully diminishes. This phenomenon is observed
for a wide range of materials such as metals and ceramics.
The series of frequency shift curves are aligned where the
amplitude reduces to zero to define the upper limit to region
3", As a visual confirmation, the displacement x for the
region 3" upper limit position should not proceed beyond
the square of the frequency shift where an indentation is
observed on the imaged surface, that is, plastic deformation.
To determine the lower limit to region 3" that bounds the
onset of the elastic response, care must be taken to avoid the
preceding nonlinear section of the curve as shown by the
vertical lines that bound region 3" in Figure 1. Once the linear
regime is defined, as, for example, by a correlation coefficient
R, > 0.98, the slope of region 3" is determined from (3).

The calibrated measurement of the reduced elastic mod-
ulus (E*) for an unknown material is accomplished from
tapping mode measurements of o’ using the following
generalized expression:

a=a(E")". (4)

In (4), use is made of a power-law exponent (1) and a scaling
constant (a). This generalized expression can accommodate
the most basic form of a nonlinear relationship between E*
and «, as is commonly found in experimental measurements.
A two-term Taylor series expansion [24, 25] for the solution
of the Hertz-contact condition between tip and surface yields
an exponent n value of one, that is, a linear relationship.
In the next section, the more satisfactory formulation of a
generalized nonlinear relationship between E* and « will
be seen to require additional terms in the Taylor series
expansion. For the calibration test method, several unique
measurements of a’ must be obtained for a variety of



known material standards from which a calibration curve
is plotted using (4). In this way, the basis is established
for an experimental calibration curve that corresponds with
the particular cantilever-tip configuration. The calibration
curve is made using materials with well-established elastic
moduli (E) to cover a large E* range from 3 to 400 GPa.
The determination of E* for the unknown material proceeds
with (4) using an input of the measured « value for that
material. The NanoAnalyzer NA-II is used as well to scan the
sample surfaces to avoid defected regions and to confirm the
smoothness required for the tapping mode measurements.

3. Results and Discussion

3.1. Tapping Mode Analytic Model. An analytic method [38]
is used to determine Young’s modulus E through derivation
of exact expressions for « and E* as well as the final form
of the elasticity equation from Hertz-contact mechanics. The
formulations presented in (3) and (4) are justified using the
dynamic equivalent of the cantilever with a probe tip. This
dynamic system can be represented [26] by a spring-mass
system where the equation of motion is given as

mx + k.x = 0. (5)

In (5), the mass is m, the displacement is x, and the spring
constant of the cantilever k_ is given by

k.= —. (6)

In (6), the cantilever’s moment of inertia is I, the elastic
modulus is E, and its length is L. Thus, the natural oscillation
frequency of the system is described as

k.
w, = \/;C = 27tf,. 7)

When the probe is in contact with the surface, the dynamic
system is modeled such that, for a displacement x, the
frequency of oscillation of the system f is given as

2nf = J" ks (®)

m

In (8), k, is the spring constant to the elastic response of the
surface. Combining (7) and (8) and solving for f yield the

expression
k
f:fo<\]1+k—j>. )

The change of frequency from the state of natural oscillation
to the contact state with the surface is then given by

MEf—ﬁ=ﬁ<¢+%—1) 10)
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A Taylor series expansion of (9) using only the first two terms,
combined with (10), gives the previously well-known simpli-
fied expression for Af as
k
<. 1
2kc> ()

From Hertz-contact mechanics, it is known that, after appli-
cation of normal load (P), the distance (z) from the plane of
the surface contact is given by

SR

In (12), the hemispherical tip radius is R. The spring constant
for the surface (k,) can be modeled using the relationship

ar= 5o

oP

=5 (13)

After inserting (12) into the operation for (13), an expression
for k, then results as

k, = o _ 2VRE*/z. (14)
0z
Using (14) expression for k; and inserting it into (11) yield an
expression for the frequency shift (Af) as

Af = f"k E*+z. (15)

After taking a square of both sides to (15), a relationship is
now derived between (Af )% and the displacement (z) as

(Af) = oz, (16)
where

=ME*

. 17)

c

A plot of the square of frequency shift (Af)* versus the probe
tip-surface elastic displacement (z), as first presented in the
similar expression of (4), is used to experimentally measure
the slope a® that corresponds with (16). The expression (17)
that shows a linear relationship between E* and «, as derived
elsewhere [25, 26], uses only the first two terms of the Taylor’s
series expansion for (10). Therefore, in order to determine a
more exact analytic expression for the relationship between
o and E* that accommodates a nonlinear relationship as
expressed in the generalized power-law expression of (4), a
third term is now introduced into the Taylor’s series expan-
sion. This procedure provides an increase in accuracy in
comparison to (11) for determining the relationship between
the frequency shift and elastic modulus using (14). The series
expansion used to derive (11) and (17) for « now becomes the
following expression that is derived from (9) and (10):

f° [1——(\/_5)\/_] (18)

C C
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TABLE 1: Values for «, displacement (z), Poisson’s ratio (v), and elastic modulus E*; E(hk).

Cubic materials E(hkl) (GPa)

Sample o (Hznm ?) z (nm) E* (GPa) v E (GPa)

(111) (110) (100)
Polycarbonate pC 358+ 1.4 5.08 4 0.37 35 — — —
Fused silica SiO, 145 + 14 4.17 70 0.17 72 — — —
Fused quartz SiO, 149 + 13 3.25 70 0.17 72 — — —
Hydroxyapatite HA 170 = 15 1.46 86 0.27 85 — — —
Silicon Si(100) 202+ 16 1.18 127 0.27 130 188 169 130
Vanadium V(110) 228 +22 1.63 130 0.37 125 119 125 147
Silicon Si(111) 236 £ 23 2.74 176 0.27 188 188 169 130
Tantalum Ta(110) 271 +23 1.62 187 0.34 192 216 192 144
Nickel Ni(111) 325+ 20 1.71 269 0.31 305 305 227 129
Fused sapphire AL, O, 401 +26 0.98 367 0.27 470 — — —
Sapphire AL 0,(00.2) 392 +27 0.78 382 0.27 496 _ _ _

Equation (18) can be reduced to the form of (17). Formula
(18) can be solved for E* as a function of f, , z, k., and R by
using a standard quadratic expression for E* as

L, 1z \/1—(2(x\/5/f0)
= NS )

Experimentally meaningful values are produced from (19)
using the (1 — /) term in the numerator. Equations (3) and
(4) become the basis for the calibration procedure to curve-fit
the coeflicient (a) and exponent (1) values to the power-law
relationship and to be used for the determination of unknown
E* values. The nonlinear algebraic solution of (18) indicates
a quadratic relationship between « and E*(as dependent on
VR and +/z) to reveal that the corresponding value of the
exponent # for the power-law fit to (4) may be approximately
1/2.

The reduced elastic modulus (E*) of the sample can
be computed from (19) provided that measurements are
possible for the free-standing oscillation frequency f, of the
cantilever, the cantilever bending stiftness k_, the probe tip-
surface displacement z, and probe tip radius R. The calibra-
tion method for measurement of reduced elastic modulus
E* is more frequently used since the probe tip values are
often determined with limited accuracy. In the calibration
method, the o values are measured as described previously
using a particular probe tip for several materials with known
elastic modulus. The « values are then plotted as a function
of the corresponding known reduced modulus values in
accordance with (4) to fit the parameters for the coefficient
a and power-law exponent n. The greater the number of
calibration materials is, the better the power-law curve fit will
be for a more accurate calculation of unknown elastic moduli.
Use of (19) will be made to simulate (4) curve fit results and
to determine an approximate value for the indenter tip radius
R as may be dependent upon z.

E (19)

3.2. Computation of Elastic Moduli. The effect of crystalline
anisotropy on the elastic moduli can be quantified using a
mathematical formulation [39] of the elastic moduli (E) and

tabulated values [40-48] for the elastic constants (C;;) and
compliances (Sij). The equation for Young’s modulus E(hkl)
for cubic systems along the <hkl> directions with respect to
the crystalline orientation using the unit vectors (I;) such as
those designated by the Miller indices of <100>, <110>, and
<I11>is

1 1
7 =Su-2 (s” ~ S, - 5544) (BL+L5+LE).  (20)

For the crystal systems with 3 m, 32, and —3 m classes of sym-
metry, the expression for Young’s modulus becomes

% = (1-B)s,, + s,

+2 (1 - lg) (2815 + Suy) (1)
+ 2505 (31} - 3) Sy

The E(hkl) values computed using (20) and (21) are listed
in Table 1 for the comparison of anisotropy within each and
all of the materials in the order of increasing stiffness. The
listed E* values are computed using (2) assuming a (l—vf)/Et
value of 0.00075GPa™" for the probe tip as based upon a
nanoindentation calibration of the Berkovich diamond tip to
the known hardness value for silicon. The (l—v?)/Et value of
0.00075 GPa™" is consistent with the typical ¥, values of 0.07-
0.10 and E, values of 1150-1250 GPa that are often reported
for diamond.

3.3. Tapping Mode Measurements. The square of the resonant
frequency shift (Af,)* with probe displacement x for the
nanocrystalline V(110) and Ni(111) coatings is shown in the
plots of Figures 2(a) and 3(a). For the V(110) example, an
average value of 85 x 10 Hz* is computed for the change
in (Af,)* that corresponds to the 1.63nm portion of the
linear elastic displacement (z) from region 3" in Figure 2(a),
centered at a displacement (x) of 28.7 nm. The data plots of
Figures 2(b) and 3(b) show the simultaneous variation of the
oscillation amplitude A, with the probe tip displacement (x).
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FIGURE 3: (a) The square of the resonant frequency shift (Af,)*
variation with the probe tip displacement x and the amplitude A, of

FIGURE 2: (a) The square of the resonant frequency shift (Af,)?

variation with the probe tip displacement x and the amplitude A,,

the oscillation variation with (b) the probe tip displacement x and
(c) resonant frequency f, are shown for a nanocrystalline Ni(111)

coating deposited onto a Si substrate.

of the oscillation variation with (b) the probe tip displacement x
and (c) resonant frequency f, are shown for a nanocrystalline V(110)

coating deposited onto a Si substrate.
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FIGURE 4: The amplitude A,, of the oscillation variation with the
resonant frequency ( f,) for the free-standing cantilever.

The magnitude of A, decreases to only 0.2 nm in region 3"
from its original region 1 value of 5 nm when free standing.

The decrease in the amplitude A,, for the V(110) and
Ni(111) samples with increasing resonant frequency (f,)
is shown in Figures 2(c) and 3(c). The vertical markers
correspond with the changes in the square of the resonant
frequency shift indicated in Figures 2(a) and 3(a) for the
V(110) and Ni(111) samples. For comparison, a forward and
backward scan through the resonant frequency of the free-
standing cantilever is shown in Figure 4.

The results for the calculations of the « values for all
of the samples that are determined from the tapping mode
measurements of the change in (Afr)2, according to (3),
are listed in Table 1. The results for the reduced elastic
modulus E* (GPa) calibration curve as plotted with the
measured o (Hz-nm™'/) values are shown in Figure 5 by
the solid symbols. The power-law curve fit to (4) gives a
value for n equal to 0.532 and value for a equal to 16.2
(Hznm™/2.GPa™), where the correlation coefficient R_. to
the curve fit equals 0.994.

The computation of the Table 1 values for E* from the
known E values is made using (2). The individual (open-
symbol) data points for the elastic moduli of non-close-
packed growth planes are plotted to evaluate the effect of
crystalline orientation on the calibration curve fitting of the
measured elastic modulus for the cubic nanocrystalline metal
coatings. The values that are computed for Ni(100), Ni(110),
V(100), V(111), Ta(100), and Ta(111) using (20)-(21) are listed
in Table 1. Clearly, the modulus values for Ni(100), Ni(110),
and Ta(100) cannot be considered as these values rest well
oft (4) calibration curve. In addition, a poor curve fit to (4)
results using averaged E(hkl) values for Ta, Ni, and V. The
modulus that corresponds to the single growth orientation
of the nanocrystalline metal coating is consistent with (4)
curve fit of modulus values for the polycrystalline and single-
crystal standards. Therefore, in general, it appears that the

500 [
400

300 |

o (Hz~nm‘1/2)

100 f

0 50 100 150 200 250 300 350 400 450
Reduced modulus E* (GPa)

¢ (100)

A Poly(p)

® (111)
® (110)

FIGURE 5: The measured « value (s) that corresponds with the square
root of the slope in region 3" (of Figure 1) is plotted as function of
the reduced modulus E* value for various sample materials where
the crystalline orientation is indicated by the symbol shape in the
legend.

measured Young’s modulus values correspond to the actual
growth orientation of the nanocrystalline metal coatings.
These present results for the variation of E* with « are
consistent with the polycrystalline calibration materials and
the elastic anisotropy of the single-crystal samples of Si(100),
Si(111), and Al,05(00.2), as well as the elastically anisotropic
nanocrystalline Ta(110), V(110), and Ni(111) coatings. For
comparison, similar elastic modulus values of 187 GPa and
141 GPa are reported [35] for the Ta(110) and V(110) coat-
ings, respectively, as determined from nanoindentation tests.
However, the nanoindentation values do appear to include
some contribution of a (100) component during elastic
unloading of the coating subsequent to plastic deformation.
The E* values that correspond with the actual crystalline
orientation of the coatings are used in the (solid-line) curve
fit to (4). A (dashed-line) curve that represents the analytic
model approach is computed using (19). The analytic model
curve overlays the calibration curve fit. The analytic model
(dashed-line) curve in (19) is formed by computing the E*
and « values using tip radius values (R) that are fitted to
the corresponding elastic displacement condition for each
sample to reproduce the experimental (solid-line) calibration
curve. The tip radius (R) variation with elastic displacement
is reproduced as generally anticipated for diamond indenters.
An R value of 10°nm is modeled at the larger depths of
full elastic displacement (z). (Only a portion of the elastic
displacement z used in the « value computations is listed
in Table 1.) In general, the elastic displacement progressively
decreases as the samples stiffen. Whereas a very sharp tip
radius and nanometer-scale elastic deformation could clearly
present the need to consider modeling of near-atomic inter-
actions, the use of a classic modeling approach as presented
for Hertzian tests is generally consistent with the actual
diamond tip condition where the contact radius is less than
5% of the tip radius. The utility of the classical model is



supported by the self-consistent experimental measurements
of the calibration materials with known elastic behavior.

3.4. Discussion. 'The sensitivity to potential elastic anisotropy
is seen in the measurement of the Young’s modulus values that
correspond with surface normal loading of the tapping mode
method. The elastic response is measured in the direction
of growth for the nanocrystalline coatings, as well as the
single-crystal wafer orientation seen in the different « values
measured for Si(100) and Si(111). The present result indicates
that measurement of Young’s modulus is directionally depen-
dent on loading. Modulus values determined with in-plane
loading condition are not equivalent to the normal-incident
loading by methods such as nanoindentation and the tapping
mode.

The tapping mode measurement of thin film coatings
using the resonant frequency shift is useful for a wide
range of materials with smooth surfaces. The method is
easily applied when the indenter tip is much stiffer than
the surface being measured. The use of higher-order terms
in the Taylor series expansion of the linear solution for «
in (17) results in the more general, nonlinear solution as
presented in (18). This extension can be advantageous in
modeling experimental data since it is difficult to meet the
assumption of the first-order approximation that k, < k,
for typical cantilevers, where k, ~ 10*kN'm~! and R ~
10> nm. However, the analytic approach presented does not
account for adverse effects of tip deformation, a pull-off force,
or surface adhesion. Whereas the Hertz expression of (12)
can hold true for large loads [49, 50], an overestimation
of the elastic modulus at low loads can occur when the
effect of surface energy (y) is significant. Here, the Johnson-
Kendall-Roberts (JKR) model can provide a better estimation
of the contact radius. Similarly, an accurate expression can
be derived [51] from the Derjaguin-Muller-Toporov (DMT)
model that involves a Taylor series expansion with more
than just the first two terms. The amount of pull-off force
can be determined by conducting future nanoindentation
experiments [52, 53]. The measurement of pull-off force
requires careful chemical cleaning of the sample surfaces. At
present, the tapping mode measurements are made with the
surface-contamination layer intact which contains hydrocar-
bons and appears to provide a natural lubrication alleviating
background adhesion effects.

4. Conclusions

Young’s modulus E is measured using the tapping mode of a
cantilever-mounted diamond probe. The shift in the resonant
frequency f, of the cantilever is recorded when the diamond
probe is in elastic contact with the sample surface. The vari-
ation in the square of the change in the resonant frequency
(Af,)? divided by the accompanying elastic displacement z is
equated to an experimental &’ parameter; that is, a* equals
(Af,)?/z. A power-law relationship is used to equate o with
the reduced elastic modulus E*. An analytic derivation, using
higher-order terms from a Taylor series expansion of the
solution to the Hertz condition for the probe and surface,
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indicates that the exponent to the power-law relationship
approximates a quadratic expression between o (Hz-nm™'/?)
and E* (GPa). For the Berkovich tip of this study, a equals
16.2-(E*)*5%2,

Tapping mode measurements are made of sputter depos-
ited tantalum (Ta), vanadium (V), and nickel (Ni) coatings
that have a close-packed plane and growth orientation.
Polycrystalline ceramics and single-crystal wafers of Si(100),
Si(111), and Al,04(00.2) are used to establish the « versus E*
calibration curve along with measurements of the nanocrys-
talline metal coatings. The tapping mode results indicate
that Young’s modulus measurement corresponds with the
crystalline orientation that is normal to the sample surface,
and in the loading direction of the elastic displacement. For
example, a measured « value of 325 Hz-nm ™'/ corresponds
with a 305 GPa Young’s modulus for a nanocrystalline Ni(111)
coating. The directional behavior reveals sensitivity to elastic
anisotropy for a variety of known materials over a 3-400 GPa
range of elastic modulus using a diamond tip probe.
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