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Vertical patterns of early summer chlorophyll a (Chl a) concentration from the Indian Ocean are presented, as well as the variations
of depth and size-fractioned Chl a in the deep chlorophyll maximum (DCM). A total of 38 stations were investigated from 12 April
to 5 May 2011, with 8 discrete-depth samples (7 fixed and 1 variable at real DCM) measured at each station. Depth-integrated Chl
a concentration (>.Chl a) varied from 11.5 to 26.8 mg m~2, whereas Chl a content at DCM ranged from 0.17 to 0.57 yg L~! with
picophytoplankton (<3 ym) accounting for 82% to 93%. The DCM depth varied from 55.6 to 91 m and shoaled latitudinally to
northward. Moreover, our results indicated that the > Chl a could be underestimated by up to 9.3% with a routine sampling
protocol of collecting samples only at 7 fixed depths as the real DCM was missed. The underestimation was negatively correlated
to the DCM depth when it varied from 55.6 to 71.3m (r = —0.63, P < 0.05) but positively correlated when it ranged from 75.8
to 91 m (r = 0.68, P < 0.01). This indicates that in the Indian Ocean the greater the departure of the DCM from 75 m depth, the

greater the underestimation of integrated Chl a concentration that could occur if the real DCM is missed.

1. Introduction

Photosynthetic marine phytoplankton species play a pivotal
role in oceanic biological processes, producing particulate
and dissolved organic carbon [1]. Such photosynthetic
processes also reduce the partial pressure of CO; in surface
seawater and ultimately result in the drawdown of atmo-
spheric CO, [2]. In surface oceans, a series of environmental
factors are known to control the biomass and distribution
of phytoplankton. Light intensity influences phytoplankton
growth and productivity through driving or photoinhibiting
photosynthesis [3, 4], while vertical mixing affects carbon
fixation ability by balancing the damage and repair at high or
low light levels [5, 6]. The available trace metals (e.g., copper
and iron) also lead to variations in phytoplankton biomass or
size communities [7-9]. The temperature that often regulates

surface ocean stratification can reduce the exchange of
nutrients between deep nutritious water and surface water,
depressing nutrient status within the euphotic zone and
influencing species composition [10]. Changes in physico-
chemical environments (e.g., light, mixing, temperature, or
nutrients) would thus influence phytoplankton community
structure and alter their vertical distributions in the water
column [10, 11].

In pelagic oceans, the deep chlorophyll maximum
(DCM) that appears between the nutrient-depleted upper
and light-limited lower layers of the euphotic zone is
usually characterized by high phytoplankton biomass and
production [12-15]. Contributions of the DCM to integrated
chlorophyll a (Chl a) and primary production have been
estimated up to 90% and 30% of total [12, 13]. As a
result, many studies tend to focus on the DCM layer
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FIGURE 1: Map of the Indian Ocean, showing the sampling sites (solid circles) during the cruise dated from 12 April to 4 May, 2011.

in marine investigations, for example, in the South China
Sea [10, 16], Atlantic or Pacific Oceans [15, 17]. Regionally,
the Indian Ocean hosts a unique oceanographic process
caused by semiannually reversing monsoon winds [18—
20], leading to a great variation in vertical stability and
nutrients fluxes as well as depth of upper mixed layer (UML)
[21-23]. Corresponding to such changes in mixed layer
depth and nutrient regeneration, thickness and depth of
the DCM therein would be changed greatly [24, 25], as
well as phytoplankton community structure [15]. It is of
general interest to understand such biological characteristics
of the DCM; however, little has been documented in
the Indian Ocean [15]. In this study, we investigated the
vertical patterns of Chl a concentration in this tropical
region and looked into the size communities of the DCM
layer.

2. Materials and Methods

2.1. Study Area and Sampling Protocol. During a cruise dated
from 12 April to 4 May 2011, we measured the profiles of
chlorophyll a (Chl a) concentration in the Indian Ocean.
A total of 38 stations were settled at intervals of 55 to
110km along four transacts: transacts 1, 2 in latitude and
transacts 3, 4 in longitude (Figure 1). At each station, discrete
seawater samples were collected from 7 fixed depths (0 m,
25m, 50 m, 75m, 100 m, 150 m, and 200 m) with a Rosette
sampler fitted with 5 L Niskin Bottles and mounted on a Sea-
Bird Electronics CTD (SBE-911 plus, USA); this sampling
protocol is broadly used (e.g., [26, 27]). To vividly track the
variable deep chlorophyll 4 maximum (DCM), one more
water sample was taken from a depth of maximal fluores-
cence that was determined by a CTD-mounted fluorometer
(termed hereafter real DCM). All 8 collected samples were
treated within 10 min for determination of Chl a content and
phytoplankton species composition as described below.

2.2. Chl a Determination. To determine Chl a concentration,
800 mL seawater from each depth of each station was filtered
onto a Whatman GF/F glass fiber filter (25mm), which
was immediately wrapped in aluminum foil, frozen, and

stored at —20°C for later extraction and measurement.
The content of Chl a was measured fluorescently using a
Turner Design 10 fluorometer after a complete extraction
with 90% acetone (v/v) for 24 h in the dark at 4°C. Chl a
concentration was calculated according to Parsons et al.
[28]. For determination of picophytoplankton cells fraction
(<3pm), prefiltered (3 ym pore-size polycarbonate filter)
samples were filtered onto a Whatman GF/F filter, and the
measurement of Chl a was performed as described above.

2.3. Species Analyses. For phytoplankton species analyses,
the seawater sample was fixed with Lugol’s solution to a
final concentration of 1.5% [28]. After one-liter sample
was concentrated to 30 mL by settling for 24 h and gently
siphoning supernatant, identification and numeration of the
species were conducted under a regular microscope for a
whole 0.5 mL sample with Utermohl’s method [29].

2.4. Data Analysis. Chl a concentration of the water column
was integrated as [30]

Zcm:J

0

200
[Chla],

(1
where > Chla (mgm™2) is the depth-integrated Chl a
concentration, whereas [Chl a] is the Chl a concentration
(ugL™1) at one depth.

Underestimation (%) of the depth-integrated Chl a when
missing the real DCM was calculated as

(X Chla- 3’ Chla)
> Chla

Uest (%) = (2)

X 100%,

where Uest (%) is the underestimation of depth-integrated
Chl a due to the real DCM missing and > Chl a and 3. Chla
(mg m~2) are the depth-integrated Chl a calculated using the
Chl a density collected from 7 fixed and 1 variable depths
(i.e., real DCM) or just using that from 7 fixed depths (miss
the real DCM), respectively.

We combined data from transacts 1 and 2 together in
Figure 2 to more clearly show a latitudinal variation of
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FIGURE 2: Vertical patterns of chlorophyll a concentration (Chl
a, ugL™1) along the four transacts, showing the variations in the
latitudinal ((a) and (b)) and longitudinal ((c) and (d)) scales.
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Figure 3: Variability of the Chl a concentration (ugL™!), propor-
tion of picocells fraction (%) and depth (m) of the DCM: in latitude
((a) and (b)) and longitude ((c) and (d)).

Chl a. One-way analysis of variance (ANOVA) was used to
determine the significant differences among the estimated
parameters (P < 0.05); the correlation between variables
was established using a Kendall’s ¢-test with 95% confidence
band.

3. Results

Contours of Chl a for the four transacts in the Indian
Ocean throughout 12 April to 4 May 2011 are shown in
Figure 2. Chl a concentration displayed a drastic change
with increasing depth, with surface values being less than
0.10 ug L™! in most cases (except at stations 16 and 120); it
increased to a maximum of over 0.20 ugL™! at the DCM
and then decreased to less than 0.01 ugL™! at the bottom
(Figure 2). The most conspicuous feature relating to the
pattern of vertical Chl a distribution was the location of
the DCM, which varied greatly and shoaled latitudinally to
northward (Figures 2(a) and 2(b)).



Great variability of Chl a content at the DCM as well
as its depth was found for the study period (Figure 3).
Chl a varied greatly from 0.17 to 0.57 ugL™! at stations
I35 and 120, respectively, where picophytoplankton (<3 ym)
accounted for 82% and 93% of total Chl a (Figure 3).
Most of the microscopically identified phytoplankton groups
were dinoflagellates (e.g., Amphidinium carterae, Gyrodinium
spp., Gonyaulax spp. and Prorocentrum sp.) and diatoms
(e.g., Chaetoceros spp.), although the cyanobacterium Tri-
chodesmium hildebrandtii was numerically important at
some stations (e.g., 16 and 17). In particular, depth of the
DCM displayed a high variability in a latitudinal scale and
shoaled from 91 to 55.6 m to northward (Figures 3(a) and
3(b)); however, less variability was shown in a longitudinal
scale (Figures 3(c) and 3(d)). The DCM depth in transact
3 (equatorial water) was 79 *= 6.4 m, approximately 16 m
deeper than that of transact 4 (6°N water, 63 = 5.0m)
(Figures 3(c) and 3(d)).

Depth-integrated Chl a concentration (>.Chl a) ranged
from 11.5 to 26.8 mgm™ if including the real DCM at
stations 132 and 17, respectively (Figure 4(a)). Exclusion
of the real DCM caused 0.65% to 9.3% underestimation
of the > Chl a (Figure 4(b)) where the depths of DCM
were 75.8 m (110) and 91 m (I5), respectively. A significant
relationship was found when the underestimated > Chl a
was plotted against the DCM depth (Figure 4(b)), that is,
the underestimation was negatively correlated to the depth
when it varied from 55.6 to 71.3m (r = —0.63, P < 0.05)
and positively correlated when it ranged from 75.8 to 91 m
(r = 0.68, P < 0.01). This indicates that a greater departure of
the DCM from 75 m would cause a greater underestimation
of primary production if the real DCM is missed as seen in
previous investigations where samples were collected at only
7 fixed depths.

4. Discussion

In this paper, we present the vertical patterns of chlorophyll
a concentration in the Indian Ocean, where the DCM
depth shoaled latitudinally to northward. The routine depth-
integrated Chl a content as reported previously (e.g., [26,
27]) could be underestimated by up to 9.3% due to missing
of the real DCM. The underestimation was negatively
correlated to the DCM depth if it was less than 75 m but
positively correlated if it was over 75 m.

The DCM layers frequently appear in oligotrophic waters
of the Indian Ocean over the summer period, with a
high variability in depth and magnitude as shown here
(Figures 2—4) or in other studies [10, 15, 31]. Changes in
water turbulence, nutrient-flux, and light intensity could
be responsible for the changes in DCM location, thickness,
and Chl a content. In the investigated water, seasonal
transition of southwest to northeast monsoons underwent a
drastic vertical turbulence in the water column [20, 21, 23].
Dynamics of the mixed layer caused by winds, together with
eddies, influenced the supply of nutrients from below the
thermocline, powering the growth of phytoplankton and
ultimately affecting the DCM formation and maintenance
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(i.e., biomass and distribution) [15, 23, 31, 32]. Moreover,
nutrients, for example, biogenic silica, that are often species-
specific could be another cause for the presence of diatom
populations at the DCM [33]. Solar radiation that provides
energy for photosynthesis could also regulate phytoplankton
community structure and locations in the euphotic zone
[17, 34]. This might also explain the more shallow DCM
depth in the 6°N waters compared to equatorial waters in
the Indian Ocean (Figures 3(c) and 3(d)), as well as its
latitudinal shoaling to northward during the early summer
period (Figures 3(a) and 3(b)).

The proportion of small picophytoplankton markedly
decreased with the DCM depth (Figure 5). Solar irradiation
was known to be lower at the DCM with much more
short-waveband blue light [35]; only larger phytoplankton
cells can utilize short-waveband energy for photosynthesis
[4, 36]. Growth of smaller cells at this layer might thus be
inferior to their larger counterparts, leading to a negative
correlation of pico-cells in proportion to the DCM depth
(r = —0.53, P < 0.01). On the other hand, the nutrient
status in the DCM was usually pulsed-supplied by vertical
mixing [32, 37]; therefore, the growth of larger plankton cells
could be superior to smaller ones due to their possession of
nutrient storage vacuoles [38], resulting in the higher pro-
portion in deeper DCM (Figure 5). Atmospheric conditions
such as cloudiness could be another cause for the variation
of DCM locations [22]; however, sunny days prevailed over
the investigated waters during the study period, and the
cloudiness would thus have had little effect on the locations
of DCM.

Depth, thickness, and Chl a content of the DCM often
change greatly in the spatial (Figures 2 and 3) or temporal
scales [15, 16, 21] due to the changes in environmental
factors [31, 34, 37]. Considering that the DCM contributes
to a large portion of total primary production [12, 13],
the depth-integrated biomass of phytoplankton tended to be
underestimated if missing the real DCM using the routine
sampling protocol of collecting samples at only several fixed
depths. According to our results, the depth-integrated Chl a
could be underestimated by up to 9.3% due to missing the
real DCM in the Indian Ocean; it could be higher when the
DCM location departs more from 75 m depth.
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