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By use of a nonlinear stage-structured population model the role of cannibalism and the combined role of cannibalism and harvest
have been explored. Regarding the model, we prove that in most parts of parameter space it is permanent. We also show that
the transfer from stability to nonstationary dynamics always occurs when the unique stable equilibrium undergoes a supercritical
Neimark-Sacker (Hopf) bifurcation.Moreover, the dynamic consequences of catch depend not only onwhich part of the population
(immature ormature) is exposed to increased harvest pressure but also on which part of the immature population (newborns, older
immature individuals) suffers from cannibalism. Indeed, if only newborns are exposed to cannibalism an enlargement of harvest
pressure on the mature part of the population may act in a stabilizing fashion. On the other hand, whenever the whole immature
population is exposed to cannibalism there are parts in parameter space where increased harvest on the mature population acts in
a destabilizing fashion.

1. Introduction

Several species of commercial interest have been overex-
ploited throughout the years. Among them we find salmon
species like the capelin in the Barents Sea as well as several
cod stocks around the world. Lots of other examples may be
obtained in [1, 2]. The global production of marine capture
fisheries from around 19 million tonnes in catch in the 1950s
has increased to around 80 million tonnes annually since
the mid-1980s; see [3], and as documented in [4], there are
species that have become extinct or almost extinct.

Another characteristic feature of lots of populations is
that they oscillate. There may be a substantial difference in
biomass fromone year to another. Regarding fish populations
there may be several causes for such fluctuations. One
important factor is environmental changes, for example,
changes in current systems which may have a crucial impact
of newborns particularly; see [5] and references therein.
The presence of one or several predator populations plays
an important role too; see [6–8] or [9]. Internal factors
like recruitment and cannibalism often act differently with
respect to stability properties. While increased recruitment
may give birth to chaotic oscillations, there is a tendency

that increased cannibalism seems to stabilize the dynamics
but not always (cf. the discussion in [10–14]). Finally, change
in fishing patterns may also influence the dynamics as
accounted for in [9, 15, 16].

The purpose of this paper is to study the combined effects
of recruitment, cannibalism, and harvest, and in doing so we
apply a discrete stage-structured population model. In the
next section we present the model and discuss its properties.
An analysis of the impact of increasing recruitment and
cannibalism is presented in Section 3. In Section 4 different
harvest strategies are included aswell in themodel, andfinally
in Section 5 we summarize and discuss results.

2. The Model

At time 𝑡 we split the population 𝑥
𝑡
into two separate parts,

an immature part 𝑥
1,𝑡

and a mature part 𝑥
2,𝑡
, and we further

assume that the relation between the subpopulations at two
consecutive time steps may be expressed by a system or
difference equations:

𝑥1,𝑡+1 = (𝐹𝑒
−𝛽1𝑥2,𝑡

𝑥2,𝑡 + (1−𝜇1) 𝑒
−𝛽2𝑥2,𝑡

𝑥1,𝑡) (1− ℎ1) ,

𝑥2,𝑡+1 = (𝜇1𝑥1,𝑡 + (1−𝜇2) 𝑥2,𝑡) (1− ℎ2)
(1)
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which we also may write on matrix form

𝑥
𝑡+1 = 𝐴

𝑥
𝑥
𝑡
, (2)

where 𝑥 = (𝑥1, 𝑥2)
𝑇 and

𝐴
𝑥
= (

(1 − 𝜇1) (1 − ℎ1) 𝑒
−𝛽2𝑥2 𝐹𝑒

−𝛽
1
𝑥2 (1 − ℎ1)

𝜇1 (1 − ℎ2) (1 − 𝜇2) (1 − ℎ2)
) . (3)

Themeaning of the entries in (1) and (2) is as follows:𝐹,𝐹 > 0,
is the fecundity, that is, the number of newborns per adult. 𝜇

1
,

0 < 𝜇
1
< 1, is the fraction of the immature population that

becomes mature one time unit later. (1 − 𝜇
2
)𝑥
2,𝑡
, 0 < 𝜇

2
< 1,

is the part of the mature population which still lives one year
later.The nonlinearities are of Ricker type and the parameters
𝛽
𝑖
, 𝛽
𝑖

≥ 0, 𝑖 = 1, 2, will be referred to as cannibalism
parameters. Consequently, the fecundity is reduced by the
factor 𝑒−𝛽1𝑥2 due to cannibalism from the mature population,
and in the same way, the remaining part of the immature
population (1−𝜇

1
)𝑥
1
is reduced by a factor 𝑒−𝛽2𝑥2 . We assume

no cannibalism pressure on 𝑥2. ℎ1 and ℎ
2
, 0 ≤ ℎ

1
, ℎ
2
≤ 1,

are the fractions of each subpopulation which is removed
through fishery, respectively.

Obviously, models (1) and (2) have a trivial equilibrium

(𝑥1, 𝑥2) = (0, 0) . (4)

Define the inherent net reproductive number 𝑅
0
as

𝑅0 =
(1 − ℎ1) (1 − ℎ2) 𝜇1𝐹

[1 − (1 − 𝜇1) (1 − ℎ1)] [1 − (1 − 𝜇2) (1 − ℎ2)]
. (5)

Then by stability analysis, it is straightforward to show that
(𝑥1, 𝑥2) is stable provided𝑅0 < 1.Therefore, wewill in the rest
of the paper assume that 𝑅

0
≥ 1. Following [17], a population

model is said to be permanent if there exist 𝛿 > 0 and 𝐷 > 0

such that

𝛿 < lim
𝑡→∞

inf 𝑥
𝑡
≤ lim
𝑡→∞

sup 𝑥
𝑡
< 𝐷, (6)

where 𝑥
𝑡

= 𝑥
1,𝑡

+ 𝑥
2,𝑡

is the total population. Hence, if a
population model is permanent the total population density
neither explodes nor goes to zero. Regarding our models (1)
and (2) we have the following result.

Theorem 1. Assume 𝑅
0

> 1. Then models (1) and (2) are
permanent.

Proof. According to (6) we must show that the total popula-
tion neither goes to zero (i) nor explodes (ii). Regarding (i),
we have already shown that 𝑅

0
> 1 guarantees that the origin

is a repellor. Moreover, the restriction on the parameters and
functions given in (2) ensures that 𝐴

0
is irreducible and that

𝐴
𝑥
is nonnegative for all (𝑥1, 𝑥2) ∈ R2

+
. Consequently, (1)

and (2) are R2
+
\ {0} forward invariant. It remains to prove

(ii) and in order to do that we need to show that there exists
a compact set 𝑋 ⊂ R2

+
such that for all 𝑥0 ∈ R2

+
there exists

𝑡
𝑀

= 𝑡
𝑀
(𝑥0) satisfying 𝑥

𝑡
∈ 𝑋 for all 𝑡 ≥ 𝑡

𝑀. To this end,
assume exp(−𝛽1𝑥2,𝑡)𝑥2,𝑡 ≤ 𝐾0, Then

𝑥1,𝑡+1 ≤ (1−𝜇1) 𝑥1,𝑡 +𝐹𝐾0 (7)

and by induction

𝑥1,𝑡 ≤ (1−𝜇1)
𝑡

𝑥1,0 +
𝐹𝐾0
𝜇1

. (8)

Then there exists 𝑡𝐴 = 𝑡
𝐴
(𝑥
1,0
) such that for 𝑡 > 𝑡

𝐴

𝑥1,𝑡+1 ≤
2𝐹𝐾0
𝜇1

= 𝐾1. (9)

Further, in case of 𝑡 > 𝑡
𝐴, (1) and (2) also give

𝑥2,𝑡+1 ≤ 𝜇1𝐾1 + (1−𝜇2) 𝑥2,𝑡 (10)

and once again (by induction) we find that for 𝑡 > 𝑡
𝐵
(𝑥
2,0
)

𝑥2,𝑡 ≤
2𝜇1𝐾1
𝜇2

= 𝐾2. (11)

Finally, take 𝑡
𝑀

= max{𝑡𝐴, 𝑡𝐵} and 𝐾 = max{𝐾1, 𝐾2}. Then,
for 𝑡 ≥ 𝑡

𝑀, 𝑥1,𝑡 ≤ 𝐾, 𝑥2,𝑡 ≤ 𝐾, and we are done.

Models (1) and (2) have also a nontrivial equilibrium
(𝑥
∗

1 , 𝑥
∗

2 ). Indeed, from (1)

𝑥
∗

1 =
1 − (1 − 𝜇2) (1 − ℎ2)

𝜇1 (1 − ℎ2)
𝑥
∗

2 (12)

and 𝑥
∗

2 is the solution of the equation 𝑔(𝑥
2
) = 0, where

𝑔 (𝑥2) =
𝜇1𝐹 (1 − ℎ1) (1 − ℎ2)

1 − (1 − 𝜇2) (1 − ℎ2)
𝑒
−𝛽1𝑥2

+ (1− ℎ1) (1−𝜇1) 𝑒
−𝛽2𝑥2

− 1.

(13)

Clearly, 𝑔󸀠(𝑥2) < 0 and in case of 𝑥
2
sufficiently large we

conclude that 𝑔(𝑥2) < 0. Moreover,

lim
𝑥2→ 0

𝑔 (𝑥2) = (𝑅
0
− 1) [1− (1−𝜇

1
) (1− ℎ1)] > 0. (14)

Hence, there exists 𝑥2 = 𝑥
∗

2 such that 𝑔(𝑥∗2 ) = 0. Conse-
quently, the nontrivial equilibrium (𝑥

∗

1 , 𝑥
∗

2 ) is unique.
Let 𝐽 be the Jacobian of (1) and (2) evaluated at (𝑥∙1, 𝑥

∙

2).
Then (𝑥

∗

1 , 𝑥
∗

2 ) is stable whenever the following inequalities
hold:

1− tr 𝐽 + |𝐽| > 0, (15a)

1+ tr 𝐽 + |𝐽| > 0, (15b)

1− |𝐽| > 0. (15c)
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After some time-consuming calculations it is possible to
rewrite (15a), (15b), and (15c) as

[1− (1−𝜇2) (1− ℎ2)]

⋅ [𝛽1 − (1−𝜇1) (1− ℎ1) (𝛽1 −𝛽2) 𝑒
−𝛽2𝑥
∗

2 ] 𝑥
∗

2 > 0,
(16a)

2 (1−𝜇2) (1− ℎ2) + [1− (1−𝜇2) (1− ℎ2)] 𝛽1𝑥
∗

2

+ (1−𝜇1) (1− ℎ1)

⋅ [2− [1− (1−𝜇2) (1− ℎ2)] (𝛽1 −𝛽2) 𝑥
∗

2 ] 𝑒
−𝛽2𝑥
∗

2

> 0,

(16b)

2− (1−𝜇2) (1− ℎ2) − [1− (1−𝜇2) (1− ℎ2)] 𝛽1𝑥
∗

2

− 𝑒
−𝛽2𝑥
∗

2 (1− ℎ1) (1−𝜇1)

⋅ {1− [1− (1−𝜇2) (1− ℎ2)] (𝛽1 −𝛽2)} 𝑥
∗

2 > 0.

(16c)

If both eigenvalues 𝜆 of the linearization of (1) and (2) are
located inside the unit circle in the complex plane, (16a),
(16b), and (16c) hold and (𝑥

∗

1 , 𝑥
∗

2 ) is stable. The left hand side
of (16a) fails to be positive when an eigenvalue crosses the
unit circle through 1 and a saddle-node bifurcation occurs.
(16b) fails when 𝜆 = −1. This gives birth to a flip (period
doubling) bifurcation; hence when (𝑥

∗

1 , 𝑥
∗

2 ) fails to be stable
the result is a 2-period orbit. (16c) fails when 𝜆 becomes
a complex number located on the boundary of the unit
circle. In this case the equilibrium will undergo a Neimark-
Sacker (Hopf) bifurcation at instability threshold, and as we
penetrate into the unstable parameter region, quasiperiodic
orbits restricted to an invariant curve will be the outcome
provided the bifurcation is of supercritical type.

3. Recruitment and Cannibalism

First, let us focus on the dynamics in case of no harvest (i.e.,
ℎ
1
= ℎ
2
= 0).

(1) Assume 𝛽
1

̸= 0, 𝛽
2

= 0 which means that only
newborns are exposed to cannibalism.

Then 𝑅0 = 𝐹/𝜇2 and the nontrivial equilibrium becomes

(𝑥
∗

1 , 𝑥
∗

2 ) = (
𝜇2
𝜇
1

1
𝛽1

ln𝑅0,
1
𝛽1

ln𝑅0) . (17)

Moreover, criteria (16a) and (16b) degenerate to 𝜇
1
𝜇
2
ln𝑅
0
>

0, 2(2 − 𝜇
1
− 𝜇
2
) + (2 − 𝜇

1
)𝜇
2
ln𝑅0 > 0, respectively, and both

of them are obviously valid. Inequality (16c)may be expressed
as

𝑅0 < exp(
𝜇1 + 𝜇2
𝜇1𝜇2

) . (18)

Hence, (𝑥
∗

1 , 𝑥
∗

2 ) fails to be stable when (18) becomes an
equality and a Neimark-Sacker bifurcation occurs.

As is well known bifurcations may be of both super-
critical and subcritical nature. If a fixed point will undergo
a supercritical bifurcation it means that an eigenvalue 𝜆

must cross the unit circle outwards at instability and in

the Neimark-Sacker case that an attracting (stable) quasiperi-
odic orbit restricted on an invariant curve is created beyond
the threshold.

Now, considering (1) and (2) we increase 𝑅
0
through an

increase of 𝐹. Thus the bifurcation takes place at 𝐹 = 𝐹
𝑇

=

𝜇2 exp((𝜇1 + 𝜇
2
)/(𝜇
1
𝜇
2
)). Moreover, the eigenvalues may be

expressed as

𝜆 =
1
2
{2−𝜇1 −𝜇2

±√4 [(1 − 𝜇1) (1 − 𝜇2) − 𝜇1𝜇2 (1 − 𝛽1𝑥
∗

2 )] − (2 − 𝜇1 − 𝜇2)
2
𝑖}

(19)

and an easy computation shows that

𝑑

𝑑𝐹
|𝜆| =

1
2𝜇1

𝑒
−(𝜇1+𝜇2)/𝜇1𝜇2

> 0 (20)

(evaluated at𝐹 = 𝐹
𝑇
)which proves that𝜆 leaves the unit circle

at threshold.
In order to show that the quasiperiodic orbit is stable

when 𝐹 > 𝐹
𝑇
, |𝐹 − 𝐹𝑇| small, we first write (1) and (2)

on complex form and then through a series of near identity
transformations (normal form calculations) formally express
it as

𝑧 󳨀→ 𝑧𝑒
𝑖𝜃0

(1+𝐹+𝑑 |𝑧|
2
) +𝑂 (|𝑧|

4
) (21)

(for details, cf. [18] or [19]) and the sign of 𝑎 = Re(𝑑)
will determine the nature of bifurcation, 𝑎 < 0 implies
supercritical, and 𝑎 > 0 implies subcritical.

Regarding (1) and (2) we may partly rest upon findings
obtained in [13] and express 𝑎 as

𝑎 = −
𝛽
2
1

16 (𝜇
1
+ 𝜇
2
)
{(2𝜇
1
𝜇
2
)
2

+ (𝜇1 +𝜇2) [(2𝜇1𝜇2 − (𝜇1 + 𝜇2))
2
−𝜇
1
𝜇
2
]}

(22)

which is negative whenever 𝛽
1
> 0, 0 < 𝜇1, 𝜇2 < 1. Conse-

quently, the bifurcation is supercritical.
In order to visualize the findings above we show in

Figure 1(a) an orbit which converges towards the stable
equilibrium (𝑥

∗

1 , 𝑥
∗

2 ), 𝑅0 < exp((𝜇
1
+ 𝜇
2
)/𝜇
1
𝜇
2
). Figure 1(b)

shows the situation after the supercritical bifurcation 𝑅0 >

exp((𝜇1 + 𝜇2)/𝜇1𝜇2). The dynamics is restricted to an attract-
ing invariant curve and on that curve (1) and (2) act as a circle
map which rotates points around the curve with an irrational
winding number. This scenario persists in a large 𝑅

0
interval

but eventually chaos is introduced when the curve starts to
break up. This is displayed in Figure 1(c).

(2)Next, assume𝛽1 = 𝛽2 = 𝛽 (same cannibalism pressure
on newborns and older immature individuals).

In this case

(𝑥
∗

1 , 𝑥
∗

2 ) = (
𝜇2
𝜇1

1
𝛽
ln𝐾,

1
𝛽
ln𝐾) , (23)

where 𝐾 = 𝜇1(𝑅0 − 1) + 1 and 𝑅0 = 𝐹/𝜇2 and we notice that
𝐾
󸀠
(𝑅0) > 0.
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Figure 1: (a) An orbit converging towards the stable equilibrium. Parameter values 𝛽
1
= 2, 𝛽

2
= 0, 𝐹 = 20, and 𝜇

1
= 𝜇
2
= 0.5. (b) A stable

attractor generated by (1) and (2). Parameter values as in (a) except 𝐹 = 30. (c) The invariant curve has broken up. Parameter values as in (a)
and (b) except 𝐹 = 107.

Stability criteria (16a) and (16b) reduce to 𝜇2 ln𝐾 > 0,
2(1 − 𝜇2) + 𝜇2 ln𝐾+ 2(1 − 𝜇1)𝐾

−1
> 0, respectively, and both

of them clearly hold. Criterion (16c) may be written as

𝜇2 ln𝐾+
1 − 𝜇1
𝐾

< 1+𝜇2. (24)

Obviously, 𝑅0 → 1+ implies that the left hand side of (24) is
less than the right hand side but as 𝑅

0
increases there must

exists a threshold where a (supercritical) Neimark-Sacker
bifurcation occurs. Thus, qualitatively, we have arrived at the
same situation as in the 𝛽1 ̸= 0, 𝛽2 = 0 case.

Beyond instability we observe quasiperiodic orbits
restricted to an invariant curve (cf. Figure 2(a)). As

we continue to increase 𝑅
0
the curve becomes kinked

(Figure 2(b)) and therefore not topologically equivalent
to a circle anymore. Eventually, the curve breaks up here
too. However, note that we use the same 𝐹 value when we
generated Figures 1(c) and 2(b). Hence, one may argue that if
both newborns and older immature individuals are exposed
to cannibalism stability properties are improved compared
to the case where 𝛽

2
= 0.

(3) The third case to discuss is 𝛽1 = 0, 𝛽2 ̸= 0
which biologically means that newborns are not exposed to
cannibalism from older mature relatives but must reach a
certain size (or age) to serve as food. From Theorem 1 we
cannot conclude that (1) and (2) are a permanent population
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Figure 2: (a) An invariant curve just beyond instability threshold. Parameter values 𝛽
1
= 𝛽
2
= 2, 𝜇

1
= 𝜇
2
= 0.5, and 𝐹 = 20. (b)The attractor

when 𝐹 = 107. Other parameter values as in (a).

model. There is simply too little density dependence. The
equilibrium point

(𝑥
∗

1 , 𝑥
∗

2 )

= (
𝜇2
𝜇1

1
𝛽2

ln(
1 − 𝜇1

1 − 𝜇1𝑅0
) ,

1
𝛽2

ln(
1 − 𝜇1

1 − 𝜇1𝑅0
))

(25)

exists and is stable only in the tiny interval 1 < 𝑅0 < 1/𝜇1.
If 𝑅0 > 1/𝜇1 the population goes to infinity. Note that such a
phenomenon is by no means unique. It has been detected in
other nonlinear models as well; see, for example, [20] or the
prey-predator model in [8]. When 𝑅0 > 1/𝜇1 models (1) and
(2) behave more or less as a linear model as accounted for in
[21]. Also, compare [22].

4. Cannibalism and Harvest

Let us now focus on the role of harvest and the combined
effect of cannibalism and harvest with respect to stability.
We concentrate on cases where (1) and (2) are a permanent
population model and we restrict the analysis to (i) ℎ

1
=

0, ℎ
2

̸= 0, (ii) ℎ
1

̸= 0, ℎ
2

= 0, and (iii) ℎ
1

= ℎ
2

=

ℎ ̸= 0. Under these restrictions we have computed equilibria
and stability conditions and the results are presented in
Table 1. The various stability criteria are found from (16c).
Our analysis shows that (16a) and (16b) always hold.

We start by considering the case of 𝛽1 ̸= 0 and 𝛽2 = 0
which is covered by (A), (B), and (C) in Table 1.

If 𝜇1 < 𝜇2 and ℎ
1

= 0 and ℎ
2

̸= 0 numerical
experiments show that the size of the total equilibrium
population at instability threshold is larger than in case of
no harvest. A natural way to implement this is to say that
an increase of harvest of the mature population leads to
better stability properties of the whole population (the size
of the mature equilibrium population is reduced while the
size of the immature population is increased). On the other
hand, ℎ

1
̸= 0 and ℎ

2
= 0 result in a smaller equilibrium

population at instability threshold compared to the case of
no harvest. Hence, harvest acts in a destabilizing fashion.
If we apply the same harvest pressure ℎ (ℎ = ℎ

1
=

ℎ
2
) on the subpopulations we experience that ℎ acts as a

weak destabilizing effect which means that the destabilizing
effect of harvesting fractions of the immature population is
somewhat stronger than the stabilizing effect of harvesting
fractions of the mature population.

Turning to the case 𝜇1 = 𝜇2 much of the same picture
emerges. An increase of ℎ

2
stabilizes while an increase of ℎ

1

destabilizes. The difference between this case and 𝜇1 < 𝜇2
is that the effect from harvesting the mature population now
dominates. Thus, an increase of ℎ turns out to be a (weak)
stabilizing effect. Finally, if 𝜇1 > 𝜇2 we find (as before) that
an increase of ℎ

1
acts in destabilizing fashion and that an

increase of ℎ
2
acts in stabilizing fashion.The combined effect

of ℎ
1
and ℎ

2
acts in a weak destabilizing way. Hence, the

overall conclusion from the cases discussed above is that an
increase of ℎ

1
is a destabilizing effect while an increase of

ℎ
2
tends to stabilize the dynamics. The effect of increasing ℎ

(ℎ = ℎ
1
= ℎ
2
) depends on 𝜇

1
and 𝜇

2
.

Let us now consider the cases where not only newborns
but also immature relatives are exposed to cannibalism from
the mature population. These cases are covered by (D), (E),
and (F) in Table 1. Assuming 𝜇1 < 𝜇2 we have by use of (D)
adjusted 𝐹 such that the dynamics in absence of harvest is
restricted to an invariant curve (numerical example, 𝜇

1
= 0.3,

𝜇
2
= 0.7, and 𝐹 = 23). Now, keeping ℎ

2
= 0, an increase of ℎ

1

makes the invariant curve disappear and we observe a weakly
attracting fixed point. The same qualitative picture emerges
bothwhen ℎ

1
= 0 andwe increase ℎ

2
and alsowhen ℎ

1
= ℎ
2
=

ℎ is increased.Thus, by use of (D), (E), and (F) and numerical
experiments we conclude that harvest acts in a stabilizing
fashion. Moreover, we experience the same situation under
the assumption 𝜇1 = 𝜇2. This is displayed in Figures 3(a)
and 3(b). In Figure 3(a) (no harvest) map (1) generates an
orbit restricted to an invariant curve. In Figure 3(b) where
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Figure 3: (a) An invariant curve generated by (1) and (2). Parameter values 𝜇
1
= 𝜇
2
= 0.5, 𝐹 = 20, and ℎ

1
= ℎ
2
= 0. (b) An attracting fixed

point. Parameter values as in (a) but ℎ
2
= 0.25.

ℎ
2

= 0.25 we see a weakly stable fixed point together with
some initial transients.

The final case to discuss is 𝜇1 > 𝜇2 and again, in the
absence of harvest, it is possible to obtain nonstationary
dynamics provided 𝐹 is sufficiently large. If ℎ

1
= 0 an

enlargement of ℎ
2
leads to a “larger radius” of the invariant

curve; hence we observe the same picture as earlier but the
population is located further away from the fixed point.
Consequently, it is natural to classify an increase of ℎ

2
as

a destabilizing factor. On the other hand, an increase of ℎ
1

(ℎ
2
= 0) acts in stabilizing fashion in the same way as in the

𝜇1 < 𝜇2 and 𝜇1 = 𝜇2 cases. The combined effect of increasing
both ℎ

1
and ℎ
2
turns out to be destabilizing (in a rather weak

fashion).

5. Summary and Discussion

By use of a stage-structured populationmodel, the purpose of
this paper has been to reveal the dynamical consequences of
cannibalism and the combined consequences of cannibalism
and harvest. Despite the fact that there are two stages only
(immature and mature) the parameter space is huge so some
care should be taken with respect of drawing too strong
conclusions.

Considering the effect of cannibalism alone, in the cases
𝛽1 ̸= 0, 𝛽2 = 0, or 𝛽 = 𝛽1 = 𝛽2, stability criteria are
given by (18) and (24), respectively. Here we may notice that
neither (18) nor (24) contains any cannibalism parameters
which means that the values of 𝛽

𝑖
contribute to the size of

the equilibrium population only, not to qualitative changes of
the dynamics. Nonstationary dynamics is achieved through
an enlargement of 𝑅

0
(or 𝐹). If only newborns are exposed to

cannibalism it is possible to generate nonstationary as well
as chaotic dynamics. When both 𝛽

𝑖
and 𝛽2 ̸= 0 the same

qualitative picture is established but this implies much larger
𝑅
0
values.Thus a natural interpretation is to say that themore

the immature population suffers from cannibalism, the better
the stability properties of the population as a whole are.

Now, assuming that the population is exposed to both
cannibalism and harvest, let us first comment on the situation

where 𝛽1 ̸= 0, 𝛽2 = 0. Then the value of 𝑅
0
and stability

conditions are given by (A), (B), and (C) in Table 1 and in
all cases (𝜇1 < 𝜇2, 𝜇1 = 𝜇2, 𝜇1 > 𝜇2) our finding is that an
increase of harvest ℎ

1
of the immature part of the population

acts in a destabilizing fashion while an enlargement of ℎ
2

improves stability properties. The effect which is the most
profound one depends on 𝜇1, 𝜇2.

If both newborns and older immature relatives are
exposed to cannibalism (𝛽 = 𝛽1 = 𝛽2 ̸= 0) stability criteria
and 𝑅

0
are given by (D), (E), and (F) in Table 1. As is shown,

the results obtained here are in many respects quite different
from the case 𝛽2 = 0. Now, 𝜇1 ≤ 𝜇2 implies an increase of
both ℎ

1
and ℎ

2
that act as stabilizing factors. If 𝜇1 > 𝜇2 then

an increase of ℎ
2
turns out to improve stability properties.

Thus, what these results show is that the impact of harvest
may act differently depending on which part of the immature
population is exposed to cannibalism.

It is tempting to compare findings above with results
obtained from analysis of age-structured Leslie matrix pop-
ulation models, that is, models on the form

𝑥1,𝑡+1 = (

𝑛

∑

𝑖=1
𝐹𝑒
−𝑥
𝑡

𝑥
𝑖,𝑡
)(1− ℎ1) ,

𝑥2,𝑡+1 = 𝑃1𝑥1,𝑡 (1− ℎ2) ,

.

.

.

𝑥
𝑛,𝑡+1 = 𝑃

𝑛−1𝑥𝑛−1,𝑡 (1− ℎ
𝑛
) .

(26)

Model (26) consists of n nonoverlapping age classes𝑥
1
, . . . , 𝑥

𝑛

and 𝑥
𝑡
= ∑𝑥

𝑖
is the total population. Moreover, 𝐹 and ℎ

𝑖

have the same meaning as in (1) and 𝑃
𝑖
, 0 < 𝑃

𝑖
≤ 1, are

the year to year survival probabilities. Observe that, in case
of 𝑛 large, individuals spend most of their lives as grownups.
In particular this is the case when the year to year survival
probabilities are close to unity. This corresponds to 𝜇

1
> 𝜇
2

in (1). (Indeed, if 𝜇
1
is large, then individuals spend only a

tiny part of their lives as juveniles and if 𝜇
2
is small then the
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“grownup part” is large.) Note that (1) and (26) rest upon
somewhat different prerequisites as accounted for in [22].

Now, considering (26), in the absence of harvest we find
that an increase of the number of age classes turns out
to be a stabilizing effect (cf. [23]). Harvest acts more and
more in destabilizing fashion as 𝑛 is increased, especially
when the survival probabilities become large. Hence, in the
interplay between increasing the number of age classes and
harvest the destabilizing effect of the latter turns out to be the
dominant one. Thus, in many respects, this is consistent with
the qualitative findings from (1) in the 𝜇

1
> 𝜇
2
case.
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