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Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association
between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW
Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through
palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches among the
dinokaryotic dinoflagellates.

1. Introduction

The alveolates (or Alveolata) are a major lineage of protists
divided into three main phyla: ciliates, apicomplexans, and
dinoflagellates. Molecular phylogeny has confirmed several
morphologically identified parasitic lineages [perkinsids,
ellobiopsids, euduboscquellids (Marine Alveolate Group I),
and syndineans (Marine Alveolate Group II)] that branch
between the apicomplexans (exclusively animal parasites)
and “core” dinoflagellates (dinokaryotes) [1–3]. About 90
species of “core” dinoflagellates (dinokaryotes) and nearly all
the basal dinoflagellates are parasites able to infect a broad
array of protistan and animal hosts [4–7].

In studies based on molecular phylogeny, the genera
Paulsenella Chatton, Amyloodinium E. Brown & Hovasse,
and Tintinnophagus D. W. Coats branch in the same clade
and parasitize hosts of different phyla (diatoms, fishes, and
ciliates, resp.) [8]. The parasites of copepod eggs Chytrio-
dinium Cachon & Cachon-Enjumet and Dissodinium G. A.
Klebs are closely related and branch among free-living species
[9, 10]. The parasite of copepods Blastodinium Chatton,
with chloroplast-containing and heterotrophic species, is not
always a monophyletic group in SSU rDNA phylogenies
[11]. The parasites Oodinium Chatton and Haplozoon Dogiel

form independent lineages with no evident relation to other
dinoflagellates [12]. In this study, we describe a new lineage of
an undescribed parasitic dinoflagellate that largely diverged
from other known dinoflagellates. This study also expands
the range of hosts of parasitic dinoflagellates with the first
example of infection in a rotifer.

2. Materials and Methods

2.1. Sampling and Microscopic Observations. The plankton
sample was collected from the surface using a phytoplankton
net (20𝜇mmesh size) onMarch 30, 2011, in the port of Valen-
cia, NW Mediterranean Sea (39∘27󸀠38.13󸀠󸀠 N, 0∘19󸀠21.29󸀠󸀠
W, water column depth of 4m) by using a phytoplankton
net (20𝜇m mesh size). The live, concentrated sample was
examined in Utermöhl chamber at magnification of ×100
with an inverted microscope (Nikon Eclipse T2000) and
photographed with an Olympus DP71 digital camera. The
infected host was photographed and then micropipetted
with a fine capillary into a clean chamber and washed
several times in a series of drops of 0.2𝜇m filtered and
sterilized seawater. After observation through microscopy,
the sporangium containing the dinospores was broken and
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dinospores were placed in a 0.2mL tube filled with a few
drops of absolute ethanol.

2.2. PCR Amplification and Sequencing. The sample con-
taining parasite dinospores in ethanol was kept at room
temperature and in darkness until the molecular analysis
could be performed. Prior to PCR, the sample tube was
centrifuged and ethanol was evaporated by placing the tube
overnight in a desiccator at room temperature. Then 30𝜇L
of sterile DNase-free water was added to the sample tube
and the sample was sonicated through three 10-second
pulses at an output setting of 1.0 [8] using a Virsonic 600
sonicator (SP Scientific, Gardiner, NY) equipped with a
microtip. Ten microlitres of the crude cell lysate was used for
polymerase chain reaction (PCR) amplification. SSU rDNA
was amplified using the primers EukA and EukB [13]. PCR
amplification was performed in a 25𝜇L reaction volume
containing 1.25 units of Biotaq polymerase (Bioline Reagents
Limited, London, UK), buffer supplied with the polymerase,
MgCl

2
at 3.0mM, dNTPs at 1.6mM, and the forward and

reverse primers at 1.0mM. The PCR was run in a T100
Thermal Cycler (Bio-Rad Laboratories, Hercules, CA) under
the following conditions: initial denaturation (94∘C/2min);
35 cycles of denaturation (94∘C/15 s), annealing (57∘C/30 s),
and extension (72∘C/2min); final extension (72∘C/7min).
PCR products were purified using Illustra GFX PCR DNA
andGel Purification Kit (GEHealthcare, Little Chalfont, UK)
and sequenced bidirectionally with an ABI3730xl sequencer
(MacrogenEurope,Amsterdam,Netherlands) using the same
primers as used for PCR and additional internal primers
Ask12F and Ask2R [12]; ND2F and ND9R [14]; 528F and
1055R [15]; and 1209F [16]. Sequence reads were aligned and
assembled using the software ChromasPro 1.75 (Technely-
sium, Brisbane, Australia). The newly generated sequence
was deposited in DDBJ/EMBL/GenBank under accession
number KT008058.

2.3. Phylogenetic Analyses. The analysis (Dinokaryota tree)
comprised sequences for dinokaryotes most similar to the
parasite of rotifers as identified through BLAST search
(http://blast.ncbi.nlm.nih.gov/Blast.cgi; [17]). Furthermore,
sequences of a wide selection of dinokaryotes and two
syndinians were included, aiming at including species of
all mutualist symbiotic and parasitic dinokaryote genera for
which sequences were available. Two perkinsid sequences
were used as outgroup. The final matrix contained 65
sequences.

Sequences were aligned using Clustal X v2.1 [18] and
ambiguously aligned sites were removed using Gblocks [19]
with parameters set for less stringent conditions (minimum
number of sequences for a flanking position: 28; minimum
length of a block: 5; allow gaps in half positions). Final
alignments of the SSU rDNA sequences spanned over 1,716
positions. Bayesian phylogenetic trees were constructed with
MrBayes v3.2 [20]. MrBayes settings for the best-fit model
(GTR + I + G) were selected by AIC in MrModeltest 2.3
[21]. Four simultaneous Monte Carlo Markov chains were
run from random trees for a total of 2,000,000 generations in
two parallel runs. A tree was sampled every 100 generations,

and the first 2,000 trees (burn-in) were discarded before cal-
culating posterior probabilities and constructing a Bayesian
consensus tree.

3. Results

The host containing actively moving dinospores was
observed to be immotile at the bottom of the settling
chamber. The dimensions of the host were 135 𝜇m length
and 50 𝜇m width (Figures 1(a)–1(d)). The head of the host
supported a series of mobile filaments, interpreted as being
a corona of cilia and bristles, which created water current
into the host’s mouth (see video in Supplementary Material
available online at http://dx.doi.org/10.1155/2015/614609,
http://youtu.be/WosjATyy1DE). In the caudal side, the
organism showed a foot with one pointed toe and in the
opposite side a spur or vestigial toe (Figures 1(a) and 1(c)).
The morphology of the host was highly deformed by the
parasite. However, the general appearance, the presence of
the bristles, and a toe suggested that the host was a rotifer,
tentatively identified as a small species of the genus Synchaeta
Ehrenberg.

The sporangium was located inside at the level of the
alimentary tube and protruded from the host. The shape of
the sporangium was ellipsoidal (90 𝜇m long, 60𝜇m wide).
The number of dinospores ranged between 100 and 200.
We did not observe the dinospores forming chains. The
infected host was placed into a clean chamber and during
the manipulation the sporangium broke and the dinospores
dispersed. We did not observe any trophocyte or other dif-
ferentiated cells of the parasite; we only observed swarmers.
All the dinospores showed similar degree of maturation that
suggested a palintomic sporogenesis.

Dinospores were ellipsoidal with a conical epitheca
with a convex contour that protruded over the cingulum
and the apex was round. The epitheca was slightly larger
in size than the hemispherical hypotheca (Figures 1(e)–
1(j)). The cingulum was slightly postmedian and deep. The
dinospores were 11 𝜇m in length and 7 𝜇m in width at the
cingulum level. The cells showed refringent inclusions. The
general appearance resembled an elongate cell ofHeterocapsa
pygmaea A.R. Loebl., R.J. Schmidt & J.L. Sherley. Each
dinospore possessed two dissimilar flagella, and they moved
actively inside the sporangium and from the time when
they were released (see video in Supplementary Material,
http://youtu.be/WosjATyy1DE).

An almost complete SSU rDNA sequence (1,721 base
pairs) of the dinospores was obtained. A BLAST search was
conducted on the new sequences to find related sequences
in the GenBank database. However, similarities were low in
all cases (maximum 82%). We first studied the phylogenetic
position in a SSU rDNA phylogenetic tree with diverse
representatives of the alveolate lineages that unequivocally
placed this undescribed parasite within the dinokaryotic
lineage (data not shown). Then, we studied the phylogenetic
position using a dataset that included sequences of other
parasitic dinoflagellates and a diverse representation of the
dinokaryotic lineages (Figure 2). In the Bayesian consensus
tree, the SSU rDNA phylogeny revealed that the newly
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Figure 1: Light microscopy pictures of an undescribed dinokaryotic parasite of a rotifer, tentatively Synchaeta. (a)–(d) Infected host. (e)–
(j) Recently released dinospores. lf: longitudinal flagellum. See video in Supplementary Material, http://youtu.be/WosjATyy1DE . Scale bars:
(a)–(d) 50 𝜇m; (e)–(j) 10𝜇m.

sequenced species formed a distinct lineage among the
dinokaryotic dinoflagellates. However, it was not possible
to find any close genetically characterized relatives of this
parasite.

4. Discussion

Parasitic dinoflagellates have been reported in almost all the
pelagicmetazoan phyla [4–6]. Rotifers are largely represented
in freshwater environments, and only about 14% (254 taxa)
aremarine species [22].Many rotifer species live in symbiosis,
including true parasites harming their hosts [23]. On the
other hand, freshwater rotifers are commonly infected by
parasitic fungi [24]. However, to the best of our knowledge
there are no records of infection by dinoflagellates.

The general appearance of the rotifer host is highly
deformed by the mature sporangium. The host shows a
resemblance to members of Synchaeta, a common genus in
the coastal waters of the NW Mediterranean Sea [25]. The
length of the host (135 𝜇m long) agrees with the range of
Synchaeta neapolitana Rousselet or S. cecilia Rousselet, both
species characterized by one reduced toe [25].The caudal end
of the host, with a one pointed toe and a small lateral and
oblique spur, is closer to S. neapolitana (Figures 1(a) and 1(c)).

The parasite developed in a sporangium that protruded
from the rotifer body at the level of the alimentary tube. This
suggests that the dinospore was ingested and developed in
the alimentary tube or body cavity of the rotifer. The lack of
records of dinoflagellates infecting rotifers could be due to
themarine rotifers having received less attention as compared
to their freshwater counterparts and/or because the earlier

stages of infections of these endoparasites are mistaken with
the gut contents or the vitellariumof the rotifer.The detection
of the parasite is easier when the sporangium protrudes from
the host.

This parasite of rotifers shows a superficial resemblance
to Chytriodinium [26]. The latter produces a spherical spo-
rangium that develops outside the host. In contrast, the
sporangium of the parasite of rotifers is ellipsoidal and
developed inside the host. The dinospores of Chytriodinium
are unarmored and they formed a chain until the membrane
of the sporangium is broken. The rigid contour of the
dinospores suggests that this parasite of rotifers is a thecate
form. We did not observe a chain of dinospores. However,
we cannot rule out that at this developmental stage the
dinospores were already separated. Both Chytriodinium and
the parasite of rotifers seem to share a synchronic division
by palintomic sporogenesis. This parasite of rotifers, as well
as Haplozoon and Oodinium, is not related to other known
dinoflagellates in the SSU rDNA phylogenies. Similarly to the
parasite of rotifers, the phylogenetic position of Haplozoon
and Oodinium is characterized by long branches. They all
represent fast-evolved dinokaryotes without any close known
relatives (Figure 2, [12]).

The proportion of parasitic species among the core
dinoflagellates is low (3%) and the percentage of parasitic
dinoflagellates for which at least one DNA sequence is
available is very low (7%, [7, 27]). This is very likely due to
difficulties in carrying out morphological studies with the
small and actively moving dinospores. Parasites, especially
the endoparasites, are only easily detectable at the last stage
of the infection, which is an only short period in the life cycle
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Figure 2: Phylogenetic tree of the dinoflagellates based on phylogenetic analysis of SSU rDNA sequences using Bayesian inference, based on
1,716 aligned positions. Perkinsozoa is used as outgroup. Parasitic taxa are highlighted.The species newly sequenced in this study are in bold.
Posterior probabilities are given at nodes. The scale bar represents the number of substitutions per site.

of the parasite. This study constitutes the first record of a
parasitic dinoflagellate infecting a rotifer and suggests a new
lineage within the “core” dinoflagellates.
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