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Numerous studies report splicing alterations in a multitude of cancers by using gene-by-gene analysis. However, understanding of
the role of alternative splicing in cancer is now reaching a new level, thanks to the use of novel technologies allowing the analysis of
splicing at a large-scale level. Genome-wide analyses of alternative splicing indicate that splicing alterations can affect the products
of gene networks involved in key cellular programs. In addition, many splicing variants identified as being misregulated in cancer
are expressed in normal tissues. These observations suggest that splicing programs contribute to specific cellular programs that are
altered during cancer initiation and progression. Supporting this model, recent studies have identified splicing factors controlling
cancer-associated splicing programs. The characterization of splicing programs and their regulation by splicing factors will allow
a better understanding of the genetic mechanisms involved in cancer initiation and progression and the development of new

therapeutic targets.

1. Introduction

Each cellular program results from the expression of gene
networks or transcriptional programs that are under the
control of transcription factors. However, human genes can
no longer be considered as simple functional units producing
a single transcript. Rather, human genes are an assemblage
of exons that can be differentially selected through the
use of alternative promoters, alternative polyadenylation
sites, and alternatively spliced exons (Figure 1). Genome-
wide analyses of splicing based on ESTs (expressed sequence
tags), splicing sensitive microarrays, or deep sequencing data
sets have revealed that most, if not all human genes can
generate different transcripts with different exon content
and there are at least 10 times more mRNAs than genes
[1-4]. It is now widely accepted that different cell types
not only differ because they express different sets of genes
but also because genes produce different splicing variants
depending on cell type [3, 5-10]. Furthermore, coordinated
regulation of alternative splicing of gene products within
gene networks plays a key role during differentiation [11-13].

Therefore, an emerging model is that each cell type at
a specific developmental stage is characterized by splicing
programs that together, with other layers of gene expression
programs (e.g., transcriptional programs), determine the
precise nature of their transcriptome and therefore their
proteome.

Tumor cells are able to adapt and evolve. Indeed,
tumor cells that proliferate develop mechanisms to escape
control by their environment. Some tumor cells stimulate
angiogenesis or degrade the extracellular matrix, migrate
and colonize other tissues to form metastasis (Figure 2)
[14]. Gene expression regulation is obviously playing a
critical role in this phenotypic plasticity. It is now widely
accepted that many transcription factors are altered during
tumor initiation and progression. Alterations can occur at
the gene level (mutations, misexpression, etc.) or because
signaling pathways controlling the activity of transcription
factors are altered [14]. Collectively, these alterations result
in the changes in transcriptional programs and therefore
cellular programs. For example, it has been shown that
misregulation of transcription factors, like TWIST that
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FIGURE 1: Genes are an assemblage of exons that can be differentially selected through the use of alternative promoters (P), alternative

polyadenylation sites (pA), and alternatively spliced exons.
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FIGURE 2: Tumor cells are able to adapt and to evolve. Tumor
cells that proliferate develop mechanisms to escape apoptosis
and control of their environment. Some tumor cells stimulate

angiogenesis or degrade the extracellular matrix, migrate and
colonize other tissues to form metastasis.
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are involved in embryonic development, can induce the
epithelial-mesenchymal transition (EMT) that is implicated
in the conversion of early-stage tumors into invasive malig-
nancies [15].

Because alternative splicing permits the generation of
protein isoforms having different biological activities, it is
likely that alterations of splicing regulation participate in
the phenotypic plasticity of tumor cells. In this context,
many splicing variants have been found to be misregulated
in cancers [16-24]. However, one major challenge now is
to better characterize the splicing programs contributing to
specific cancer-associated phenotypes and to identify the
splicing factors that control such splicing programs. Indeed,
the recognition of exons and introns relies on degenerated
sequences at the boundaries between them (splicing sites)
that are recognized by the spliceosome, as well as on splicing
regulatory sequences located within exons and introns that
are recognized by accessory factors or splicing factors (e.g.,
SR and hnRNP proteins) [16, 17, 19, 20, 25-27]. Depending
on their nature and the position of their binding sites,
splicing factors can either strengthen or inhibit the splice sites
recognition by the spliceosome and can therefore enhance or
repress the inclusion of alternative exons. Like transcription
factors control transcriptional programs by controlling the
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FIGURE 3: Cellular programs depend on gene expression programs
that result from both transcriptional and splicing programs.
Transcriptional and splicing programs are under the control of
transcription and splicing factors, respectively. Mutations or gene
expression alteration of transcription and/or splicing factors can
contribute to tumor initiation and progression. The activity of
transcription and splicing factors is also under the control of
signaling pathways that can be altered in tumor initiation and
progression.

expression of gene networks, splicing factors control splicing
programs by controlling alternative splicing of gene networks
(Figure 3). While several excellent reviews on splicing and
cancer have been recently published [16-24, 28-32], our aim
in this paper was to discuss recent genome-wide analyses
of alternative splicing in cancer indicating that splicing
programs controlled by splicing factors play a major role in
cellular programs and tumor progression.

2. Large-Scale Analyses of
Alternative Splicing in Cancer

There are now numerous studies reporting on splicing alter-
ations in many cancers (see above). However, understanding
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TaBLE 1: Summary of studies using different approaches (1: high throughput RT-PCR, 2: Affymetrix junctions arrays; 3: Affymetrix exon
arrays; 4: exonhit arrays; 5: custom arrays) to identify misregulated gene at the splicing level in cancer. *Bioinformatic gene pathway analyses.

Samples # Genes functions References
Pooled human normal and tumor ] *Cellular architecture, plasticity and (33]
samples movement
*Signaling (axon guidance, ephrin
26 human breast cancer cell lines and 5 ) receptor, integrin, and tight junctions), (34]
nonmalignant immortalized cell lines cytoskeleton organization, biogenesis,
and cell signaling
Nonmetastatic (67NR, 168FARN) and N
Breast metastatic (4T07, 4T1) mouse primary 3 Cellular morphology, and cellular [35]
movement
tumors
. . .
168FARN, 4T07 and 4T1 mouse primary Cel.l grothh, cell 1n.t erac.tlons, cell
3 proliferation, cell migration, cell-to-cell [36]
tumors . .
signaling, cell death
120 human breast tumors and 45 benign 4 (37]
lesions
18 paired samples of human lung tumors 3 Remodeling of the cytoskeleton and cell (38]
and normal adjacent tissues movement
. . *Tissue development, cellular growth
Lun 20 paired of human primary lung tumors 3 and proliferation, tissue morphology, and [39]
8 and adjacent normal tissues ancp ’ phology,
immune response
. . Cell adhesion, differentiation,
20 paired of human primary lung tumors . . . N
. . 5 proliferation, adhesion, migration, [40]
and adjacent normal tissues .
cytoskeleton, trafficking
29 paired of human primary lung tumors 5 Cell signaling, cell proliferation, (41]
and adjacent normal tissues angiogenesis, cytoskeleton
. . *Cell motility and organization of the
10 paired of human colon primary . .
. . 3 actin cytoskeleton, cell adhesion, and [42]
tumors and adjacent normal tissues . .
matrix organization
Digestive 20 human colon adenocarcinoma and 10 3 Cancer-related, cytoskeleton, matrix (43]
tract normal samples organization, Wnt signaling
12 §amples of isolated cells from 10 3 [44]
patients
83 human colorectal tissue samples 3 [45]
Neuronal differentiation, cancer
14 pediatric medulloblastomas and 5 progression: cytoskeleton remodeling,
3 : [46]
samples of normal cerebellum cell morphology regulation, and
cell-to-cell interaction
47 human neuroblastoma samples in *Nervous system development, cell
Brain stage 1 and stage 4 with normal or 3 adhesion, synaptic transmission, and [47]

amplified MYCN copy number

24 human glioblastoma and 12

nontumor samples 3
26 human glioblastoma, 22
oligodendrogliomas and 6 nontumor 3

samples

cytoskeleton organization and biogenesis
Splicing, intracellular transport and cell
migration, central nervous system, notch
signaling, cell adhesion, apoptosis, cell
growth

of the role of alternative splicing in cancer is now reaching a
novel level, thanks to the use of new tools including splicing-
sensitive microarrays, allowing the analysis of splicing variant
expression at a large-scale level. As summarized in Table 1,
tumors from breast, lung, digestive tract, and brain have
been extensively analyzed thanks to these tools. Although the
number of splicing alterations depends on the study design
and cancer type, and even though extensive validations using

different approaches have generally not been done, it appears
that splicing alterations affect gene networks participating in
key cellular programs.

For example, we recently used the exon arrays from
Affymetrix to search for potential splicing variants associated
with different metastatic properties in the clinically relevant
4T1 mouse model of spontaneous breast cancer metastasis
[35]. The 4T1 mouse model comprises four syngenic tumor



lines (67NR, 168FARN, 4T07, and 4T1) that have differential
metastatic behavior: the 67NR cell line forms primary
carcinomas when implanted into the mouse mammary fat
pad, and no tumor cells are detected at distant tissue;
the 168FARN cell line forms primary carcinomas with
extensions to local lymph nodes; the 4T07 and 4T1 cell
lines generate micrometastases and macroscopic metastases,
respectively, in the lungs. By comparing the transcriptome at
the exon level in primary tumors generated from each cell
line, we identified 679 splicing variants that were differen-
tially expressed in primary tumors with different metastatic
abilities. Many of the splicing variations identified in the
4T1 model affected genes involved in cellular morphology
and movement, which suggests that splicing may play a role
in these cellular activities that are highly relevant to tumor
progression. In addition, many splicing events identified
in the primary tumors were conserved during evolution
and were found in normal tissues, demonstrating that at
least a large subset of splicing variations during tumor
progression are not due to aberrant splicing. Importantly,
some of the splicing variants identified in mouse tumors
giving rise to metastases were linked with poor prognosis
(shorter metastasis-free survival) in a large cohort of breast
cancer patients. Using the primary tumors generated from
the 168FARN, 4TO7, and 4T1 cell lines, Bemmo and col-
laborators also identified genes that are differentially spliced
in association with the metastatic ability of tumors [36].
The misregulated genes were involved in cell growth and
proliferation, cell death, cellular development, and cellular
movement.

Lapuk and collaborators also identified 156 genes being
differentially spliced when comparing 26 breast cancer
cell lines representing the luminal, basal, and claudin-low
subtypes of primary breast tumors, and five nonmalignant
breast cell lines [34]. Functional annotation analyses of the
regulated genes showed preferential enrichment of biological
processes related to cytoskeleton and actin. In addition,
this study revealed that many of these splicing events are
regulated by the FOX2 (RBMY) splicing factor. This is
of particular interest as Venables and collaborators also
identified a large number of differentially spliced genes when
comparing human breast and ovarian tumors to normal
tissues that are under the control the FOX2 splicing factor
that the authors showed to be downregulated in ovarian
cancer and to be altered at the splicing level in breast
cancer samples [33]. Interestingly, several studies suggest
that FOX2 is a critical regulator of a splicing network.
Indeed, by integrating binding specificity with phylogenetic
conservation and splicing microarray data from 47 tissues
and cell lines, Zhang and collaborators found thousands
of FOX tissue-specific targets [50]. Yeo and collaborators
also constructed an RNA map of FOX2-regulated alternative
splicing via CLIP-seq in human embryonic stem cells and
found a large cohort of targets [51]. Supporting further
FOX2 function as a critical regulator of splicing networks,
many cancer- and FOX-regulated splicing events reported
by Venables and collaborators affected genes associated with
actin filaments, myosin dynamics, kinesins, and microtubule
binding and trafficking complexes [33]. Therefore, it appears
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that splicing alteration in breast cancer may have a marked
effect on genes involved in cellular architecture, plasticity,
and movement.

This observation is likely relevant to other types of
cancers as a large number of differentially spliced genes when
comparing lung, digestive tract, and brain tumors to normal
tissues were associated with cell motility and organization of
the actin cytoskeleton (Table 1). These observations suggest
that genes involved in cellular architecture, plasticity, and
movement are particularly prone to alternative splicing
and/or that tumor progression results in or requires changes
in the splicing patterns of genes involved in these cellular
programs. It must be underlined that genes involved in
other cellular programs, such as cell proliferation, are also
often found to be differentially spliced in tumors (Table 1).
Although further genome-wide analyses of alternative splic-
ing are still required, an emerging concept is that cellular
programs altered during tumor initiation and progression
depend on splicing programs (Figure 3).

3. Cellular Programs Involve Splicing Programs
Controlled by Splicing Factors

The first demonstration that splicing programs participate
in cellular programs came from the study of the neu-
ronal splicing factor, Nova-1, that was shown to regulate
splicing events of a network of genes involved in synapse
function [52, 53]. In the context of cancer-related cellular
programs, the best example illustrating this concept was
provided by a recent study of Warzecha and collaborators,
who uncovered a network of alternative splicing changes
that are under the control of the ESRP1 (RBM35A) and
ESRP2 (RBM35B) splicing factors and that contribute to the
epithelial-mesenchymal transition (EMT) [54]. Epithelial
splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2)
have been identified to be regulators of the epithelial to
mesenchymal splicing pattern of FGFR2, CD44, CTNND1
(p120-Catenin), and ENAH transcripts [55]. Warzecha and
collaborators demonstrated that ESRPs are components of
an epithelial gene signature and demonstrated a downregula-
tion of these proteins in cells that undergo EMT. Knockdown
of ESRPs results in loss of characteristic morphological
features of epithelial cells with an increased motility and
expression of invasive markers, concomitant with changes
in expression of several prototypical EMT markers [54].
To know if ESRPs are master regulators of epithelial cell-
specific splicing program, they analyzed splicing profiles
derived from ectopic expression of ESRP1 in mesenchymal
cells, as well as from knockdown of ESRPs in epithelial cells
using splicing sensitive microarrays [54, 56]. They identified
hundreds of alternative splicing events within numerous
genes with functions in cell-cell adhesion, polarity, and
migration, and many events showed reciprocal changes in
the two experimental conditions. Components of this global
ESRP-regulated epithelial splicing program could be valuable
molecular markers to characterize the EMT and could have
potential clinical applications, as cancer cells undergoing
EMT present more aggressive tumor phenotypes.
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Other cellular programs that may involve splicing pro-
grams are cell proliferation and apoptosis, two key cellular
programs that are altered in cancer [14, 57]. Strikingly,
most (if not all) genes involved in apoptosis, can produce
splicing variants coding for protein isoforms with either
pro- or antiapoptotic activities [16, 58]. Interestingly, an
alternative splicing network that links cell cycle and apoptosis
has recently been identified [59]. It must be emphasized
that several cell cycle regulators, including CDC40 and
CDC5L, have been identified as spliccosome components,
and that several splicing factors, including SRSF1 (ASF/SF2,
see below) affect cell cycle progression [60—62]. In addition,
both splicing factors SRSF1 and SRSF2 (SC35) regulate the
alternative splicing of several genes involved in apoptosis [59,
63—65]. The SRSF1 factor, a member of the arginine/serine-
rich (SR) family of splicing factors, is particularly interesting
as it is overexpressed in various human tumors [66, 67], and
its overexpression is sufficient to transform immortalized
cell lines [66]. Karni and collaborators showed that SRSF1
affects the alternative splicing of the tumor suppressor BIN1,
producing an isoform lacking tumor suppressor activity,
and of the protein kinases MNK2 and S6K1, leading to
an MNK2 isoform promoting MAPK-independent elF4E
phosphorylation and an S6K1 isoform with oncogenic
properties [66]. The oncogenic activity of SRSF1 may also
be due to its implication in multiple cellular programs,
as it regulates the alternative splicing of genes implicated
in proliferation (e.g., CyclinD1), apoptosis (e.g., Bcl-x and
Mcll) and cell motility (e.g., Racl and Ron) [59, 68].
These studies provide evidence that an abnormally expressed
splicing factor can have oncogenic properties by impacting
on alternative splicing of cancer-associated genes and genes
involved in cancer-related cellular programs.

Also interesting in this context is the Sam68 (Src
associated in mitosis, of 68 kDa) factor that is a KH domain
RNA-binding protein, whose expression and function have
been linked to the onset and progression of tumors, such as
prostate and breast carcinomas [69-73]. It was first thought
that Sam68 had a tumor suppressor role [74, 75], but direct
investigations rather suggest a pro-oncogenic role of the
protein (for review [76]). Sam68 regulates splicing events
in several genes involved in apoptosis and cell proliferation
(e.g., Bcl-x, Cyclin D1, and CD44) [77-80]. Interestingly,
Valacca and collaborators suggested that Samé68 could also
contribute to the malignant transformation of epithelial
cancers by regulating the alternative splicing of SRSF1 and
inducing EMT [79].

In addition to the splicing factors mentioned above
including FOX2, the polypyrimidine tract-binding protein
(PTB/PTBP1), also known as hnRNP T is a splicing regulator
that often acts as a repressor, although it can also promote
the inclusion of exons [81, 82]. PTB has been shown to be
overexpressed in ovarian cancer and in gliomas and may
play a role in tumor initiation and progression [83-86].
PTB is expressed throughout development, and then down-
regulated in many adult tissues [87]. In ovarian and glioma
cell lines, loss of PTB inhibited cell proliferation and cell
migration and increased cell adhesion [83, 85]. Cheung and
collaborators showed that after removal of PTB in glioma cell

lines where the PTB paralog nPTB/PTBP2 is also expressed,
a single gene RTN4 had enhanced inclusion of exon 3 and
this isoform decreased cell proliferation, migration, and
adherence to a similar degree as the removal of PTB [83].
Importantly, it has also been shown recently that PTB,
together with two others hnRNP family members, hnRNPA1
and hnRNPA2, controls the alternative splicing of transcripts
of the PKM gene coding for the enzyme pyruvate kinase. The
expression of these proteins favors switching from PKM1 to
PKM2 isoform, which promotes aerobic glycolysis and thus
will provide a selective advantage for tumor formation [84,
88]. Further studies will be required to assess the potential
relevance of other PTB-regulated exons in the context of
cancer.

4. Conclusions

Genome-wide analyses of alternative splicing allow us to
propose a model whereby splicing programs, together with
transcription programs participate in the corruption of
cellular programs during tumor initiation and progression
(Figure 3). It is important to underline that recent proteomic
analyses confirm the presence of alternative protein isoforms
in tumor samples [89]. Because of the diversity generated
by alternative splicing and because of its highly dynamic
regulation, it is likely that this process plays a central role in
the phenotypic plasticity of tumor cells. Therefore, the iden-
tification of splicing programs that impact on key cellular
programs will allow a better understanding of the genetic
programs involved in cancer initiation and progression.
This concept likely applies to other cancer-related cellular
programs in addition to EMT, migration, proliferation, and
death. For example, angiogenesis (blood vessel formation)
favors tumor progression by improving tumor cell feed
[14]. Several alternative splicing events induce a switch
from pro- to antiangiogenic functions [90, 91]. Likewise,
there is increasing evidence that primary metabolism is
altered in tumor cells, and the pyruvate kinase M1 and
M2 splicing isoforms control the balance between aerobic
and anaerobic glycolysis during tumor progression [92, 93].
Supporting a model where cellular metabolism could depend
on splicing programs, it has been recently shown that several
key regulators of cholesterol biosynthesis and uptake are
regulated by alternative splicing in a coordinated manner by
the splicing factor PTB/hnRNP I [94].

A current challenge raised by large-scale analyses of
alternative splicing is the functional analysis of large sets of
splice variants that are identified as misregulated in cancer.
Most studies so far have relied on the functional annotation
of genes and on the analysis of functional features encoded
by alternative exons (e.g., protein domains or premature stop
codons). However, there is a need for midscale functional
analyses of splice variants using experimental screens. Such
an approach was used in a recent study, where 41 splice
variants previously associated with breast and/or ovarian
cancer were functionally analyzed by transfecting cells
with either isoform-specific siRNAs or bifunctional-targeted
oligonucleotides allowing to reprogram alternative splicing,



followed by analysis of cell growth, viability, and apoptosis
assays [95]. In this pioneering study, about 10% of the
analyzed splice variants were found to play a role in cell
viability in the growth conditions that were used. While
it is possible that only a subset of cancer-associated splice
variants play a role in cancer cell phenotypes, it is likely
that unraveling the functions of cancer-associated splice
variants will require using more varied growth conditions
and phenotypic screens involving various cellular programs.

Understanding the mechanisms leading to splicing pro-
gram alteration in cancer will require identification of the
splicing factors that govern these splicing programs, knowing
that many of them are misregulated in cancer. While several
splicing factors have recently emerged as good candidates,
further studies are needed to identify the whole sets of
splicing events they regulate, their precise cellular functions
or their potential alterations in cancer. Moreover, it is
likely that many other splicing factors will be involved in
oncogenesis and tumor progression.

Finally, the identification of the splicing factors control-
ling cancer-associated splicing programs will allow develop-
ments of new therapeutic targets [96, 97]. In this context,
several strategies targeting splicing regulators are currently
being developed. The recent identification of small molecules
that can inhibit the activity of splicing factors will allow
improved targeted cancer therapies [98, 99]. However, as
splicing factors are RNA-binding proteins that are often
involved in other aspects of RNA metabolism (e.g., mRNA
stability and translation, or processsing of noncoding RNAs),
it will be important to determine whether these different
activities cooperate in the induction of a given cellular
program or can be selectively targeted to induce distinct
phenotypes.
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