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Suppose that T � Tri(A,M,B) is a 2-torsion free triangular ring, and S � (A, B) | AB �{ 0, A, B ∈ T} 􏽓

(A, X) | A ∈ T, X ∈ P, Q{ }{ }, where P is the standard idempotent of T and Q � I − P. Let δ: T⟶ T be a mapping (not
necessarily additive) satisfying, (A, B) ∈ S⇒ δ(A ∘B) � A ∘ δ(B) + δ(A) ∘B, where A ∘B � AB + BA is the Jordan product of T.
We obtain various equivalent conditions for δ, specifcally, we show that δ is an additive derivation. Our result generalizes various
results in these directions for triangular rings. As an application, δ on nest algebras are determined.

1. Introduction

Let R be a ring and δ: R⟶R be a mapping (not nec-
essarily additive). δ is called a derivable map if δ(ab) �

aδ(b) + δ(a)b for all a, b ∈R. Moreover, δ is called a Jordan
derivable map if δ(a ∘ b) � a ∘ δ(b) + δ(a) ∘ b for all a, b ∈R,
where a ∘ b � ab + ba is the Jordan product of R. An ad-
ditive derivable mapping δ is called additive derivation. If δ
is an additive Jordan derivable mapping, then it is called an
additive Jordan derivation. Tese defned maps are im-
portant classes of maps on the rings and there has beenmany
studies on them from diferent directions, and here we
mention some of these study routes which is interesting for
us.

One of the interesting issues is the study of relationship
between the additive and multiplicative structure of maps on
the rings. In this line of investigation, frst Martinadle [1]
considered some conditions on a ring R, proved that any
multiplicative bijection map of R is additive. Ten the
question, what maps on a ring R are automatically additive
was considered and diferent results were obtained in this
line, we refer the reader to [2, 3] and references therein for
more details. Especially, it has been proved on special rings
that every derivable map or Jordan derivable map is additive,
for instance, see [4–6].

Obviously, any additive derivation is an additive Jordan
derivation, but the converse may not hold in general (see
[7]). Another interesting study routes on derivations and
Jordan derivations is: on what rings (algebras) is any (linear)
additive Jordan derivation is (linear) additive derivation?
Te frst result in this way was obtained by Herstein [8],
which proved that on 2-torsion-free prime rings, any ad-
ditive Jordan derivation is an additive derivation. Later in
[9], this result was generalized for 2-torsion free semiprime
rings, and after that, this result was proved for other various
rings (algebras) or the structure of additive (linear) Jordan
derivations on some rings characterized in terms of additive
(linear) derivations (see [7, 10–13] and references therein).

Another way to study derivable maps (additive deriva-
tions) and Jordan derivable maps (additive Jordan deriva-
tions) is to study them according to local conditions. One of
these local conditions is studying the maps which operate on
special pairs of elements of a ringR like special maps. More
precisely, assume that S⊆R × R, in this line of investi-
gation, considering those maps that for all (a, b) ∈ S,
operate like derivable maps (additive derivations) or Jordan
derivable maps (additive Jordan derivations). First Brešar in
[14] proved that if δ is an additive map on a unital ring R,
that contains a nontrivial idempotent and aδ(b) + δ(a)b � 0
for all a, b ∈R with ab � 0, then δ(a) � τ(a) + ca, where τ
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is an additive derivation onR and c belongs to the center of
R. Following this line of investigation, derivations and
Jordan derivations (additive or nonadditive) at zero prod-
ucts or another special pairs of several rings or algebras has
been studied and considerable results has been achieved. For
instance, see [12, 15–21] and the references therein.

In the research lines mentioned above, some consider-
able results on prime rings or semiprime rings have been
achieved. Of course this study routes have been established
on some non-semiprime rings or operator algebras (espe-
cially nest algebras), of which we can mention triangular
rings as one of the most important ones. In the following we
introduce this ring and hint at some results on it. LetA and
B be unital rings and M be a unital (A,B)-bimodule,
which is faithful as a left A-module and also as a right B
-module. Te triangular ring Tri (A,M,B) is as follows:

Tri(A,M,B) �
a m

0 b
􏼢 􏼣: a ∈ A, m ∈M, b ∈B􏼨 􏼩,

(1)

under the usual matrix operations. Tri (A,M,B) is a unital

ring with identity I �
1A 0
0 1B

􏼢 􏼣, where 1A, 1B are identities

ofA andB, respectively. Tis ring contains important class of
rings like upper triangular block matrices over a unital ringR,
especially the ring of upper triangular matrices over a unital

ring R, some nest algebras on Banach spaces, especially nest
algebras on Hilbert spaces. Note that, if A and B be unital
algebras over a commutative ringC andM be a unital faithful
(A,B)-bimodule, then Tri (A,M,B) is an algebra over C.
Zhang in [22] proved that any linear Jordan derivation on a 2-
torsion free triangular algebra Tri (A,M,B) is a linear
derivation and in [18] this result is obtained for additive Jordan
derivations on 2-torsion free triangular rings. In [23] has been
shown that any Jordan drivable map on a 2-torsion free tri-
angular algebra is an additive derivation, which is a general-
ization of result of [22]. In [24] it has been proved that a linear
map δ on Tn(C) (all n × n upper triangular matrices over the
complex feld C), satisfying the following equation:

A, B ∈ Tn(C), AB � 0⇒ δ(A ∘B)

� δ(A)
∘
B + A

∘ δ(B),
(2)

is a linear derivation. In [21] it has been shown that a
mapping δ (not necessarily additive) on Tn(F) (F is a feld
and n≥ 3) satisfying the following equation:

A, B ∈ Tn(F), AB � 0⇒ δ(AB)

� δ(A)B + Aδ(B),
(3)

is an additive derivation. Let T � Tri(A,M,B) be a tri-
angular ring and consider the subset S of T × T as follows:

S � (A, B) | AB � 0, A, B ∈ T{ }∪ (A, X) | A ∈ T, X ∈ P, Q{ }{ }, (4)

whereP �
1A 0
0 0􏼢 􏼣 is the standard idempotent in T and

Q � I − P. In this paper we consider a mapping δ (not
necessarily additive) on T which satisfes the following
condition:

(A, B) ∈ S⇒ δ(A ∘B) � A
∘ δ(B) + δ(A)

∘
B, (5)

and prove that if T is 2-torsion free, then δ is an additive
derivation. Note that if the mapping δ on T is derivable,
Jordan derivable, additive Jordan derivation or δ is an ad-
ditive map on T satisfying

A, B ∈ T, AB � 0⇒ δ(A ∘B)

� A
∘ δ(B) + δ(A)

∘
B,

(6)

then δ satisfes (49) (see proof of Teorem 1). So our result
generalizes various results in these directions for triangular
rings, especially each of the results of [21, 23], Teorem 4.2
(for G � 0), [22]. Next theorem is the main result of our
paper.

Theorem 1. Suppose that T � Tri(A,M,B) is a 2-torsion
free triangular ring and δ: T⟶ T is a mapping (not
necessarily additive). Let S⊆T × T be as follows:

S � (A, B) | AB � 0, A, B ∈ T{ }∪ (A, X) | A ∈ T, X ∈ P, Q{ }{ }, (7)

where P ∈ T is the standard idempotent and Q � I − P. Ten
the following are equivalent:

(i) (A, B) ∈ S⇒ δ(A ∘B) � A ∘ δ(B) + δ(A) ∘B;
(ii) A, B ∈ T⇒ δ(A ∘B) � A ∘ δ(B) + δ(A) ∘B;
(iii) δ is additive and A, B ∈ T, AB � 0⇒ δ

(A°B) � A ∘ δ(B) + δ(A) ∘B;
(iv) δ is an additive Jordan derivation;
(v) δ is a derivable map;

(vi) δ is an additive derivation.

Te proof of this theorem will be given in Section 3. In
the above theorem, we have considered the 2-torsion free
condition. Te necessity of this condition can be a question
of interest.

Let x be a fxed element of the ring R. Te mapping
Ix: R⟶R defned by Ix(a) � ax − xa(a ∈R) is an
additive derivation which is called inner derivation. On nest
algebras, derivations can be characterized in terms of inner
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derivations. According to this point, Teorem 1 can be
obtained in more specifc on nest algebras. We present this
result in Section 2 as an application of Teorem 1 on nest
algebras.

2. Application to Nest Algebras

Let X be a (real or complex) Banach space, let B(X) be the
Banach algebra of all bounded linear operators onX. A nest
N on X is a chain of closed (under norm topology) sub-
spaces of X with 0{ } and X in N such that for every family
Nα􏼈 􏼉 of elements of N, both ∩Nα and ∨Nα (closed linear
span of Nα􏼈 􏼉 ) belong to N. Te nest algebra associated to
the nest N, denoted by alg N is as follows:

algN � T ∈B(X): T(N) ⊆N for anyN ∈N􏼈 􏼉. (8)

We say thatN is nontrivial wheneverN≠ 0{ },X{ }. IfN
is trivial, then alg N � B(X).

Remark 1. LetN is a nontrivial nest onX and N ∈N with
N≠ 0{ } and N≠X, is complemented. Ten there exists an
idempotent P ∈ algN such that ranP � N, and the nest

algebra alg N has a representation as the following trian-
gular algebra.

algN � Tri(PalgNP, PalgN(I − P), (I − P)algN(I − P)),

(9)

where I is the identity operator. PalgNP and
(I − P)algN(I − P) are unital algebras with unities P and
I − P, respectively, and PalgN(I − P) is a faithful unital
(PalgNP, (I − P)algN(I − P))-bimodule.

Since any closed (under norm topology) subspace of a
Hilbert space is complemented,it follows that for any
nontrivial nest N on a Hilbert space H, each N ∈N with
N≠ 0{ } and N≠H, is complemented.Tus, every nontrivial
nest algebra on a Hilbert space satisfes the conclusion in
Remark 1.

We have the following result on nest algebras.

Theorem 2. LetN be a nest on a Banach spaceX, and there
exists a nontrivial element N inN which is complemented in
X. Suppose that δ: algN⟶ algN is a mapping (not nec-
essarily additive), and S⊆ algN × algN is as follows:

S � (A, B) | AB � 0, A, B ∈ algN􏼈 􏼉∪ (A, X) | A ∈ algN, X ∈ P, Q{ }􏼈 􏼉, (10)

where P ∈ algN is the idempotent with ranP � N and Q �

I − P. Ten the following are equivalent:

(i) (A, B) ∈ S⇒ δ(A ∘B) � A ∘ δ(B) + δ(A) ∘B;
(ii) (A, B) ∈ S⇒ δ(A ∘B) � A ∘ δ(B) + δ(A) ∘B;
(iii) δ is additive and A, B ∈ algN, AB � 0⇒ δ(A ∘B) �

A ∘ δ(B) + δ(A) ∘B;
(iv) δ is an additive Jordan derivation;
(v) δ is a derivable map;
(vi) δ is an additive derivation.

Suppose, further, that X is an infnite-dimensional
Banach space. Ten the above conditions are also
equivalent to:

(vii) δ is an inner derivation.

Proof. From Remark 1, algN is a triangular algebra, and all
the assumptions ofTeorem 1 hold. So all cases (i) to (vi) are
equal. IfX is an infnite-dimensional Banach space, then by
[25] every additive derivation of alg N is linear. From [26],
Teorem 2 any linear derivation of a nest algebra on a
Banach space is continuous and by [27] all continuous linear
derivations of a nest algebra on a Banach space are inner
derivations (see also [28], Teorem 2.3). Given this, it is
proved that if X is an infnite-dimensional Banach space,
condition (vii) is equivalent to condition (vi). Te proof is
complete. □

By Teorem 2, we have the following corollary.

Corollary 1. LetN be a nontrivial nest on a Hilbert spaceH.
Suppose that δ: algN⟶ algN is a mapping (not neces-
sarily additive), and S⊆ algN × algN is as follows

S � (A, B) | AB � 0, A, B ∈ algN􏼈 􏼉∪ (A, X) | A ∈ algN, X ∈ P, Q{ }􏼈 􏼉, (11)

where P ∈ algN is the is the orthogonal projection on a
nontrivial element N ∈N, and Q � I − P. Ten the following
are equivalent:

(i) (A, B) ∈ S⇒ δ(A ∘B) � A ∘ δ(B) + δ(A) ∘B;
(ii) A, B ∈ algN⇒ δ(A ∘B) � A ∘ δ(B) + δ(A) ∘B;

(iii) δ is additive and A, B ∈ algN, AB � 0⇒ δ(A ∘B) �

A ∘ δ(B) + δ(A) ∘B;
(iv) δ is an additive Jordan derivation;
(v) δ is a derivable map;
(vi) δ is an additive derivation.
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Suppose, further, that H is an infnite-dimensional
Banach space. Ten the above conditions are also
equivalent to:

(vii) δ is an inner derivation.

Note that if H is a Hilbert space, and dimH<∞, then
there exist additive derivations of the nest algebra which are
not inner (see [29]).

3. Proof of Theorem 1

In this section weassume that T � Tri(A,M,B) is a 2-

torsion free triangular ring, and P �
1A 0
0 0􏼢 􏼣 is the standard

idempotent of T and Q � I − P �
0 0
0 1B

􏼢 􏼣 which is also an
idempotent. Also we put

T11 �
a 0
0 0

􏼢 􏼣 | a ∈ A􏼨 􏼩,

T12 �
0 m

0 0
􏼢 􏼣 | m ∈M􏼨 􏼩,

T22 �
0 0
0 b

􏼢 􏼣 | b ∈B􏼨 􏼩.

(12)

It is obvious that T � T11 ⊕T12 ⊕T22 and for any
A ∈ T we have

A � PAP + PAQ + QAQ, QAP � 0. (13)

Proof of Teorem 1:
Te following statements are clear: (vi)⇒ (i), (vi)⇒ (ii)

, (vi)⇒ (iii), (vi)⇒ (iv), (vi)⇒ (v), (ii)⇒ (i) and
(iv)⇒ (i). We just prove the next items and so that the proof
is complete.

(iii)⇒ (i): It is enough to prove that for all A ∈ T we
have

δ(A ∘P) � A
∘ δ(P) + δ(A)

∘
P,

δ(A ∘Q) � A
∘ δ(Q) + δ(A)

∘
Q.

(14)

Defne the additive mapping τ: T⟶ T by
τ(A) � δ(A) − Iδ(P)(A). Given that Iδ(P) is an additive
derivation, it is easily checked that

A, B ∈ T, AB � 0⇒ τ(A ∘B)

� A
∘ τ(B) + τ(A)

∘
B.

(15)

Also, Pτ(P)Q � 0.
Since PQ � QP � 0, thus

0 � τ(P ∘Q)

� τ(P) ∘Q + P ∘ τ(Q).
(16)

Multiplying both sides of (16) by Q, we arrive at
2Qτ(P)Q � 0, and hence Qτ(P)Q � 0. Since (PAQ)P � 0
for all A ∈ T, it follows that

τ(PAQ) � τ((PAQ) ∘P)

� τ(PAQ) ∘P +(PAQ) ∘ τ(P).
(17)

By (17) and the fact that Qτ(P)Q � 0 we get

τ(PAQ) � τ(P)PAQ + P ∘ τ(PAQ). (18)

Multiplying both sides of (18) by P, we conclude that
Pτ(PAQ)P � 0. Now multiplying (18) from the left by P, it
yields Pτ(P)PAQ � 0 for all A ∈ T. Since M is faithful as a
left A-module, we conclude that Pτ(P)P � 0. By using the
results obtained, τ(P) � 0. In view of (16) and the fact that
τ(P) � 0, we get P ∘ τ(Q) � 0, thus τ(Q) � Qτ(Q)Q. Given
thatQ(PAQ) � 0 and with the same argument above, we can
prove that Qτ(Q)Q � 0 and hence τ(Q) � 0.

For all A ∈ T we have (PAP)Q � Q(PAP) � 0, and
hence

0 � τ((PAP) ∘Q)

� τ(PAP) ∘Q + PAP ∘ τ(Q).
(19)

It follows from τ(Q) � 0 that τ(PAP) ∘Q � 0 for all
A ∈ T. Tus

τ(PAP) ∘P + PAP ∘ τ(P) � τ(PAP) ∘P

� τ(PAP) ∘P + τ(PAP) ∘Q

� 2τ(PAP)

� τ((PAP) ∘P),

(20)

for all A ∈ T. Now according to the results we have

τ(A ∘P) � τ((PAP) ∘P) + τ((PAQ) ∘P) + τ((QAQ) ∘P)

� τ(PAP) ∘P + PAP ∘ τ(P)

+ τ(PAQ) ∘P + PAQ
∘ τ(P)

+ τ(QAQ) ∘P + QAQ
∘ τ(P)

� τ(A)
∘
P + A

∘ τ(P),

(21)

for all A ∈ T. By a similar argument as given above, we can
prove that

τ(A ∘Q) � τ(A)
∘
Q + A

∘ τ(Q), (22)

for all A ∈ T. Since Iδ(P) is an additive derivation, the
condition (i) is obtained for δ.

(v)⇒ (i): Since δ is derivable, so

δ(0) � δ(0)0 + 0δ(0), (23)

and therefore for all A, B ∈ T with AB � 0, we have

0 � δ(AB)

� δ(A)B + Aδ(B),

δ(BA) � δ(B)A + Bδ(A).

(24)

Tus
δ(A ∘B) � δ(BA)

� δ(AB) + δ(BA)

� δ(A)
∘
B + A

∘ δ(B).

(25)

Defne τ: T⟶ T by τ(A) � δ(A) − Iδ(P)(A). So that
τ is a derivable map and Pτ(P)Q � 0. It follows from τ(P) �

τ(P2) � τ(P)P + Pτ(P) that Pτ(P)P � 0 and Qτ(P)Q � 0.
Hence τ(P) � 0. Since τ is derivable, then τ(0) � 0 and
τ(I) � 0. So τ(Q) � 0.
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For all A ∈ T, we have

τ(PAQ) � τ(P)PAQ + Pτ(PAQ)

� Pτ(PAQ),
(26)

so Qτ(PAQ)Q � 0. Also

τ(PAQ) � τ(PAQ)Q + PAQτ(Q)

� τ(PAQ)Q,
(27)

thus Pτ(PAQ)P � 0. Terefore

τ(PAQ) � Pτ(PAQ)Q, (28)

for all A ∈ T. Further

τ(PAQ) � τ((P + PAQ)Q)

� τ(P + PAQ)Q +(P + PAQ)τ(Q)

� τ(P + PAQ)Q,

0 � τ(P)

� τ((P + PAQ)P)

� τ(P + PAQ)P +(P + PAQ)τ(P)

� τ(P + PAQ)P.

(29)

By adding two recent statements, we arrive at the fol-
lowing equation:

τ(P + PAQ) � τ(PAQ), (30)

for all A ∈ T.
So for all A, B ∈ T, we have

τ(PAQ + PBQ) � τ((P + PAQ)(PBQ + Q))

� τ(P + PAQ)(PBQ + Q) +(P + PAQ)τ(PBQ + Q)

� τ(PAQ)(PBQ + Q) +(P + PAQ)τ(PBQ).

(31)

From the above equality and (28) we fnd that

τ(PAQ + PBQ) � τ(PAQ) + τ(PBQ), (32)

for all A, B ∈ T.
We have

0 � τ((PAP)Q)

� τ(PAP)Q +(PAP)τ(Q)

� τ(PAP)Q,

(33)

so that

τ(PAP) � Pτ(PAP)P, (34)

for all A ∈ T.
It follows from (32) that

τ((PAP + PBP)PCQ) � τ(PAPCQ + PBPCQ)

� τ(PAPCQ) + τ(PBPCQ)

� τ(PAP)PCQ + PAPτ(PCQ)

+ τ(PBP)PCQ + PBPτ(PCQ).

(35)

On the other hand

τ((PAP + PBP)PCQ) � τ(PAP + PBP)PCQ +(PAP + PBP)τ(PCQ). (36)

Comparing recent two statements we get

[τ(PAP + PBP) − τ(PAP) − τ(PBP)]PCQ � 0, (37)

for all A, B, C ∈ T. From the above statement, (34) and
faithfulness of M as a left A-module, we conclude that

τ(PAP + PBP) � τ(PAP) + τ(PBP), (38)

for all A, B ∈ T.
By (38), we have

τ(A ∘P)P − τ(AP)P − τ(PA)P � τ((A ∘P)P) − A
∘
Pτ(P)

− τ(AP) + APτ(P) − τ(PAP) + PAτ(P)

� τ((2PAP) − τ(PAP)) − τ(PAP)

� 0,

(39)

for all A ∈ T. Beside
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τ(A ∘P)Q − τ(AP)Q − τ(PA)Q � τ((A ∘P)Q) − (A ∘P)τ(Q)

+ APτ(Q) − τ(PAQ) + PAτ(Q) � 0.

(40)

By adding two recent statements, we obtain

τ(A ∘P) � τ(AP) + τ(PA), (41)

for all A ∈ T. Now by the above identity and the fact that τ is
a derivable map, we arrive at

τ(A ∘P) � τ(A) ∘P + A ∘ τ(P), (42)

for all A ∈ T. According to this statement and that Iδ(P) is a
derivation, we conclude that

δ(A ∘P) � δ(A) ∘P + A ∘ δ(P), (43)

for all A ∈ T. By the simillar argument as above, we can
prove that

δ(A ∘Q) � δ(A) ∘Q + A ∘ δ(Q), (44)

for all A ∈ T. Terefore δ satisfes (i).
(i)⇒ (vi): Defne the mapping τ: T⟶ T by τ(A) �

δ(A) − Iδ(P)(A) and easily can be seen that τ satisfes

(A, B) ∈ S⇒ τ(A ∘B) � τ(A) ∘B + A ∘ τ(B). (45)

Also Pτ(P)Q � 0.
We prove that τ is an additive derivation through the

following steps.

Step 1. τ(0) � 0.

Proof. Since 0 ∘ 0 � 0 then

τ(0) � τ(0) ∘ 0 + τ(0) ∘ 0

� 0.
(46)

□

Step 2. For all A ∈ T

τ(PAQ) � Pτ(PAQ)Q. (47)

Proof. For any A ∈ T we have (PAQ, P) ∈ S. So that

%

τ(PAQ) � τ((PAQ) ∘P)

� τ(PAQ) ∘P + PAQ
∘ τ(P)

� τ(PAQ)P + Pτ(PAQ) + PAQτ(P) + τ(P)PAQ.

(48)

If we multiplying both sides of (48) by P, we arrive
at Pτ(PAQ)P � 0 and if we multiplying both sides of (48)
by Q, we obtain Qτ(PAQ)Q � 0. Terefore τ(PAQ) �

Pτ(PAQ)Q for all A ∈ T. □

Step 3. τ(P) � 0 and τ(Q) � 0.

Proof. Since (Q, P) ∈ S, it follows that

0 � τ(Q ∘P)

� τ(Q) ∘P + Q ∘ τ(P).
(49)

So

τ(Q)P + Pτ(Q) + Qτ(P) + τ(P)Q � 0. (50)

By multiplying both sides of (50) by Q, we have
Qτ(P)Q � 0. Now multiplying (50) from the left by P and
from the right by Q, we see that Pτ(P)PAQ � 0 for allA ∈ T
. Faithfulness of M implies that Pτ(P)P � 0. By the results
obtained and that Pτ(P)Q � 0, we conclude that τ(P) � 0.
From this result and (50), we have τ(Q)P + Pτ(Q) � 0 and
so Pτ(Q)P � 0 and Pτ(Q)Q � 0. Since for all A ∈ T,
(Q, PAQ) ∈ S, so we have

τ(PAQ) � τ(Q ∘PAQ)

� τ(Q) ∘ (PAQ) + Q ∘ τ(PAQ).
(51)

Multiplying both sides of the above identity, we arrive at
PAQτ(Q)Q � 0, for all A ∈ T. By faithfulness ofM, we have
Qτ(Q)Q � 0, so τ(Q) � 0. □

Step 4. For all A ∈ T

τ(PAP) � Pτ(PAP)P, τ(QAQ) � Qτ(QAQ)Q. (52)

Proof. Since (PAP, Q) ∈ S for all A ∈ T, from Step 3, we
have

0 � τ((PAP) ∘Q) � τ(PAP) ∘Q + PAP ∘ τ(Q)

� τ(PAP)Q + Qτ(PAP).
(53)

Hence Qτ(PAP)Q � 0 and Pτ(PAP)Q � 0. So

τ(PAP) � Pτ(PAP)P, (54)

for all A ∈ T. Given that (QAQ, P) ∈ S for all A ∈ T, using
Step 3 and same argument as above, we can prove that

τ(QAQ) � Qτ(QAQ)Q, (55)

for all A ∈ T. □

Step 5. For all A, B ∈ T

Qτ(PAP + PBQ)Q � 0,

Pτ(PAQ + QBQ)P � 0.
(56)

Proof. Since (Q, PAP + PBQ) ∈ S and (PAQ + QBQ, P) ∈
S, for all A, B ∈ T, from Step 3 we obtain

τ(PBQ) � τ(Q ∘ (PAP + PBQ))

� Qτ(PAP + PBQ) + τ(PAP + PBQ)Q,

τ(PAQ) � τ((PAQ + QBQ) ∘P)

� τ(PAQ + QBQ)P + Pτ(PAQ + QBQ).

(57)
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In the above, multiplying both sides of frst statement by
Q and multiplying both sides of second statement by P and
according to Step 2, the desired result is obtained. □

Step 6. For all A, B ∈ T

τ(PAPBQ) � τ(PAP)PBQ + PAPτ(PBQ),

τ(PAQBQ) � τ(PAQ)QBQ + PAQτ(QBQ).
(58)

Proof. Since (PBQ, PAP) ∈ S for all A, B ∈ T, so that

τ(PAPBQ) � τ((PBQ) ∘ (PAP))

� τ(PBQ)PAP + PAPτ(PBQ)

+ PBQτ(PAP) + τ(PAP)PBQ.

(59)

From Steps 2 and 4, we fnd that τ(PBQ)P � 0 and
Qτ(PAP) � 0, hence

τ(PAPBQ) � τ(PAP)PBQ + PAPτ(PBQ), (60)

for all A, B ∈ T.
Since (QBQ, PAQ) ∈ S for all A, B ∈ T, from Steps 2, 4

and similar argument as above, we conclude that

τ(PAQBQ) � τ(PAQ)QBQ + PAQτ(QBQ), (61)

for all A, B ∈ T. □

Step 7. For all A, B ∈ T

τ(PAPBP) � τ(PAP)PBP + PAPτ(PBP),

τ(QAQBQ) � τ(QAQ)QBQ + QAQτ(QBQ).
(62)

Proof. According to Step 6, for all A, B ∈ T we have

τ(PAPBPCQ) � τ(PAPBP)PCQ + PAPBPτ(PCQ). (63)

On the other hand

τ(PAPBPCQ) � PAPτ(PBPCQ) + τ(PAP)PBPCQ

� PAPτ(PBP)PCQ + PAPBPτ(PCQ)

+ τ(PAP)PBPCQ.

(64)

Comparing above statements and according to Step 4, we
get

P[τ(PAPBP) − τ(PAP)PBP − PAPτ(PBP)]PCQ � 0.

(65)

Now by the faithfulness of M, we have

P[τ(PAPBP) − τ(PAP)PBP − PAPτ(PBP)]P � 0. (66)

So

[τ(PAPBP) − τ(PAP)PBP − PAPτ(PBP)]P � 0, (67)

for all A, B ∈ T. It follows from Step 4 that

[τ(PAPBP) − τ(PAP)PBP − PAPτ(PBP)]Q � 0, (68)

for all A, B ∈ T. By adding two recent statements we arrive
at

τ(PAPBP) � τ(PAP)PBP + PAPτ(PBP), (69)

for all A, B ∈ T. Using Steps 4, 6 and similar arguments as
above, we can show that

τ(QAQBQ) � τ(QAQ)QBQ + QAQτ(QBQ), (70)

for all A, B ∈ T. □

Step 8. For all A, B ∈ T

τ(PAP + PBQ) � τ(PAP) + τ(PBQ),

τ(PAQ + QBQ) � τ(PAQ) + τ(QBQ).
(71)

Proof. For all A, B ∈ T we have (PCQ, PAP + PBQ) ∈ S.
So

τ(PCQ ∘ (PAP + PBQ)) � τ(PCQ) ∘ (PAP + PBQ) + PCQ ∘ τ(PAP + PBQ). (72)

From Step 2, we get

τ(PCQ ∘ (PAP + PBQ)) � PAPτ(PCQ) + PCQτ(PAP + PBQ) + τ(PAP + PBQ)PCQ. (73)

Beside by Step 6, we have
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τ(PCQ ∘ (PAP + PBQ)) � τ(PAPCQ)

� τ(PAP)PCQ + PAPτ(PCQ).
(74)

Comparing two recent statements and multiplying
outcome relation from the left by P and from the right by Q,
and using Step 5, we arrive at

Pτ(PAP + PBQ)PCQ � τ(PAP)PCQ, (75)

for all A, B ∈ T. By faithfulness of M, we conclude that

Pτ(PAP + PBQ)P � Pτ(PAP)P. (76)

From the above statement, Steps 4 and 5, we obtain

τ(PAP + PBQ) − τ(PAP) � P[τ(PAP + PBQ) − τ(PAP)]Q.

(77)

So that

τ(PAP + PBQ) − τ(PAP) � [τ(PAP + PBQ) − τ(PAP)]°Q

� τ(PAP + PBQ)°Q,
(78)

for all A, B ∈ T. Since (Q, PAP + PBQ) ∈ S for all
A, B ∈ T, we have

τ(PBQ) � τ Q°(PAP + PBQ)( 􏼁

� τ(Q)°(PAP + PBQ) + Q°τ(PAP + PBQ)

� Q°τ(PAP + PBQ).

(79)

Comparing the above statements, we get

τ(PAP + PBQ) � τ(PAP) + τ(PBQ), (80)

for all A, B ∈ T.
Since (PAQ + QBQ, PCQ) ∈ S and (PAQ + QBQ,

P) ∈ S for all A, B ∈ T, by the same computation as above,
we arrive at

τ(PAQ + QBQ) � τ(PAQ) + τ(QBQ), (81)

for all A, B ∈ T. □

Step 9. τ on T11, T12, T22 is additive.

Proof. For all A, B ∈ T, we have (PBQ + Q, PAQ + P) ∈ S.
So that

τ(PAQ + PBQ) � τ(PBQ + Q)°(PAQ + P)

� τ(PBQ + Q)°(PAQ + P) +(PBQ + Q)°τ(PAQ + P).
(82)

Now from Steps 2, 3 and 8, we get

τ(PAQ + PBQ) � τ(PAQ) + τ(PBQ), (83)

for all A, B ∈ T. Terefore τ is additive on T12.
From Step 6, we have

τ((PAP + PBP)PCQ) � τ(PAP + PBP)PCQ +(PAP + PBP)τ(PCQ). (84)

On the other hand, according to additivity of τ on T12
and from Step 6, we have

τ((PAP + PBP)PCQ) � τ(PAPCQ + PBPCQ)

� τ(PAPCQ) + τ(PBPCQ)

� τ(PAP)PCQ + PAPτ(PCQ)

+ τ(PBP)PCQ + PBPτ(PCQ).

(85)

By comparing the above statements and faithfulness of
M, we conclude that

Pτ(PAP + PBP)P � Pτ(PAP)P + Pτ(PBP)P, (86)

for all A, B ∈ T. Now Step 4 implies that τ is additive onT11.
By the similar argument as above we conclude that τ is

also additive on T22. □

Step 10. For all A ∈ T.

τ(A) � τ(PAP) + τ(PAQ) + τ(QAQ). (87)

Proof. For all A ∈ T we have (A, P) ∈ S. So that

τ A°P( 􏼁 � τ(A)°P + A°τ(P) � τ(A)°P. (88)

On the other hand

τ A°P( 􏼁 � τ((PAP)°P +(PAQ)°P +(QAQ)°P)

� τ((PAP)°P +(PAQ)°P).
(89)

Since (PAP, P) ∈ S, (PAQ, P) ∈ S and from Steps 3, 4
and 8, we conclude that

τ A°P( 􏼁 � τ((PAP)°P + τ(PAQ)°P)

� τ(PAP)°P + τ(PAQ)°P

� τ(PAP)°P + τ(PAQ)°P + τ(QAQ)°P.

(90)

Tus

[τ(A) − τ(PAP) − τ(PAQ) − τ(QAQ)]°P � 0. (91)
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Now for all A ∈ T, since (A, Q) ∈ S and by the similar
argument as above we prove that

[τ(A) − τ(PAP) − τ(PAQ) − τ(QAQ)]°Q � 0. (92)

Terefore we get the required result. □

Step 11. δ is an additive derivation.

Proof. From Steps 9, 10, for all A, B ∈ T we have

τ(A + B) � τ((PAP + PBP) +(PAQ + PBQ) +(QAQ + QBQ))

� τ(PAP + PBP) + τ(PAQ + PBQ) + τ(QAQ + QBQ)

� τ(PAP) + τ(PBP) + τ(PAQ) + τ(PBQ) + τ(QAQ) + τ(QBQ)

� τ(A) + τ(B).

(93)

Terefore τ is additive on T.
It follows from Steps 2, 4, 6 and 7 that

τ(AB) � τ(A)B + Aτ(B), (94)

for all A, B ∈ T. Hence τ is an additive derivation. Since
Iδ(P) is also an additive derivation, so δ � τ + Iδ(P) is an
additive derivation and the proof is complete. □
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