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Acquired immunodefciency syndrome (AIDS) is a spectrum of conditions caused by infection with the human immunode-
fciency virus (HIV). Among people with AIDS, cases of COVID-19 have been reported in many countries. COVID-19
(coronavirus disease 2019) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this manuscript,
we are going to present a within-host COVID-19/AIDS coinfection model to study the dynamics and infuence of the coinfection
between COVID-19 and AIDS. Te model is a six-dimensional delay diferential equation that describes the interaction between
uninfected epithelial cells, infected epithelial cells, free SARS-CoV-2 particles, uninfected CD4+ Tcells, infected CD4+ Tcells, and
free HIV-1 particles. We demonstrated that the proposed model is biologically acceptable by proving the positivity and
boundedness of the model solutions. Te global stability analysis of the model is carried out in terms of the basic reproduction
number. Numerical simulations are carried out to investigate that if COVID-19/AIDS coinfected individuals have a poor immune
response or a low number of CD4+ Tcells, then the viral load of SARS-CoV-2 and the number of infected epithelial cells will rise.
On the contrary, the existence of time delays can rise the number of uninfected CD4+ T cells and uninfected epithelial cells, thus
reducing the viral load within the host.

1. Introduction

In December 2019, the frst case of the emergence of the severe
acute respiratory syndrome coronavirus 2 (COVID-19) oc-
curred in Wuhan, China. In March 2020, the World Health
Organization (WHO) declared COVID-19 a worldwide epi-
demic. Globally, as of 27 April 2022, over 500 million people
were infected with COVID-19, including 6 million deaths [1].
Old age and its accompanying symptoms such as diabetes, heart
disease, and high blood pressure are considered risk factors for
developing severe COVID-19 infection and are associated with
a high death rate [2, 3]. Some other risk factors are associated
when infection with COVID-19 occurs in people with chronic
diseases such as acquired immunodefciency syndrome (AIDS)

[4]. In 2020, there were 37.7 million persons living with HIV-1
(PLWH) worldwide; HIV-1 causes acquired immunodefciency
syndrome (AIDS) with 680,000 of them dying from HIV-1-
related diseases, and only 73% of them were on antiretroviral
medication (ART) [5]. Because their immune systems are
impaired, PLWHwho do not receiveARTorwhose condition is
poorly managed could be more susceptible to developing
COVID-19. If infected with COVID-19, such people are at a
greater risk of developing acute symptoms and dying. Te
coinfection cases are challenging due to the scarcity of data on
the outcomes and consequences of SARS-CoV-2 infection in
HIV-1 positive individuals [3, 6, 7].

HIV-1 and SARS-CoV-2 are both RNA viruses. SARS-
CoV-2 attacks upper respiratory epithelial cells, and the
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virus generated by infected cells goes down to the lower
airway, infecting bronchial and alveolar epithelial cells [4, 8].
On the other hand, HIV-1 targets CD4+ lymphocytes, which
are the immune system’s most plentiful white blood cells
(referred to as CD4+ T cells). A great efort is being made in
many areas of the world to create measures to battle these
viruses and study their biological and immunological fea-
tures and clinical outcomes. Some of these studies indicate
that COVID-19 pandemic has caused disruptions in HIV-1
care facilities in many countries [9, 10]. However, it is
unclear whether people infected with HIV-1 having an
increased incidence of COVID-19 and signifcant clinical
signs, despite a controversial suggestion that antiretroviral
therapy or HIV-1-related immunosuppression could protect
HIV-1 infected people from severe COVID-19. A number of
HIV-1 and SARS-CoV-2 coinfection cases have been
documented throughout the world [11, 12]. Most studies of
COVID-19/AIDS coinfection reported that there is a lack of
clarity on what constitutes the primary illness and what
constitutes comorbidity in the context of coinfection. Few
studies inferred that SARS-CoV-2 infection does not in-
crease the course of HIV-1 infection in PLWH nor does
HIV-1 infection have an impact on COVID-19 infection
course in PLWH [13–15]. However, Wang et al. [16] pub-
lished a case report of an HIV-1/COVID-19 patient with
such a lower CD4+ Tcell number, and as a result, the patient
had a prolonged COVID-19 course and decreased antibody
levels. Moreover, COVID-19/AIDS coinfection has been
observed to cause pneumonia problems more frequently
than COVID-19 alone [17]. Tis study aims to give a
comprehensive picture of SARS-CoV-2 infection in persons
having HIV-1/AIDS.

Mathematical models that consist of a system of dif-
ferential equations have proven their efectiveness in
studying the interactions between viruses and their hosts
and the common interactions between diseases (see e.g.,
[12, 18–24]). HIV within-host models have been widely
investigated and great results have been reached
[18, 19, 25–28]. On the other side, SARS-CoV-2 within-host
modeling has received less attention ([24, 29–32]). Some
coinfection models between SARS-CoV-2 and other viruses
have been developed. For example, Pinky and Dobrovolny
[33] used a within-host model to investigate SARS-CoV-2
coinfections with several viruses types such as infuenza A
virus (IAV), parainfuenza virus (PIV), and human rhino-
virus (HRV). In fact, the models of coinfection are essential
to grasp the coinfection dynamics between SARS-CoV-2 and
HIV, to assist the experimental studies and save time, and to
develop efective treatments for coinfected people. Ahmed
et al. [34] created a fractional epidemiological model to
analyze the pandemic scenario in numerous HIV and
COVID-19 afected countries, including South Africa and
Brazil. Ten, to the best of our knowledge, the frst ordinary
diferential within-host SARS-CoV-2/HIV coinfection sys-
tem is presented by Al Agha et al. [20]. Te formulation of
their model is based on Nowak and Bangham’s model that
was used widely to model HIV monoinfection and SARS-
CoV-2 monoinfection. Al Agha et al. used the same prin-
cipals to model SARS-CoV-2/HIV coinfection and connect

the two infections together. Te model is formulated as
follows:

_X(t) � ρ − αX(t) − ηX(t)V(t),

_Y(t) � ηX(t)V(t) − kY(t) − μY(t)S(t),

_V(t) � aY(t) − δV(t),

_S(t) � ξ + uY(t)S(t) − cS(t) − θS(t)H(t),

_W(t) � θS(t)H(t) − βW(t),

_H(t) � λW(t) − ωH(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where X(t), Y(t), and V(t) represent the healthy epithelial
cells, infected epithelial cells, and free SARS-CoV-2 particles,
respectively, whilst S(t), W(t), and H(t) depict healthy
CD4+ T cells, infected CD4+ T cells, and free HIV particles
concentrations at time t, respectively. Epithelial cells are
recruited at rate ρ and turned into infected cells at pace
ηX(t)V(t). Infected produce SARS-CoV-2 particles at rate
aY(t). CD4+ Tcells are recruited at rate ξ, eliminate infected
epithelial cells at a proportion μY(t)S(t), and proliferate at
rate uY(t)S(t). HIV particles infect CD4+ T cells at rate
θS(t)H(t). Te infected cells produces HIV at rate λW(t).
Te components X(t), Y(t), Y(t), Y(t), W(t), and H(t) die
at rates αX(t), kY(t), δV(t), cS(t), βW(t), and ωH(t),
respectively. Ten, Elaiw et al. [21] adopted the same pre-
vious model with the addition of the efect of latent cells, and
then, they made a comprehensive study of the proposed
model. Ringa et al. [22] presented a newmathematical model
for COVID-19 and HIV/AIDS. Te dynamics of the full
model is driven by that of its submodels. Also, they studied
the impact of intervention measures by incorporating it into
the model using time-dependent controls.

Most of the previous publications are the assumptions
that cells produce viruses immediately after they are in-
fected. It is commonly observed that in many biological
processes, a time delay is inevitable. For HIV-1 infection, it
roughly takes about one day for a newly infected cell to
become productive and then to be able to produce new virus
particles. Terefore, mathematicians have frequently used
diferent types of delays to make biological models more
realistic. In [26, 28, 35], HIV models with time delay were
introduced, whilst modeling and analysis of COVID-19
based on a time delay dynamic model are presented in
[12, 23]. Although there are some publications that combine
the coinfection between viruses in the presence of time delay,
there are still no models of coinfection between SARS-CoV-
2 and HIV with time delay. Due to the decisive role of time
delays in dynamic systems, the objective of this work is to
expand model (1) to accommodate distributed delays. Tis
can help comprehend the coinfection dynamics between
SARS-CoV-2 and HIV-1 from a diferent perspective. A
continuous distribution function is used to represent the
delay in case of distributed time delay. Tis makes dis-
tributed delays more realistic than discrete time delays which
presume that each individual in the population has the same
delay period. Tus, we have investigated a model with six
delay diferential equations, and we have established the
solutions nonnegativity and boundedness, listed the
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prospective equilibrium points and the conditions of exis-
tence, discussed the global stability of the equilibria, and
examined time delay impact on the model’s dynamics. Te
document includes the following sections: the model is
presented in Section 2. Section 3 confrms the basic prop-
erties of the model. Section 4 exhibits the global properties of
the model. Section 5 lists the numerical simulations. Finally,

Section 6 debates the results and some potential next
directions.

2. COVID-19/AIDS Coinfection Model with
Distributed Delay

In this section, we extend model (1) by considering a variety
of distributed time delays as follows:

_X(t) � ρ − αX(t) − ηX(t)V(t),

_Y(t) � η
∞

0
g1(ϵ)e

− m1ϵX(t − ϵ)V(t − ϵ)dϵ − kY(t) − υY(t)S(t),

_V(t) � a 
∞

0
g2(ϵ)e

− m2ϵY(t − ϵ)dϵ − ℘V(t),

_S(t) � ξ + uY(t)S(t) − cS(t) − IS(t)H(t),

_W(t) � I
∞

0
g3(ϵ)e

− m3ϵS(t − ϵ)H(t − ϵ)dϵ − βW(t),

_H(t) � λ
∞

0
g4(ϵ)e

− m4ϵW(t − ϵ)dϵ − ωH(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Tus, we have a system of six delay diferential equations
where X(t), Y(t), V(t), S(t), W(t), and H(t) stand for the
concentrations of uninfected epithelial cells, infected epithelial
cells, free SARS-CoV-2 particles, uninfected CD4+ T cells, in-
fected CD4+ Tcells, and HIV-1 particles at time t, respectively.
A scheme describing the coinfection between SARS-CoV-2 and
HIV in host without time delay is shown in Figure 1.Te factor
g1(ε)e− m1ε designates the likelihood that uninfected epithelial
cells were in touch with SARS-CoV-2 particles at time t − ϵ
survived ϵ time units, and infection occurs at time t. Te term
g2(ϵ)e− m2ϵ simulates the probability of new immature SARS-
CoV-2 particles at time t − ϵ survived ϵ time units and mature
at time t. Moreover, the factor g3(ϵ)e− m3ϵ symbolizes the
probability that uninfected CD4+ T cells contacted by HIV-1
particles at time t − ϵ survived ϵ time units and become infected
at time t. Te term g4(ϵ)e− m4ϵ represents the probability that
new immature HIV-1 particles at time t − ϵ persisted ϵ time
units and mature at time t, where mi and i � 1, 2, 3, 4, and are
the positive constants. Te delay parameter ϵ is a random
variable picked from probability distribution functions gi(ϵ)
during time interval [0,∞). Te functions gi(ϵ) (i � 1, 2, 3, 4)
satisfy gi(ϵ)> 0 and


∞

0
gi(ϵ)dϵ � 1,


∞

0
gi(ϵ)e

− nϵdϵ <∞,

(3)

where n> 0. Let us denote the following model:

Li(ϵ) � gi(ϵ)e
− miϵ,

Li � 
∞

0
Li(ϵ)dϵ,

(4)

where i � 1, 2, 3, 4. Tis implies that 0<Li ≤ 1. Te initial
conditions of model (2) are specifed as follows:

X(ϖ) � φ1(ϖ), Y(ϖ) � φ2(ϖ), V(ϖ) � φ3(ϖ),

S(ϖ) � φ4(ϖ), W(ϖ) � φ5(ϖ), H(ϖ) � φ6(ϖ),

φj(ϖ)≥ 0, ϖ ∈ (−∞, 0], j � 1, 2, . . . 6,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

whereφj(ϖ) ∈ C � ζ ∈ C([−∞, 0),R): ζ(θ)eαθ is uniformly
continuous for continuous for θ ∈ [−∞, 0), ‖ζ‖<∞}, and
‖ζ‖ � supθ≤0|ζ(θ)|eαθ such that α is a positive constant. Here,C
is the Banach space of fadingmemory type [36].Terefore, using
the standard theory of diferential equations with infnitely
distributed delays [37, 38], model (2) with initial constraints (3)
has a single solution.

3. Basic Characteristics

Tis section proves that model (2) solutions are non-neg-
ative and ultimately bounded. Additionally, it computes
whole potential equilibria and the threshold numbers.

3.1. Non-Negativity and Boundedness

Proposition 1. All of model (2) solutions with beginning
conditions (3) are non-negative and eventually bounded.

Proof. Starting with model (2) frst equation, we obtain
_X(t)|X�0 � ρ> 0, which yields that X(t)> 0 for all t≥ 0.
From fourth equation of the model, we get _S(t)|S�0 � ξ > 0;
then, S(t)> 0 for all t≥ 0. Furthermore, the rest of the model
equations give us the following model:
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Y(t) � φ2(0)e
− 

t

0
(k + υs(q))dq

+ η
t

0
e

− 
t

ℓ
(k + υs(q))dq


∞

0
L1(ϵ)X(ℓ − ϵ)V(ℓ − ϵ)dϵdℓ ≥ 0,

V(t) � φ3(0)e
−℘t

+ a 
t

0
e

−℘(t− ℓ)

∞

0
L2(ϵ)Y(ℓ − ϵ)dϵdℓ ≥ 0,

W(t) � φ5(0)e
− βt

+ I
t

0
e

− β(t− ℓ)

∞

0
L3(ϵ)S(ℓ − ϵ)H(ℓ − ϵ)dϵdℓ ≥ 0,

H(t) � φ6(0)e
−ωt

+ λ
t

0
e

−ω(t− ℓ)

∞

0
L4(ϵ)W(ℓ − ϵ)dϵdℓ ≥ 0.

(6)

For all t ∈ [0,∞), as a result of the recursive argument,
we obtain X(t), Y(t), V(t), S(t), W(t), H(t)≥ 0 for all t≥ 0.
Hence, system (2) solutions with initial conditions (3) realize
(X(t), Y(t), V(t), S(t), W(t), H(t)) ∈ R6

≥ 0 for all non-
negative values of t.

Now, we establish the boundedness of the model’s so-
lutions. Based on model (2) frst equation, we gain

limt⟶∞supX(t)≤Ω1, where Ω1 � ρ/α. We defne the fol-
lowing model:

Ψ1(t) � 
∞

0
L1(ε)X(t − ε)dε + Y(t) +

υ
u

S(t). (7)

Ten, we get the following model:

_Ψ1(t) � 
∞

0
L1(ε)[ρ − αX(t − ε) − ηX(t − ε)V(t − ε)]dε + η

∞

0
L1(ε)X(t − ε)V(t − ε)dε

− kY(t) − υY(t)S(t) +
υ
u

[ξ + uY(t)S(t) − cS(t) − IS(t)H(t)]

≤ ρ
∞

0
L1(ε)dε +

υξ
u

− α
∞

0
L1(ε)X(t − ε)dε − kY(t) −

υc

u
S(t)

≤ ρ +
υξ
u

− ϕ1 
∞

0
L1(ε)X(t − ε)dε + Y(t) +

υ
u

S(t) 

� ρ +
υξ
u

− ϕ1Ψ1(t),

(8)

ηxv

SH

S

αXV

ρ

uYS

Uninfected CD4 T 
cells (S)

Infected CD4 T 
cells (W)HIV particles (H)

νYS

Infected epithelial 
cells (Y)

SARs-Cov-2 
Particles (V)

aY

Uninfected 
epithelial cells (X)

λW

ξ

ϖH

kY

βW

Figure 1: Scheme describing the coinfection between SARS-CoV-2 and HIV.
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where ϕ1 � min α, k, c . Tis implies that
limt⟶∞supΨ1(t)≤Ω2, where Ω2 � ρ/ϕ1 + υξ/uϕ1. Since
Y(t) and S(t) are non-negative, then limt⟶∞supY(t)≤Ω2

and limt⟶∞supS(t)≤Ω3, where Ω3 � uΩ2/υ. Using model
(2) third equation, we get the following model:

_V(t) � a 
∞

0
L2(ϵ)Y(t − ϵ)dϵ − ℘V(t)≤ aL2Ω2 − ℘V(t)≤ aΩ2 − ℘V(t). (9)

Tis implies that limt⟶∞supV(t)≤Ω4, where
Ω4 � aΩ2/℘.

We defne the following model:

Ψ2(t) � 
∞

0
L3(ε)S(t − ε)dε + W(t). (10)

Following that, we get the following model:

_Ψ2(t) � 
∞

0
L3(ε)[ξ + uY(t − ε)S(t − ε) − cS(t − ε) − IS(t − ε)H(t − ε)]dε

+ I
∞

0
L3(ε)S(t − ε)H(t − ε)dε − βW(t)≤ ξ + uΩ2Ω3 − ϕ2Ψ2(t),

(11)

where ϕ2 � min c, β . Tus, we have limt⟶∞supW(t)≤Ω5,
whereΩ5 � (ξ + uΩ2Ω3)/ϕ2. Finally, the last equation of
model (2) gives the following model:

_H(t) � λ
∞

0
L4(ϵ)W(t − ϵ)dϵ − ωH(t)≤ λΩ5 − ωH(t).

(12)

Tus, limt⟶∞supH(t)≤Ω6, where Ω6 � λΩ5/ω. Ac-
cordingly, the following region is positively invariant with
regard to model (2).

Ξ � (X, Y, V, S, W, H) ∈ C
6
≥ 0: ‖X‖≤Ω1, ‖Y‖≤Ω2, ‖V‖≤Ω4, ‖S‖≤Ω3, ‖W‖≤Ω5, ‖H‖≤Ω6 . (13)

□
3.2.EquilibriumPoints. Tis subsection displays all of model
(2) possible equilibrium states and deduces four threshold
parameters that determine the equilibria existence.

We solve the following set of algebraic equations to
calculate the following model equilibrium points:

0 � ρ − αX − ηXV,

0 � ηL1XV − kY − υYS,

0 � aL2Y − ℘V,

0 � ξ + uYS − cS − ISH,

0 � IL3SH − βW,

0 � λL4W − ωH.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

From last equation of model (4), we have W � ωH/λL4.
Ten, we substitute in the ffth equation, and we get the
following model:

0 � IL3S −
βω
λL4

 H. (15)

So, we have two possibilities:

H � 0 or S �
βω

λIL3L4
. (16)

Ten, doing the same for second and third equations, we
obtain another two possibilities as follows:

V � 0 or ηL1X −
kρ
aL2

−
υρS

aL2
� 0. (17)

Equations (16) and (17) provide us with four possibilities.
Accordingly, model (4) has four equilibrium points:

(i) Uninfected equilibrium EP0 � (X0, 0, 0, S0, 0, 0),
where X0 � ρ/α and S0 � ξ/c

(ii) Te HIV-1 monoinfection equilibrium
EPH � (X1, 0, 0, S1, W1, H1), where

X1 �
ρ
α

, S1 �
βω

IλL3L4
,

W1 �
cω

IλL4

ξIλL3L4

βcω
− 1 ,

H1 �
c

I

ξIλL3L4

βcω
− 1 .

(18)

It follows that W1 > 0 and H1 > 0 only when
ξIλL3L4/βcω> 1. Tus, we have the following
model:
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X1 � X0, S1 �
S0

R1
,

W1 �
cω

IλL4
R1 − 1( ,

H1 �
c

I
R1 − 1( .

(19)

Here, R1 � ξIλL3L4/βcω. Here, R1 is the basic
reproduction number for HIV-1 infection. It sets
start of HIV-1 infection in host body. We note that
W1 > 0 and H1 > 0 if R1 > 1. Terefore, EPH exists
when R1 > 1.

(iii) SARS-CoV-2 monoinfection equilibrium
EPV � (X2, Y2, V2, S2, 0, 0), where

X2 �
Y2k + S2Y2υ

ηV2L1
,

Y2 �
℘V2

aL2
,

S2 �
ξ

c − uY2
.

(20)

V2 satisfes the following equation:

u℘2ηkV
2
2 + uα℘2k − ac℘ηkL2 − a℘ηυξL2 − au℘ηρL1L2 V2 − aαc℘kL2 − aα℘υξL2 + a

2
cηρL1L

2
2

aηL1L2 acL2 − u℘V2( 
� 0. (21)

To prove that equation (21) has a positive root, we
introduce a function B(V) as follows:

B(V) �
u℘2ηkV

2
+ uα℘2k − ac℘ηkL2 − a℘ηυξL2 − au℘ηρL1L2 V − aαc℘kL2 − aα℘υξL2 + a

2
cηρL1L

2
2

aηL1L2 acL2 − u℘V( 
. (22)

Ten, we have the following equation:

B(0) �
−aαc℘kL2 − aα℘υξL2 + a

2
cηρL1L

2
2

a
2
cηL1L

2
2

�
αc℘k + α℘υξ

acηL1L2
R2 − 1( . (23)

Here, R2 � acηρL1L2/α℘(ck + υξ). Tis implies that
B(0)> 0 when R2 > 1. In addition, we fnd that

lim
V⟶

acL2

u℘

−
B(V) � −∞.

(24)

It follows that there exists 0<V2 < acL2/u℘ such
that B(V2) � 0. From equation (20), we get Y2 > 0,

S2 > 0, and X2 > 0. As a result, we deduce that EPV

exists when R2 > 1. Here, R2 is the basic repro-
duction number for SARS-CoV-2 infection. It de-
fnes start of SARS-CoV-2 infection in host body.

(iv) COVID-19/AIDS coinfection equilibrium EPVH �

(X3, Y3, V3, S3, W3, H3), where

X3 �
℘ kIλL3L4 + βυω( 

aηIλL1L2L3L4
, Y3 �

α℘
aηL2

aηIλρL1L2L3L4

α℘ IkλL3L4 + βυω( 
− 1 ,

V3 �
α
η

aηIλρL1L2L3L4

α℘ IkλL3L4 + βυω( 
− 1 , S3 �

βω
IλL3L4

,

W3 �
ω uα℘ + acηL2( 

aηIλL2L4

λξ
βω

+
uλρL1

IkλL3L4 + βυω
 

aηIL2L3L4

uα℘ + acηL2
− 1 ,

H3 �
uα℘ + acηL2

aηIL2

λξ
βω

+
uλρL1

IkλL3L4 + βυω
 

aηIL2L3L4

uα℘ + acηL2
− 1 .

(25)
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It follows that W3 > 0 and H3 > 0 only when (λξ/βω +

uλρL1/IkλL3L4 + βυω)aηIL2L3L4/uα℘ + acηL2 > 1. On the
other hand, Y3 > 0 and V3 > 0 only when
aηIλρL1L2L3L4/α℘(IkλL3L4 + βυω)> 1.

Tus, we can rewrite the components of EPVH as
follows:

X3 �
X0

R4
,

Y3 �
α℘

aηL2
R4 − 1( ,

V3 �
α
η

R4 − 1( ,

S3 �
βω

IλL3L4
,

W3 �
ω uα℘ + acηL2( 

aηIλL2L4
R3 − 1( ,

H3 �
uα℘ + acηL2

aηIL2
R3 − 1( ,

(26)

where

R3 �
λξ
βω

+
uλρL1

IkλL3L4 + βυω
 

aηIL2L3L4

uα℘ + acηL2
,

R4 �
aηIλρL1L2L3L4

α℘ IkλL3L4 + βυω( 
.

(27)

Terefore, EPVH exists when R3 > 1 and R4 > 1. Here, R3
and R4 are the threshold parameters that mark the COVID-
19/AIDS coinfection incidence.

Te threshold parameters are defned as follows:

R1 �
ξIλL3L4

βcω
,

R2 �
acηρL1L2

α℘(ck + υξ)
,

R3 �
λξ
βω

+
uλρL1

IkλL3L4 + βυω
 

aηIL2L3L4

uα℘ + acηL2
,

R4 �
aηIλρL1L2L3L4

α℘ IkλL3L4 + βυω( 
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

For simplicity, the contractions listed will be used in the
parts that follow

X(t) ≡ X, Y(t) ≡ Y, V(t) ≡ V,

S(t) ≡ S, W(t) ≡W, H(t) ≡ H,
(29)

and

X(t − ϵ) ≡ Xϵ, Y(t − ϵ) ≡ Yϵ, V(t − ϵ) ≡ Vϵ,

S(t − ϵ) ≡ Sϵ, W(t − ϵ) ≡Wϵ, H(t − ϵ) ≡ Hϵ.
(30)

4. Global Properties

We demonstrate the global asymptotic stability of all
equilibria in this section by building Lyapunov functions
using the approach described in [39]. We defne F(Δ) �

Δ − 1 − ln Δ, where Δ can be any variable for the model.

Theorem 1. Globally asymptotically stable (G.A.S) of
equilibrium EP0 is satisfed when R1 ≤ 1 and R2 ≤ 1.

Proof. Take a Lyapunov function ϑ0(X, Y, V, S, W, H) as
follows:

ϑ0 � X0F
X

X0
  +

1
L1

Y +
ηX0

℘
V +

υ
uL1

S0F
S

S0
  +

υ
uL1L3

W +
υβ

uλL1L3L4
H

+
η
L1


∞

0
L1(ε) 

t

t−ε
X(ℓ)V(ℓ)dℓdε +

aηX0

℘

∞

0
L2(ε) 

t

t−ε
Y(ℓ)dℓdε

+
υI

uL1L3

∞

0
L3(ε) 

t

t−ε
S(ℓ)H(ℓ)dℓdε +

υβ
uL1L3L4


∞

0
L4(ℓ) 

t

t−ε
W(ℓ)dℓdε.

(31)
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Clearly, ϑ0(X, Y, V, S, W, H)> 0 for all
X, Y, V, S, W, H> 0 and ϑ0(X0, 0, 0, S0, 0, 0) � 0. Calculating

dϑ0/dt along the solutions of system (2) gives the following
equation:

dϑ0
dt

� 1 −
X0

X
 [ρ − αX − ηXV] +

1
L1

η
∞

0
L1(ε)XεVεdε − kY − υYS  +

ηX0

℘
a 
∞

0
L2(ε)Yεdε − ℘V 

+
υ

uL1
1 −

S0

S
 [ξ + uYS − cS − ISH] +

υ
uL1L3

I
∞

0
L3(ε)SεHεdε − βW 

+
υβ

uλL1L3L4
λ
∞

0
L4(ε)Wεdε − ωH  +

η
L1


∞

0
L1(ε) XV − XεVε dε +

aηX0

℘

∞

0
L2(ε) Y − Yε dε

+
υI

uL1L3

∞

0
L3(ε) SH − SεHε dε +

υβ
uL1L3L4


∞

0
L4(ε) W − Wε dε.

(32)

Adding up the terms in equation (32), we obtain the
following equation:

dϑ0
dt

� 1 −
X0

X
 (ρ − αX) − ηXV + ηX0V −

1
L1

kY −
1
L1

υYS − ηX0V +
υ

uL1
1 −

S0

S
 (ξ − cS)

+
1
L1

υYS −
1
L1

υYS0 −
υ

uL1
ISH +

υ
uL1

IS0H −
υβ

uL1L3
W −

υβω
uλL1L3L4

H + ηXV +
aηX0

℘
L2Y

+
υ

uL1
ISH +

υβ
uL1L3

W.

(33)

Using ρ � αX0 and ξ � cS0, we obtain the following
equation:

dϑ0
dt

� −
α
X

X − X0( 
2

−
υc

uL1S
S − S0( 

2
+

ηX0

℘
aL2 −

1
L1

k −
1
L1

υS0 Y +
υ

uL1
IS0 −

βω
λL3L4

 H

� −
α
X

X − X0( 
2

−
υc

uL1S
S − S0( 

2
+

ck + υξ
cL1

acηρL1L2

α℘(ck + υξ)
− 1 Y +

υβω
uλL1L3L4

ξIλL3L4

βcω
− 1 H

� −
α
X

X − X0( 
2

−
υc

uL1S
S − S0( 

2
+

ck + υξ
cL1

R2 − 1( Y +
υβω

uλL1L3L4
R1 − 1( H.

(34)

Since R1 ≤ 1 and R2 ≤ 1, we get dϑ0/dt≤ 0 for all
X, Y, V, S, W, H> 0. Also, dϑ0/dt � 0 when X � X0, S � S0,

and Y � H � 0. Set T0 � (X, Y, V, S, W, H): dϑ0/dt � 0 

and the largest invariant subset (L.I.S) of T0 by T0′. Ten, the

model solutions converge toT0′.Te setT0′ contains elements
with X(t) � X0, S(t) � S0, and Y(t) � H(t) � 0, and hence,
_Y(t) � _H(t) � 0.Te second and last equations of the model
(2) give the following equation:
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0 � _Y(t) � η
∞

0
L1(ϵ)X0Vϵdϵ,

0 � _H(t) � λ
∞

0
L4(ϵ)Wϵdϵ.

(35)

Tus, we get V(t) � W(t) � 0 for all t.Ten, T0′ � EP0 ,
and using Lyapunov–LaSalle asymptotic stability theorem
[40–42], EP0 is G.A.S. □

In the following theorems, we need to use the equalities:

ln
SεHε

SH
  � ln

SεHεWj

SjHjW
  + ln

Sj

S
  + ln

WHj

WjH
 ,

ln
Wε

W
  � ln

WεHj

WjH
  + ln

WjH

WHj

 , j � 1, 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Furthermore,

ln
XϵVϵ
XV

  � ln
XϵVϵYi

XiViY
  + ln

Xi

X
  + ln

YVi

YiV
 ,

ln
Yϵ
Y

  � ln
YϵVi

YiV
  + ln

YiV

YVi

 , i � 2, 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(37)

Theorem  . If R1 > 1 and R4 ≤ 1, the equilibrium EPH is
G.A.S.

Proof. Consider a Lyapunov function ϑ1(X, Y, V, S, W, H)

as follows:

ϑ1 � X1F
X

X1
  +

1
L1

Y +
ηX1

℘
V +

υ
uL1

S1F
S

S1
  +

υ
uL1L3

W1F
W

W1
  +

υβ
uλL1L3L4

H1F
H

H1
 

+
η
L1


∞

0
L1(ε) 

t

t−ε
X(ℓ)V(ℓ)dℓdε +

aηX1

℘

∞

0
L2(ε) 

t

t−ε
Y(l)dℓdε

+
υIS1H1

uL1L3

∞

0
L3(ε) 

t

t−ε
F

S(ℓ)H(ℓ)
S1H1

 dℓdε +
υβW1

uL1L3L4

∞

0
L4(ε) 

t

t−ε
F

W(ℓ)
W1

 dℓdε.

(38)

Diferentiating ϑ1, we obtain the following equation:

dϑ1
dt

� 1 −
X1

X
 [ρ − αX − ηXV] +

1
L1

η
∞

0
L1(ε)XεVεdε − kY − υYS  +

ηX1

℘
a 
∞

0
L2(ε)Yεdε − ℘V 

+
υ

uL1
1 −

S1

S
 [ξ + uYS − cS − ISH] +

υ
uL1L3

1 −
W1

W
  I

∞

0
L3(ε)SεHεdε − βW 

+
υβ

uλL1L3L4
1 −

H1

H
  λ

∞

0
L4(ε)Wεdε − ωH  +

η
L1


∞

0
L1(ε) XV − XεVε dε +

aηX1

℘

∞

0
L2(ε) Y − Yε dε

+
υIS1H1

uL1L3

∞

0
L3(ε)

SH

S1H1
−

SεHε

S1H1
+ ln

SεHε

SH
  dε +

υβW1

uL1L3L4

∞

0
L4(ε)

W

W1
−

Wε

W1
+ ln

Wε

W
  dε.

(39)

Summing the terms of equation (39), we obtain the
following equation:

dϑ1
dt

� 1 −
X1

X
 (ρ − αX) −

1
L1

kY +
υ

uL1
1 −

S1

S
 (ξ − cS) −

1
L1

υYS1 +
υ

uL1
IS1H

−
υ

uL1L3
I
∞

0
L3(ε)SεHε

W1

W
dε +

υ
uL1L3

βW1 −
υβ

uL1L3L4

∞

0
L4(ε)Wε

H1

H
dε −

υβω
uλL1L3L4

H

+
υβω

uλL1L3L4
H1 +

aηX1

℘
L2Y +

υIS1H1

uL1L3

∞

0
L3(ε)ln

SεHε

SH
 dε +

υβW1

uL1L3L4

∞

0
L4(ε)ln

Wε

W
 dε.

(40)
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By utilizing the equilibrium conditions for EPH, we get
the following equation:

ρ � αX1,

ξ � cS1 + IH1S1,

IL3H1S1 � βW1,

λL4W1 � ωH1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(41)

Ten, we obtain the following equation:

dϑ1
dt

� −
α
X

X − X1( 
2

+
ηX1

℘
aL2 −

1
L1

k −
1
L1

υS1 Y −
υc

uL1S
S − S1( 

2
+

υ
uL1

IS1H1 1 −
S1

S
 

+
υ

uL1
IS1H −

υIS1H1

uL1L3

∞

0
L3(ε)

SεHεW1

S1H1W
dε +

υ
uL1

IS1H1 −
υβW1

uL1L3L4

∞

0
L4(ε)

WεH1

W1H
dε −

υ
uL1

IS1H

+
υ

uL1
IS1H1 +

υIS1H1

uL1L3

∞

0
L3(ε)ln

SεHε

SH
 dε +

υIS1H1

uL1L4

∞

0
L4(ε)ln

Wε

W
 dε.

(42)

Using the equalities given by equation (36) in case of
j � 1, we get the following equation:

dϑ1
dt

� −
α
X

X − X1( 
2

−
υc

uL1S
S − S1( 

2
+
IkλL3L4 + βυω

IλL1L3L4

aηIλρL1L2L3L4

α℘ IkλL3L4 + βυω( 
− 1 Y

−
υ

uL1
IS1H1

S1

S
− 1 − ln

S1

S
   −

υIS1H1

uL1L3

∞

0
L3(ε)

SεHεW1

S1H1W
− 1 − ln

SεHεW1

S1H1W
  dε

−
υIS1H1

uL1L4

∞

0
L4(ε)

WεH1

W1H
− 1 − ln

WεH1

W1H
  dε.

(43)

Terefore, equation (43) becomes

dϑ1
dt

� −
α
X

X − X1( 
2

−
υc

uL1S
S − S1( 

2
+
IkλL3L4 + βυω

IλL1L3L4
R4 − 1( Y

−
υ

uL1
IS1H1F

S1

S
  −

υIS1H1

uL1L3

∞

0
L3(ε)F

SεHεW1

S1H1W
 dε −

υIS1H1

uL1L4

∞

0
L4(ε)F

WεH1

W1H
 dε.

(44)

Since R4 ≤ 1, we fnd that dϑ1/dt≤ 0 for all
X, Y, V, S, W, H> 0. Also, dϑ1/dt � 0 when X � X1, S � S1,
Y � 0, W � W1, and H � H1. Model (2) solutions converge

to T1′ the L.I.S of T1 � (X, Y, V, S, W, H): dϑ1/dt � 0 . Te
set T1′ contains elements with Y(t) � 0; then, Y(t) � 0.
Second equation of system (2) implies
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0 � _Y(t) � η
∞

0
L1(ϵ)X1Vϵdϵ, (45)

which gives V(t) � 0 for all t. Terefore, T1′ � EPH  and
EPH is G.A.S according to Lyapunov–LaSalle asymptotic
stability theorem [40–42]. □

Theorem 3. If R2 > 1 and R3 ≤ 1, then the equilibrium EPV is
G.A.S.

Proof. We introduce a Lyapunov function
ϑ2(X, Y, V, S, W, H) as follows:

ϑ2 � X2F
X

X2
  +

1
L1

Y2F
Y

Y2
  +

ηX2

℘
V2F

V

V2
  +

υ
uL1

S2F
S

S2
  +

υ
uL1L3

W +
υβ

uλL1L3L4
H

+
ηX2V2

L1

∞

0
L1(ε) 

t

t−ε

F
X(ℓ)V(ℓ)

X2V2
 dℓdε +

aηX2Y2

℘

∞

0
L2(ε) 

t

t−ε
F

Y(ℓ)
Y2

 dℓdε

+
υ

uL1L3
I
∞

0
L3(ε) 

t

t−ε
S(ℓ)H(ℓ)dℓdε +

υ
uL1L3L4

β
∞

0
L4(ε) 

t

t−ε
W(ℓ)dℓdε.

(46)

Diferentiating ϑ2, we obtain the following equation:

dϑ2
dt

� 1 −
X2

X
 [ρ − αX − ηXV] +

1
L1

1 −
Y2

Y
  η

∞

0
L1(ε)XεVεdε − kY − υYS  +

ηX2

℘
1 −

V2

V
 

× a 
∞

0
L2(ε)Yεdε − ℘V  +

υ
uL1

1 −
S2

S
 [ξ + uYS − cS − ISH] +

υ
uL1L3

I
∞

0
L3(ε)SεHεdε − βW 

+
υβ

uλL1L3L4
λ
∞

0
L4(ε)Wεdε − ωH  +

ηX2V2

L1

∞

0
L1(ε)

XV

X2V2
−

XεVε

X2V2
+ ln

XεVε

XV
  dε

+
aηX2Y2

℘

∞

0
L2(ε)

Y

Y2
−

Yε

Y2
+ ln

Yε

Y
  dε +

υ
uL1L3

I
∞

0
L3(ε) SH − SεHε dε

+
υβ

uL1L3L4

∞

0
L4(ε) W − Wε dε.

(47)

By collecting the terms of equation (47), we have the
following equation:

dϑ2
dt

� 1 −
X2

X
 (ρ − αX) −

η
L1


∞

0
L1(ε)XεVε

Y2

Y
dε −

1
L1

kY +
1
L1

kY2 +
1
L1

υY2S −
ηX2

℘
a 
∞

0
L2(ε)Yε

V2

V
dε

+ ηX2V2 +
υ

uL1
1 −

S2
S

 (ξ − cS) −
1
L1

υYS2 +
υ

uL1
IS2H −

υβω
uλL1L3L4

H +
ηX2V2

L1

∞

0
L1(ε)ln

XεVε

XV
 dε

+
aηX2

℘
L2Y +

aηX2Y2

℘

∞

0
L2(ε)ln

Yε

Y
 dε.

(48)
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By using the equilibrium conditions for EPV,

ρ � αX2 + ηX2V2,

ηL1X2V2 � kY2 + υY2S2,

aL2Y2 � ℘V2,

ξ � cS2 − uY2S2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(49)

we obtain the following equation:

dϑ2
dt

� −
α
X

X − X2( 
2

+ ηV2X2 1 −
X2

X
  +

ηX2

℘
aL2 −

1
L1

k −
1
L1

υS2 Y −
ηX2V2

L1

∞

0
L1(ε)

XεVεY2

X2V2Y
dε

+ ηX2V2 −
1
L1

υY2S2 +
1
L1

υY2S −
aηX2Y2

℘

∞

0
L2(ε)

YεV2

Y2V
dε + ηX2V2 −

υc

uL1S
S − S2( 

2
−

1
L1

υY2S2 1 −
S2

S
 

+
υ

uL1
IS2 −

βω
λL3L4

 H +
ηX2V2

L1

∞

0
L1(ε)ln

XεVε

XV
 dε +

ηX2V2

L2

∞

0
L2(ε)ln

Yε

Y
 dε.

(50)

Using the equalities given by equation (37) in case of
i � 2, we get the following equation:

dϑ2
dt

� −
α
X

X − X2( 
2

−
υc

uL1S
S − S2( 

2
−

1
L1

υY2S2 2 −
S2

S
−

S

S2
  − ηX2V2

X2

X
− 1 − ln

X2

X
  

+
υ

uL1
IS2 −

βω
λL3L4

 H −
ηX2V2

L1

∞

0
L1(ε)

XεVεY2

X2V2Y
− 1 − ln

XεVεY2

X2V2Y
  dε

−
ηX2V2

L2

∞

0
L2(ε)

YεV2

Y2V
− 1 − ln

YεV2

Y2V
  dε.

(51)

Terefore, equation (51) becomes

dϑ2
dt

� −
α
X

X − X2( 
2

−
υξ

uL1SS2
S − S2( 

2
− ηX2V2F

X2

X
  +

υ
uL1

IS2 −
βω

λL3L4
 H

−
ηX2V2

L1

∞

0
L1(ε)F

XεVεY2

X2V2Y
 dε −

ηX2V2

L2

∞

0
L2(ε)F

YεV2

Y2V
 dε.

(52)

If R3 ≤ 1, then EpVH does not exist since H3 ≤ 0 and
W3 ≤ 0. Tis implies that

_H(t) � λL4W − ωH≤ 0,

_W(t) � IL3SH − βW≤ 0.
(53)

Terefore, we get (IS − βω/λL3L4)H≤ 0 for all H, S> 0.
Hence, we have (IS2 − βω/λL3L4)≤ 0, and therefore,
dϑ2/dt≤ 0 for all X, Y, V, S, W, H> 0. In addition, dϑ2/dt � 0
when X � X2, S � S2, H � 0, Y � Y2, and V � V2. Solutions

of the model (2) that converge to T2′ is the L.I.S of T2 �

(X, Y, V, S, W, H): dϑ2/dt � 0 . Te set T2′ has elements
with H(t) � 0, and thus, _H(t) � 0. Using system (2) last
equation, we get the following equation:

0 � _H(t) � λ
∞

0
L4(ϵ)Wϵdϵ. (54)

Yield W(t) � 0 for all values of t. Terefore, T2′ � EPV 

and EPV is G.A.S according to Lyapunov–LaSalle asymp-
totic stability theorem [40–42]. □
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Theorem 4. If R4 > 1 and 1<R3 ≤ 1+ aηIλξL2L3L4/
βω(uα℘ + acηL2), then the equilibrium EPVH is G.A.S.

Proof. We consider a Lyapunov function
ϑ3(X, Y, V, S, W, H) as follows:

ϑ3 � X3F
X

X3
  +

1
L1

Y3F
Y

Y3
  +

ηX3

℘
V3F

V

V3
  +

υ
uL1

S3F
S

S3
  +

υ
uL1L3

W3F
W

W3
 

+
υβ

uλL1L3L4
H3F

H

H3
  +

ηX3V3

L1

∞

0
L1(ε) 

t

t−ε
F

X(ℓ)V(ℓ)
X3V3

 dℓdε +
aηX3Y3

℘

∞

0
L2(ε) 

t

t−ε
F

Y(ℓ)
Y3

 dℓdε

+
υIS3H3

uL1L3

∞

0
L3(ε) 

t

t−ε
F

S(ℓ)H(ℓ)
S3H3

 dℓdε +
υβW3

uL1L3L4

∞

0
L4(ε) 

t

t−ε
F

W(ℓ)
W3

 dℓdε.

(55)

By diferentiating ϑ3, we obtain the following equation:

dϑ3
dt

� 1 −
X3

X
 [ρ − αX − ηXV] +

1
L1

1 −
Y3

Y
  η

∞

0
L1(ε)XεVεdε − kY − υYS  +

ηX3

℘
1 −

V3

V
 

× a 
∞

0
L2(ε)Yεdε − ℘V  +

υ
uL1

1 −
S3

S
 [ξ + uYS − cS − ISH] +

υ
uL1L3

1 −
W3

W
 

× I
∞

0
L3(ε)SεHεdε − βW  +

υβ
uλL1L3L4

1 −
H3

H
  λ

∞

0
L4(ε)Wεdε − ωH 

+
ηX3V3

L1

∞

0
L1(ε)

XV

X3V3
−

XεVε

X3V3
+ ln

XεVε

XV
  dε +

aηX3Y3

℘

∞

0
L2(ε)

Y

Y3
−

Yε

Y3
+ ln

Yε

Y
  dε

+
υIS3H3

uL1L3

∞

0
L3(ε)

SH

S3H3
−

SεHε

S3H3
+ ln

SεHε

SH
  dε +

υβW3

uL1L3L4

∞

0
L4(ε)

W

W3
−

Wε

W3
+ ln

Wε

W
  dε.

(56)

Collecting terms of equation (56) gives the following
equation:

dϑ3
dt

� 1 −
X3

X
 (ρ − αX) −

η
L1


∞

0
L1(ε)XεVε

Y3

Y
dε −

1
L1

kY +
1
L1

kY3 +
1
L1

υY3S −
ηX3

℘
a 
∞

0
L2(ε)Yε

V3

V
dε

+ ηX3V3 +
υ

uL1
1 −

S3

S
 (ξ − cS) −

1
L1

υYS3 +
υ

uL1
IS3H −

υ
uL1L3

I
∞

0
L3(ε)SεHε

W3

W
dε +

υ
uL1L3

βW3

−
υβ

uL1L3L4

∞

0
L4(ε)Wε

H3

H
dε −

υβ
uλL1L3L4

ωH +
υβ

uλL1L3L4
ωH3 +

ηX3V3

L1

∞

0
L1(ε)ln

XεVε

XV
 dε

+
aηX3

℘
L2Y +

aηX3Y3

℘

∞

0
L2(ε)ln

Yε

Y
 dε +

υIS3H3

uL1L3

∞

0
L3(ε)ln

SεHε

SH
 dε

+
υβW3

uL1L3L4

∞

0
L4(ε)ln

Wε

W
 dε.

(57)

By using the equilibrium conditions for EPVH,
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ρ � αX3 + ηV3X3,

ηL1V3X3 � kY3 + υY3S3,

aL2Y3 � ℘V3,

ξ � cS3 + IH3S3 − uY3S3,

IL3H3S3 � βW3,

λL4W3 � ωH3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)

we get the following equation:

dϑ3
dt

� −
α
X

X − X3( 
2

+ ηV3X3 1 −
X3

X
  +

ηX3

℘
aL2 −

1
L1

k −
1
L1

υS3 Y −
ηX3V3

L1

∞

0
L1(ε)

XεVεY3

X3V3Y
dε

+ ηX3V3 −
1
L1

υY3S3 +
1
L1

υY3S −
ηX3Y3

℘
a 
∞

0
L2(ε)

YεV3

Y3V
dε + ηX3V3 −

υc

uL1S
S − S3( 

2

−
1
L1

υY3S3 1 −
S3

S
  +

υ
uL1

IS3H3 1 −
S3

S
  +

υ
uL1

IS3H −
υIS3H3

uL1L3

∞

0
L3(ε)

SεHεW3

S3H3W
dε

+
υ

uL1
IS3H3 −

υβW3

uL1L3L4

∞

0
L4(ε)

WεH3

W3H
dε −

υ
uL1

IS3H +
υ

uL1
IS3H3 +

ηX3V3

L1

∞

0
L1(ε) ln

XεVε

XV
 dε

+
ηX3V3

L2

∞

0
L2(ε) ln

Yε

Y
 dε +

υIS3H3

uL1L3

∞

0
L3(ε) ln

SεHε

SH
 dε +

υIS3H3

uL1L4

∞

0
L4(ε) ln

Wε

W
 dε.

(59)

Using the equalities given by equations (36) and (37) in
case of i, j � 3, we get the following equation:

dϑ3
dt

� −
α
X

X − X3( 
2

−
υc

uL1S
S − S3( 

2
−

1
L1

υY3S3 2 −
S3

S
−

S

S3
  − ηX3V3

X3

X
− 1 − ln

X3

X
  

−
υIS3H3

uL1

S3

S
− 1 − ln

S3

S
   −

ηX3V3

L1

∞

0
L1(ε)

XεVεY3

X3V3Y
− 1 − ln

XεVεY3

X3V3Y
  dε

−
ηX3V3

L2
a 
∞

0
L2(ε)

YεV3

Y3V
− 1 − ln

YεV3

Y3V
  dε −

υIS3H3

uL1L3

∞

0
L3(ε)

SεHεW3

S3H3W
− 1 − ln

SεHεW3

S3H3W
  dε

−
υIS3H3

uL1L4

∞

0
L4(ε)

WεH3

W3H
− 1 − ln

WεH3

W3H
  dε.

(60)

Terefore, equation (60) becomes the following
equation:
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dϑ3
dt

� −
α
X

X − X3( 
2

+
υ uα℘ + acηL2( 

aηuSL1L2
S − S3( 

2 aηIuλρL1L2L3L4

IkλL3L4 + βυω(  uα℘ + acηL2( 
− 1  − ηX3V3F

X3

X
 

−
υIS3H3

uL1
F

S3
S

  −
ηX3V3

L1

∞

0
L1(ε)F

XεVεY3

X3V3Y
 dε −

ηX3V3

L2

∞

0
L2(ε)F

YεV3

Y3V
 dε

−
υIS3H3

uL1L3

∞

0
L3(ε)F

SεHεW3

S3H3W
 dε −

υIS3H3

uL1L4

∞

0
L4(ε)F

WεH3

W3H
 dε.

(61)

Since 1<R3 ≤ 1 + aηIλξL2L3L4/βω(uα℘ + acηL2),
then dϑ3/dt≤ 0 for the positive values of
X, Y, V, S, W, andH. Moreover, dϑ3/dt � 0 when X � X3,
S � S3, Y(t) � Y3, V(t) � V3, W(t) � W3, and H(t) � H3.
Te model trajectories that converge to T3′ be the L.I.S of
T3 � (X, Y, V, S, W, H): dϑ3/dt � 0 . Hence, T3′ � EPVH 

and EPVH is G.A.S according to Lyapunov–LaSalle sta-
bility theorem. □

All equilibria of model (2) with the existence conditions
and global stability constraints are summarized in Table 1.

5. Numerical Simulations

We execute numerical simulations in this part to enhance
the outcomes of Teorems 1–4. Moreover, the impact of
time delays on system dynamical behavior will be tested. To
transform a model with distributed time delay (2) to a
discrete one, we choose a Dirac delta function D(.) as a
specifc formula of kernel gi(.) as follows:

gi(]) � D ] − εi( , εi ∈ [0,∞), i � 1, 2, 3, 4. (62)

Ten, we get the following equation:

Lj � 
∞

0
D ς − ϵj e

− mjςdς � e
− mjϵj , j � 1, 2, 3, 4. (63)

Tus, model (2) is reduced as follows:

_X(t) � ρ − αX(t) − ηX(t)V(t),

_Y(t) � ηe
− m1ϵ1X t − ϵ1( V t − ϵ1(  − kY(t) − υY(t)S(t),

_V(t) � ae
− m2ϵ2Y t − ϵ2(  − ℘V(t),

_S(t) � ξ + uY(t)S(t) − cS(t) − IS(t)H(t),

_W(t) � Ie
− m3ϵ3S t − ϵ3( H t − ϵ3(  − βW(t),

_H(t) � λe
− m4ϵ4W t − ϵ4(  − ωH(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

For model (64), the threshold parameters are given by
the following equation:

R1 �
ξIλe

− m3ϵ3+m4ϵ4( )

βcω
,

R2 �
acηρe

− m1ϵ1+m2ϵ2( )

α℘(ck + υξ)
,

R3 �
λξ
βω

+
uλρe

− m1ϵ1

Ikλe
− m3ϵ3+m4ϵ4( ) + βυω

⎛⎝ ⎞⎠
aηIe

− m2ϵ2+m3ϵ3+m4ϵ4( )

uα℘ + acηe
−m2ϵ2 ,

R4 �
aηIλρe

− m1ϵ1+m2ϵ2+m3ϵ3+m4ϵ4( )

α℘ Ikλe
− m3ϵ3+m4ϵ4( ) + βυω 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

To solve system (18) numerically, we change some pa-
rameters values whilst assigning fxed estimate to the rest
parameters (Table 2). We modify the parameters η, υ,℘, and
I to test the conclusions of Teorems 1–4. Furthermore, to
test the impact of the time delays upon COVID-19/AIDS
dynamics, delays parameters ϵ1, ϵ2, ϵ3, and ϵ4 have been
changed.

5.1. Stability of Equilibrium Points. During this part, we
choose delay parameters as follows: ϵ1 � 1, ϵ2 � 0.8, ϵ3 � 1,
and ϵ4 � 0.8. Additionally, we select three distinct starting
conditions of the model (18):

Initial-1: X(ϵ) � 5, Y(ϵ) � 0.0001, V(ϵ) � 0.0002,
S(ϵ) � 100, W(ϵ) � 5, and H(ϵ) � 10,
Initial-2: X(ϵ) � 10, Y(ϵ) � 0.001, V(ϵ) � 0.002,
S(ϵ) � 200, W(ϵ) � 10, and H(ϵ) � 15,
Initial-3: X(ϵ) � 15, Y(ϵ) � 0.002, V(ϵ) � 0.003,
S(ϵ) � 300, W(ϵ) � 15, and H(ϵ) � 20.

Here, ϵ ∈ [−max ϵ1, ϵ2, ϵ3, ϵ4 , 0] and it is optional to
pick these values. Moreover, the initial conditions are split
into three groups to provide global stability for any starting
conditions. To dissolve system (18), we utilize MATLAB
solver dde23. Based on equilibrium points EP0, EPH, EPV,
and EPVH global stability explained in Teorems 1–4, the
simulations are divided into four cases. In these instances,
we change values of η, υ, ℘, and I of system (18). Other
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parameters values are set and recorded in Table 2. Te four
scenarios are detailed as follows:

(i) Case 1 (stability of EP0 ): we take η � 0.006, υ � 0.01,
℘ � 0.3, and I � 0.0001. Te thresholds in this case
are given by R1 � 0.322< 1 and R2 � 0.008< 1. In
harmony with Teorem 1, the equilibrium EP0 �

(22.41, 0, 0, 1000, 0, 0) is G.A.S (Figure 2). Tis is the
best case scenario when the person is free of SARS-
CoV-2 and HIV-1 infection.

(ii) Case 2 (stability of EPH ): we get η � 0.0006, υ �

0.01, ℘ � 0.3, andI � 0.0016. Tis provides us with
R1 � 5.15> 1 and R4 � 0.004< 1. According to
Teorem 2, the equilibrium
EPH � (22.41, 0, 0, 186.478, 13.3211, 27.266) is
G.A.S (Figure 3). Tis simulates the situation in
which a person has HIV-1 infection with depressed
CD4+ Tcell levels, but SARS-CoV-2 infection is not
present.

(iii) Case 3 (stability of EPV ): we select η � 2.9, υ �

0.002, ℘ � 0.1, and I � 0.0001. Tis gives
R2 � 56.997> 1 and R3 � 0.3535< 1. In this situa-
tion, the system solutions converge globally to
equilibrium
EPV � (0.4285, 0.0087, 0.018, 1094.69, 0, 0). Tis
result accords with Teorem 3 (Figure 4). Tis
scenario simulates the case of a person infected with
SARS-CoV-2 but not HIV-1 infection.

(iv) Case 4 (stability of EPVH ): we consider η � 2.9, υ �

0.02, ℘ � 0.1, andI � 0.0016.Tis implies thatR3 �

5.19433> 1, R3 < 1 + aηIλξL2 L3L4/βω(uα℘ + acη
L2) � 6.1436, and R4 � 30.1279> 1. In agreement
with Teorem 4, the equilibrium EPVH � (0.7155,

0.005, 0.0105, 186.478 , 13.48, 27.59) is G.A.S (Fig-
ure 5). In this case, COVID-19/AIDS coinfection
occurs, where an HIV-1 patient gets infected with
SARS-CoV-2. CD4+ T cells, which are the main
target of HIV-1, are recruited to eliminate SARS-
CoV-2 infection from the body. However, if the
patient has low CD4+ T cell counts, the clearance of
SARS-CoV-2 may not be achieved. Tis can cause
severe infection and death.

5.2. Impact of Time Delays on COVID-19/AIDS Dynamics.
Here, we adjust parameters of delay ϵi, i � 1, 2, . . . , 4 and
set the parameters values η � 2.9, υ � 0.02,℘ � 0.1, and
I � 0.0016. Since R1, R2, R3, and R4 ofered by equation
(65) rely on ϵi, i � 1, 2, . . . , 4, varying parameters ϵi will
convert stability of the equilibria. We consider the fol-
lowing cases:

(D.P.S1) ϵ1 � ϵ2 � ϵ3 � ϵ4 � 0
(D.P.S2) ϵ1 � 0.3, ϵ2 � 0.4, ϵ3 � 0.5, and ϵ4 � 0.6
(D.P.S3) ϵ1 � 10, ϵ2 � 11, ϵ3 � 12, and ϵ4 � 13

With the above values, we solve model (64) with given
initial conditions:

Initial-3: (X(ϵ), Y(ϵ), V(ϵ), S(ϵ), W(ϵ), H(ϵ))� (15,
0.002, 0.003, 300, 15, 20).

Te inclusion of time delays can increase the number of
uninfected epithelial and CD4+ T cells while diminish the
number of other compartments, as shown in Figure 6.
Table 3 shows the values R1 and R2 for selected values of ϵi,
i � 1, 2, . . . , 4. Clearly, R1 and R2 decrease when ϵi are
increased, and accordingly, the stability of EP0 can be
changed. Let us compute the critical value of the time delay
that changes the stability of EP0. Without loss of generality,
we let the parameters ϵ3 � ϵ4 � ϵ34 and ϵ1 � ϵ2 � ϵ12, and
write R1 and R2 as functions of ϵ34 and ϵ12, respectively, as
follows:

R1 ϵ34(  �
ξIλe

− m3+m4( )ϵ34

βcω
,

R2 ϵ12(  �
acηρe

− m1+m2( )ϵ12

α℘(ck + υξ)
.

(66)

Table 1: Equilibrium points of model (2), existence conditions, and global stability conditions.

Equilibrium Existence conditions Global stability conditions
EP0 � (X0, 0, 0, S0, 0, 0) None R1 ≤ 1 and R2 ≤ 1
EPH � (X1, 0, 0, S1, W1, H1) R1 > 1 R1 > 1 and R4 ≤ 1
EPV � (X2, Y2, V2, S2, 0, 0) R2 > 1 R2 > 1 and R3 ≤ 1
EPVH � (X3, Y3, V3, S3, W3, H3) R3 > 1 and R4 > 1 R4 > 1 and 1<R3 ≤ 1 + (aηIλξL2L3L4)/(βω(uα℘ + acηL2))

Table 2: Model (64) parameter values.

Parameters Value Reference
ρ 0.02241 [24]
α 10− 3 [24]
η Varied —
k 0.11 [24]
υ Varied —
a 0.24 [24]
℘ Varied —
ξ 10 [19]
u 0.1 [44]
c 0.01 [45]
I Varied —
β 0.5 [43]
λ 5 [35]
ω 2 [35]
m1 0.1 —
m2 0.2 —
m3 0.2 —
m4 0.3 —
ϵi, i � 1, . . . , 4 Varied —
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Figure 2: Continued.
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Figure 2: Te numerical simulations of model (64) for η � 0.006, υ � 0.01, ℘ � 0.3, and I � 0.0001 using three diferent initial conditions
sets. Uninfected equilibrium EP0 � (22.41, 0, 0, 1000, 0, 0) is G.A.S. (a) Uninfected epithelial cells. (b) Infected epithelial cells. (c) SARS-
CoV-2. (d) Uninfected CD4+ T cells. (e) Infected CD4+ T cells. (f ) HIV-1.

t
0 1000 2000 3000 4000 5000

4

6

8

10

12

14

16

18

20

22

24

X 
(t)

Initial-1
Initial-2
Initial-3

(a)

t
0 2 4 6 8 10

×10-3

0

0.5

1

1.5

2

Y 
(t)

Initial-1
Initial-2
Initial-3

(b)

Figure 3: Continued.

18 Journal of Mathematics



×10-3

t
0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

V 
(t)

Initial-1
Initial-2
Initial-3

(c)

t
0 100 200 300 400 500

100

150

200

250

300

S 
(t)

Initial-1
Initial-2
Initial-3

(d)

t
0 100 200 300 400 500

0

5

10

15

20

25

30

35

W
 (t

)

Initial-1
Initial-2
Initial-3

(e)

t
0 100 200 300 400 500

0

10

20

30

40

50

60

H
 (t

)

Initial-1
Initial-2
Initial-3

(f )

Figure 3: Te numerical simulations of model (64) for η � 0.0006, υ � 0.01, ℘ � 0.3, andI � 0.0016 using three diferent initial conditions
sets. HIV-1 monoinfection equilibrium EPH � (22.41, 0, 0, 186.478, 13.3211, 27.266) is G.A.S. (a) Uninfected epithelial cells. (b) Infected
epithelial cells. (c) SARS-CoV-2. (d) Uninfected CD4+ T cells. (e) Infected CD4+ T cells. (f ) HIV-1.
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Figure 4: Te numerical simulations of model (64) for η � 2.9, υ � 0.002, ℘ � 0.1, and I � 0.0001 using three diferent initial conditions
sets. SARS-CoV-2 monoinfection equilibrium EPV � (0.4285, 0.0087, 0.018, 1094.69, 0, 0) is G.A.S. (a) Uninfected epithelial cells.
(b) Infected epithelial cell. (c) SARS-CoV-2. (d) Uninfected CD4+ T cells. (e) Infected CD4+ T cells. (f ) HIV-1.
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Figure 5: Model (64) numerical simulations for η � 2.9, υ � 0.02, ℘ � 0.1, and I � 0.0016 with three diferent initial conditions sets.
COVID-19/AIDS coinfection equilibrium EPVH � (0.7155, 0.005, 0.0105, 186.478, 13.48, 27.59) is G.A.S. (a) Uninfected epithelial cells.
(b) Infected epithelial cells. (c) SARS-CoV-2. (d) Uninfected CD4+ T cells. (e) Infected CD4+ T cells. (f ) HIV-1.
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Figure 6: Model (64) numerical simulations for η � 2.9, υ � 0.02, ℘ � 0.1, and I � 0.0016 with three diferent sets of delay parameters.
(a) Uninfected epithelial cells. (b) Infected epithelial cells. (c) SARS-CoV-2. (d) Uninfected CD4+ T cells. (e) Infected CD4+ T cells. (f) HIV-1.
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To compel basic reproduction numbers R1 and R2 to
verify R1(ϵ34)≤ 1 and R2(ϵ12)≤ 1, respectively, we choose
the following equations:

ϵ34 ≥ ϵ
min
34 ,where ϵmin

34 � max 0,
1

m3 + m4
ln
ξIλ
βcω

 . (67)

And

ϵ12 ≥ ϵ
min
12 ,where ϵmin

12 � max 0,
1

m1 + m2
ln

acηρ
α℘(ck + υξ)

 .

(68)

Terefore, if ϵ34 ≥ ϵmin
34 and ϵ12 ≥ ϵmin

12 , then EP0 is G.A.S.
Computing ϵ34 and ϵ12 gives ϵ34 � 4.15888 and ϵ12 � 6.82823,
respectively. It follows

(i) If ϵ34 ≥ 4.15888 and ϵ12 ≥ 6.82823, then R1(ϵ34)≤ 1,
R2(ϵ12)≤ 1, and EP0 is G.A.S.

(ii) If ϵ34 < 4.15888 or ϵ12 < 6.82823, then R1(ϵ34)> 1,
R2(ϵ12)> 1, and EP0 will lose its stability.

6. Discussion

Coinfection between COVID-19/AIDS has become a se-
rious problem during COVID-19 pandemic. Mathematical
modeling represents a main tool in helping experimental
studies understand new diseases. We studied a within-host
COVID-19/AIDS coinfection model with distributed de-
lays in this paper.Te model explores the contacts between
healthy epithelial cells, infected epithelial cells, free SARS-
CoV-2 particles, uninfected CD4+ T cells, infected CD4+
T cells, and free HIV-1 particles. Tere are four equilib-
rium points for the model with the following listed
properties:

(a) Uninfected equilibrium EP0: its existence is per-
manent and it is G.A.S if R1 ≤ 1 and R2 ≤ 1. Tis
represents the situation of a person without SARS-
CoV-2 or HIV-1 infections.

(b) Te HIV-1 monoinfection equilibrium EPH exists if
R1 > 1, and it is G.A.S if R4 ≤ 1. At this point, the
person has only HIV-1 infection, but he is not in-
fected by SARS-CoV-2.

(c) SARS-CoV-2 monoinfection equilibrium EPV is
appeared when R2 > 1, and if R3 ≤ 1, then it is G.A.S.
It is the instance of a person who is sufering from
SARS-CoV-2 infection only.

(d) COVID-19/AIDS coinfection equilibrium EPVH

exists and G.A.S if R4 > 1 and
1<R3 ≤ 1 + aηIλξL2L3L4/βω(uα℘ + acηL2). In this
case, the patient sufers from COVID-19/AIDS
coinfection.

Te numerical and theoretical results were found to be in
agreement. Te time delays increase the concentrations of
uninfected epithelial and CD4+ T cells, while they decrease
concentrations of free SARS-CoV-2 and HIV-1 particles.
Tus, parameters of delay can be examined and used in
developing efective treatments for COVID-19/AIDS coin-
fected patients. Moreover, the model with distributed delays
confrmed the efect observed in [20] that low numbers of
CD4+ T cells can increase the risk of severe SARS-CoV-2
infection in coinfected patient. Tus, our model can be used
to estimate the parameters required to get rid of SARS-CoV-
2 in HIV-1 patients. Also, a bifurcation analysis can be
executed in order to get a deeper understanding of the
stability changes. Furthermore, the work can be developed
by fnding a better approximation of all parameters in model
(2) through ftting with real data. We will keep these points
in mind for future projects. [46].
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Table 3: Te variation of R1 and R2 with respect to the delay parameters.

Delay parameters R1 R2

ϵ12 � ϵ34 � 0 8 7.75602
ϵ12 � 0.4 and ϵ34 � 0.2 7.24 6.88
ϵ12 � 0.6 and ϵ34 � 0.4 6.55 6.48
ϵ12 � 3 and ϵ34 � 1 4.85 3.15
ϵ12 � 5 and ϵ34 � 3 1.79 1.731
ϵ12 � 6.82823 and ϵ34 � 4.15888 1 1
ϵ12 � 7 and ϵ34 � 5 0.66 0.95
ϵ12 � 8 and ϵ34 � 6 0.3983 0.704
ϵ12 � 14 and ϵ34 � 12 0.0198 0.1163
ϵ12 � 18 and ϵ34 � 16 0.0027 0.035
ϵ12 � 24 and ϵ34 � 20 0.0004 0.0058
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