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Acquired immunodeficiency syndrome (AIDS) is a spectrum of conditions caused by infection with the human immunode-
ficiency virus (HIV). Among people with AIDS, cases of COVID-19 have been reported in many countries. COVID-19
(coronavirus disease 2019) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this manuscript,
we are going to present a within-host COVID-19/AIDS coinfection model to study the dynamics and influence of the coinfection
between COVID-19 and AIDS. The model is a six-dimensional delay differential equation that describes the interaction between
uninfected epithelial cells, infected epithelial cells, free SARS-CoV-2 particles, uninfected CD4" T cells, infected CD4" T cells, and
free HIV-1 particles. We demonstrated that the proposed model is biologically acceptable by proving the positivity and
boundedness of the model solutions. The global stability analysis of the model is carried out in terms of the basic reproduction
number. Numerical simulations are carried out to investigate that if COVID-19/AIDS coinfected individuals have a poor immune
response or a low number of CD4" T cells, then the viral load of SARS-CoV-2 and the number of infected epithelial cells will rise.
On the contrary, the existence of time delays can rise the number of uninfected CD4" T cells and uninfected epithelial cells, thus

reducing the viral load within the host.

1. Introduction

In December 2019, the first case of the emergence of the severe
acute respiratory syndrome coronavirus 2 (COVID-19) oc-
curred in Wuhan, China. In March 2020, the World Health
Organization (WHO) declared COVID-19 a worldwide epi-
demic. Globally, as of 27 April 2022, over 500 million people
were infected with COVID-19, including 6 million deaths [1].
Old age and its accompanying symptoms such as diabetes, heart
disease, and high blood pressure are considered risk factors for
developing severe COVID-19 infection and are associated with
a high death rate [2, 3]. Some other risk factors are associated
when infection with COVID-19 occurs in people with chronic
diseases such as acquired immunodeficiency syndrome (AIDS)

[4]. In 2020, there were 37.7 million persons living with HIV-1
(PLWH) worldwide; HIV-1 causes acquired immunodeficiency
syndrome (AIDS) with 680,000 of them dying from HIV-1-
related diseases, and only 73% of them were on antiretroviral
medication (ART) [5]. Because their immune systems are
impaired, PLWH who do not receive ART or whose condition is
poorly managed could be more susceptible to developing
COVID-19. If infected with COVID-19, such people are at a
greater risk of developing acute symptoms and dying. The
coinfection cases are challenging due to the scarcity of data on
the outcomes and consequences of SARS-CoV-2 infection in
HIV-1 positive individuals [3, 6, 7].

HIV-1 and SARS-CoV-2 are both RNA viruses. SARS-
CoV-2 attacks upper respiratory epithelial cells, and the
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virus generated by infected cells goes down to the lower
airway, infecting bronchial and alveolar epithelial cells [4, 8].
On the other hand, HIV-1 targets CD4" lymphocytes, which
are the immune system’s most plentiful white blood cells
(referred to as CD4" T cells). A great effort is being made in
many areas of the world to create measures to battle these
viruses and study their biological and immunological fea-
tures and clinical outcomes. Some of these studies indicate
that COVID-19 pandemic has caused disruptions in HIV-1
care facilities in many countries [9, 10]. However, it is
unclear whether people infected with HIV-1 having an
increased incidence of COVID-19 and significant clinical
signs, despite a controversial suggestion that antiretroviral
therapy or HIV-1-related immunosuppression could protect
HIV-1 infected people from severe COVID-19. A number of
HIV-1 and SARS-CoV-2 coinfection cases have been
documented throughout the world [11, 12]. Most studies of
COVID-19/AIDS coinfection reported that there is a lack of
clarity on what constitutes the primary illness and what
constitutes comorbidity in the context of coinfection. Few
studies inferred that SARS-CoV-2 infection does not in-
crease the course of HIV-1 infection in PLWH nor does
HIV-1 infection have an impact on COVID-19 infection
course in PLWH [13-15]. However, Wang et al. [16] pub-
lished a case report of an HIV-1/COVID-19 patient with
such a lower CD4" T cell number, and as a result, the patient
had a prolonged COVID-19 course and decreased antibody
levels. Moreover, COVID-19/AIDS coinfection has been
observed to cause pneumonia problems more frequently
than COVID-19 alone [17]. This study aims to give a
comprehensive picture of SARS-CoV-2 infection in persons
having HIV-1/AIDS.

Mathematical models that consist of a system of dif-
ferential equations have proven their effectiveness in
studying the interactions between viruses and their hosts
and the common interactions between diseases (see e.g.,
[12, 18-24]). HIV within-host models have been widely
investigated and great results have been reached
[18, 19, 25-28]. On the other side, SARS-CoV-2 within-host
modeling has received less attention ([24, 29-32]). Some
coinfection models between SARS-CoV-2 and other viruses
have been developed. For example, Pinky and Dobrovolny
[33] used a within-host model to investigate SARS-CoV-2
coinfections with several viruses types such as influenza A
virus (IAV), parainfluenza virus (PIV), and human rhino-
virus (HRV). In fact, the models of coinfection are essential
to grasp the coinfection dynamics between SARS-CoV-2 and
HIV, to assist the experimental studies and save time, and to
develop effective treatments for coinfected people. Ahmed
et al. [34] created a fractional epidemiological model to
analyze the pandemic scenario in numerous HIV and
COVID-19 affected countries, including South Africa and
Brazil. Then, to the best of our knowledge, the first ordinary
differential within-host SARS-CoV-2/HIV coinfection sys-
tem is presented by Al Agha et al. [20]. The formulation of
their model is based on Nowak and Bangham’s model that
was used widely to model HIV monoinfection and SARS-
CoV-2 monoinfection. Al Agha et al. used the same prin-
cipals to model SARS-CoV-2/HIV coinfection and connect
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the two infections together. The model is formulated as
follows:

[ X(t) =p—aX(t) - nX OV (1),
Y (1) = nX ()V (1) — kY (£) — pY (£)S (1),
V() =aY () -8V (),
S(t) = &+ uY (£)S(t) — yS(t) — 6S(HH (t),
W () = 6S(t)H (t) - W (1),
H(t) = \W (t) - wH (2),

where X (t), Y (¢), and V () represent the healthy epithelial
cells, infected epithelial cells, and free SARS-CoV-2 particles,
respectively, whilst S(t), W (t), and H(t) depict healthy
CD4™ T cells, infected CD4™ T cells, and free HIV particles
concentrations at time ¢, respectively. Epithelial cells are
recruited at rate p and turned into infected cells at pace
nX (t)V (t). Infected produce SARS-CoV-2 particles at rate
aY (t). CD4" T cells are recruited at rate &, eliminate infected
epithelial cells at a proportion Y (¢)S(t), and proliferate at
rate uY (£)S(¢). HIV particles infect CD4" T cells at rate
0S (t)H (t). The infected cells produces HIV at rate AW (¢).
The components X (t), Y (¢), Y (t), Y (), W (¢), and H (¢) die
at rates aX (t), kY (t), 6V (¢), yS(t), pW (t), and wH (t),
respectively. Then, Elaiw et al. [21] adopted the same pre-
vious model with the addition of the effect of latent cells, and
then, they made a comprehensive study of the proposed
model. Ringa et al. [22] presented a new mathematical model
for COVID-19 and HIV/AIDS. The dynamics of the full
model is driven by that of its submodels. Also, they studied
the impact of intervention measures by incorporating it into
the model using time-dependent controls.

Most of the previous publications are the assumptions
that cells produce viruses immediately after they are in-
fected. It is commonly observed that in many biological
processes, a time delay is inevitable. For HIV-1 infection, it
roughly takes about one day for a newly infected cell to
become productive and then to be able to produce new virus
particles. Therefore, mathematicians have frequently used
different types of delays to make biological models more
realistic. In [26, 28, 35], HIV models with time delay were
introduced, whilst modeling and analysis of COVID-19
based on a time delay dynamic model are presented in
[12, 23]. Although there are some publications that combine
the coinfection between viruses in the presence of time delay,
there are still no models of coinfection between SARS-CoV-
2 and HIV with time delay. Due to the decisive role of time
delays in dynamic systems, the objective of this work is to
expand model (1) to accommodate distributed delays. This
can help comprehend the coinfection dynamics between
SARS-CoV-2 and HIV-1 from a different perspective. A
continuous distribution function is used to represent the
delay in case of distributed time delay. This makes dis-
tributed delays more realistic than discrete time delays which
presume that each individual in the population has the same
delay period. Thus, we have investigated a model with six
delay differential equations, and we have established the
solutions nonnegativity and boundedness, listed the



Journal of Mathematics

prospective equilibrium points and the conditions of exis-
tence, discussed the global stability of the equilibria, and
examined time delay impact on the model’s dynamics. The
document includes the following sections: the model is
presented in Section 2. Section 3 confirms the basic prop-
erties of the model. Section 4 exhibits the global properties of
the model. Section 5 lists the numerical simulations. Finally,

Thus, we have a system of six delay differential equations
where X (t), Y (t), V (t), S(t), W (t), and H (¢) stand for the
concentrations of uninfected epithelial cells, infected epithelial
cells, free SARS-CoV-2 particles, uninfected CD4" T cells, in-
fected CD4" T cells, and HIV-1 particles at time ¢, respectively.
A scheme describing the coinfection between SARS-CoV-2 and
HIV in host without time delay is shown in Figure 1. The factor
g, (e)e”™* designates the likelihood that uninfected epithelial
cells were in touch with SARS-CoV-2 particles at time ¢t — €
survived € time units, and infection occurs at time ¢. The term
g, (e)e”™¢ simulates the probability of new immature SARS-
CoV-2 particles at time t — € survived € time units and mature
at time t. Moreover, the factor g5 (€)e”"¢ symbolizes the
probability that uninfected CD4" T cells contacted by HIV-1
particles at time t — € survived € time units and become infected
at time t. The term g, (€)e™ " represents the probability that
new immature HIV-1 particles at time t — e persisted e time
units and mature at time ¢, where m; andi = 1,2, 3,4, and are
the positive constants. The delay parameter € is a random
variable picked from probability distribution functions g; (€)
during time interval [0, 0o). The functions g; (¢) (i = 1,2,3,4)
satisfy g, (€) >0 and

J g;(e)de =1,
0

oo (3)
J. gi(e)e”"™de < o0,
0
where 1> 0. Let us denote the following model:
Zi(e) = gi(e)e ™,
(4)

L= J Z:(e)de,
0

[ X(t) =p—aX(t) - nX(t)V (1),

Section 6 debates the results and some potential next
directions.

2. COVID-19/AIDS Coinfection Model with
Distributed Delay

In this section, we extend model (1) by considering a variety
of distributed time delays as follows:

Y(t)=1 J:O gy (€)e” ™M X (t — )V (t —€)de — kY (t) — vY (£)S(¢),

V(t)=a JZO g, (e)e” ™Y (t — e)de — gV (t),

(2)

S(t) = &+ uY (£)S(t) — yS(t) — IS()H (t),

W) =3 j:o 1 ()e ™S (¢ — )H (t - )de — W (£),

H(t) = A j:o 94 (e ™ W (t - e)de — wH (£).

where i = 1,2,3,4. This implies that 0 <L;<1. The initial
conditions of model (2) are specified as follows:

X(@) =9, (@), Y(@) =¢,(0), V(®)=¢;(),
S(@) = 4 (@), W(D)=9¢5(@), H(®)=¢s(@), (5
<pj(m)zo, ® € (-00,0], j=1,2,...6,

where ¢; (@) € C = {{ € C([-00,0),R): {(0)e* is uniformly
continuous for continuous for 6 € [-00,0), (|| < oo}, and
<1l = supgol¢ (0)]e*? such that « is a positive constant. Here, C
is the Banach space of fading memory type [36]. Therefore, using
the standard theory of differential equations with infinitely
distributed delays [37, 38], model (2) with initial constraints (3)
has a single solution.

3. Basic Characteristics

This section proves that model (2) solutions are non-neg-
ative and ultimately bounded. Additionally, it computes
whole potential equilibria and the threshold numbers.

3.1. Non-Negativity and Boundedness

Proposition 1. All of model (2) solutions with beginning
conditions (3) are non-negative and eventually bounded.

Proof. Starting with model (2) first equation, we obtain
X(t)lX:O = p>0, which yields that X (#)>0 for all t>0.
From fourth equation of the model, we get S@)| s =E6>0;
then, S(t) > 0 for all £ > 0. Furthermore, the rest of the model
equations give us the following model:



4 Journal of Mathematics

aY

SARs-Cov-2 Uninfected Infected epithelial
Partlcles (V) epithelial cells (X cells (Y)

‘ ' £ s Infected CD4 T
HIV particles (H) Uninfected CD4 T J e cells (W)
cells (S) e
= SH
uYS I
¥
AW

FIGURE 1: Scheme describing the coinfection between SARS-CoV-2 and HIV.

o« dg -] (k d
[ e+ vs(aneg e I( +us(a) qJ Z,()X(€- )V (£ e)dede >0,

Y (t) = ¢,(0)e

V() = s (0)e F +a I PO j ()Y (£ e)dede >0, ©
W (t) = ¢ (O)efﬁt +3 J J. 5 (€)S(¢—e)H (€ —€)dedt >0,
0
H(#) = g (0)e ™ + AJ “olt-0 j ()W (£ = €)dede> 0.
0
For all t € [0, 00), as a result of the recursive argument,  lim, ,  supX(t) <Q,, where Q, = p/a. We define the fol-
we obtain X (¢),Y (¢), V (¢),S(¢), W (t), H(t) 20 for all £ > 0. lowing model:
Hence, system (2) solutions with initial conditions (3) realize o v
(X(£),Y (1), V(£),S(t), W (t), H(t)) € RS, for all non- ¥, (8) = I Z1(OX(t-ede+Y () +-8@).  (7)
negative values of t. 0 “
Now, we establish the boundedness of the model’s so- Then, we get the following model:
lutions. Based on model (2) first equation, we gain
W (t) = J Z,(&)[p—aX(t—) = qX(t -V (t - &)lde + 1 j Z (X (- )V (t - e)de
0 0
— kY (t) —vY (£)S(¢) +— [E +uY (1)S(t) — yS(t) - SS(H)H ()]
< vé = vy
P 3 (s)d£+——oc 21 ()X (t —e)de — kY (t) —;S(t) (8)

S,H%_ ¢1“:°§1(8)X(t —e)de+Y () +ZS(t)

=P+v;g_¢1\y1 (1),
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where , = min{a, k, y}. This
lim,_,sup¥, (t)<Q,, where Q, =p/¢; +v€/u¢,. Since
Y (¢) and S(¢) are non-negative, then lim, ,  supY (t)<Q,

implies that

and lim,__,_supS(t) < Q;, where Q; = uQ),/v. Using model
(2) third equation, we get the following model:

V(t)=a J Z,(e)Y (t — e)de - PV (1) <al,Q, — pV () <aQ, — pV (1) 9)
0
This implies that lim, , supV(t)<Q,, where ¥, () = jo Z3(e)S(t - e)de + W (1) (10)

Q, =al),/p.
We define the following model:

Following that, we get the following model:

‘i’z(t) = J:O§3(s)[f+uY(t—s)S(t—s)—yS(t—e)—SS(t—s)H(t—s)]ds

(11)

+3 joo ZL5(e)S(t — e)H (t — e)de — W (t) <& + uQ,Q; — ¢,', (1),
0

where ¢, = min{y, 8}. Thus, we have lim,__, supW (¢) < Qs,

whereQ; = (£ + uQ,Q;)/¢,. Finally, the last equation of

model (2) gives the following model:
H(t) =1 J Z ()W (¢ - €)de — wH (£) <AQ, — wH (£).
0

(12)

Thus, lim,_,supH (t) < Q4 where Qg = AQs/w. Ac-
cordingly, the following region is positively invariant with
regard to model (2).

E={(X.Y, V.S, W, H) € C%: IXII < Q. IV < Qs IV < Q0 18] < Qs W] < Qs | < Q- (13)

3.2. Equilibrium Points. This subsection displays all of model
(2) possible equilibrium states and deduces four threshold
parameters that determine the equilibria existence.

We solve the following set of algebraic equations to
calculate the following model equilibrium points:

[(0=p—-aX-nXV,
0 =nL, XV — kY - vY$,

J 0=alL,Y — ¢V, (14)
0=¢+uYS—-yS-SSH,
0 = SL,SH - W,

| 0=AL,W - wH.

From last equation of model (4), we have W = wH/AL,.
Then, we substitute in the fifth equation, and we get the
following model:

Bw

— (o3 _r—
0= (0L3S AL4>H. (15)

So, we have two possibilities:

Pw

H=0o0orS= .
T T SLLL,

(16)

O
Then, doing the same for second and third equations, we
obtain another two possibilities as follows:
V= 0orgLX - WS _ (17)
- (g al, al,
Equations (16) and (17) provide us with four possibilities.
Accordingly, model (4) has four equilibrium points:

(i) Uninfected equilibrium EP, = (X,,0,0,S,,0,0),
where X = p/a and §; = &/y

(ii) The HIV-1 monoinfection equilibrium
EPH = (Xp O; 0, Sl’ Wl’ Hl)’ where
P Bw
X = S = y
ot SALL,
W SAL;L
1= C;y g -1 s (18)
SALL\  Pyw
SAL,L
H, = %(75\” >4 _ 1).
I\ Byw

It follows that W, >0 and H,>0 only when
ESAL,L,/Byw>1. Thus, we have the following
model:
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So (iii) SARS-CoV-2 monoinfection equilibrium
Xy =Xo, §1 = R/ EP, = (X,,Y,,V,,S5,,0,0), where
o Y,k +85,Y,0
L= SIL, (R, - 1), (19) 2 VoL,
Vv
Y _£%
H, = 5 (R, - 1). e al,’ (20)
Here, R, = £SAL,L,/Byw. Here, R, is the basic S - §
reproduction number for HIV-1 infection. It sets 2 y—uY,
start of HIV-1 infection in host body. We note that
W, >0 and H, >0 if R, > 1. Therefore, EP}; exists V, satisfies the following equation:
when R, > 1.
u@zqug +(uocp2k - aypnkL, — apnvéL, - augmleLz)Vz - aaypkL, — aapvéL, + azyanng —o (21)

anL,L, (ayL, - ugV,)

To prove that equation (21) has a positive root, we
introduce a function B(V) as follows:

B(V) =

up nkV’? +(u(xp2k — aypnkL, — apnvéL, — au@anle)V — aaypkL, — asgpuvEL, + a’ynpL, L

(22)

Then, we have the following equation:

B(0)

anL,L, (ayL2 - ”K’V)

_ —aaypkL, — aagvEL, + a’ynpL, L} _ aypk + apvé

a*ynL,L;

Here, R, = ayypL,L,/ap (yk + v€). This implies that
B(0) >0 when R, > 1. In addition, we find that
lim  B(V)=-o0.
ayL, (24)
ugp
It follows that there exists 0 <V, <ayL,/up such
that B(V,) = 0. From equation (20), we get Y, >0,

—

_ p(kSAL;L, + pow)

3T T anSALLLL, © ° anl,

7\ o (SKAL;L, + fow

W - w (uag + aynL,) [( A&
T anSALL,

= R, —1). (23)
aynL,L, (R, =1)

S, >0, and X, >0. As a result, we deduce that EP,,
exists when R, >1. Here, R, is the basic repro-
duction number for SARS-CoV-2 infection. It de-
fines start of SARS-CoV-2 infection in host body.

(iv) COVID-19/AIDS coinfection equilibrium EPy; =
(X3) Y3: V3, 83, W3, H3), where

anSApL L,LsL, 1)

o (SKAL; L, + Pow)

V.Y anSApL,L,L;L, 1) o Pw
T )y )7 SALL,

(25)

AS ulpL, anSSL,L;L, 1
Pw  SkAL;L, + fvw ’

uag + aynl,

H. - uap + aynlL, K.,.
} anSSL,

Pw  SkAL;L, + fvw

anSLyLsL, )
uog + aynl, ’
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It follows that W5 >0 and H; >0 only when (A¢/fw +
uMpL,/FSkAL;L, + fow)anIL,L; L, /uag + aynL, > 1. On the
other hand, Y;>0 and V;>0 only when
anSApL Ly L Ly oo (SKAL; Ly + fow) > 1.

Thus, we can rewrite the components of EPy,; as
follows:

X
X;==2,
R,
ap
Y.=——(R,-1),
3 anL, (Ry-1)
o
V= ﬁ (R4 - 1)>
26
. Bw (26)
> SALL,
w (uogo + aynL,)
Wy=—————"—"=-(R,-1),
3 anSAL,L, (R —1)
uag +aynl,
=—— = (R;—-1),
3 a?’]st ( 3 )
where
R = /\75+ ulpL, anIL,L;L,
> \Pw  SKAL;L, + pvw ) uag + aynl,
(27)

_anSApL L, L1,
g (SKAL,L, + Bow)

Therefore, EPy,; exists when Ry > 1 and R, > 1. Here, R,
and R, are the threshold parameters that mark the COVID-
19/AIDS coinfection incidence.

The threshold parameters are defined as follows:

7
R, :ESAL3L4)
Byw
R, = _MpLi Ly
2 o (yk + vE)’
4 (28)

ulpL, anSL,L;L,
uog + ayyl,’

Ag
Ry = (;Tw T SKALLL, + fow

R = anIApL,L,L;L,
47 o (SKAL; L, + Bow)’

For simplicity, the contractions listed will be used in the
parts that follow

XH=XYt)=Y,V(t) =V,

S(t)=S,W(t)=W,H(t) = H, (29)

and
Xt-e)=X,Y(t-€e)=Y,V(t-¢)=V,,

(30)
S(t-¢)=S,W(t-¢)=W_,H(t-¢)=H..

4. Global Properties

We demonstrate the global asymptotic stability of all
equilibria in this section by building Lyapunov functions
using the approach described in [39]. We define F(A) =
A —1-1In A, where A can be any variable for the model.

Theorem 1. Globally asymptotically stable (G.A.S) of
equilibrium EP is satisfied when R, <1 and R, <1.

Proof. Take a Lyapunov function 9,(X,Y,V,S,W,H) as
follows:

14X S
ply oy, Vo p(S) Y e Py
L, © ul, ul,L,

So uAL,L,L,

t

(%% o[ anXy (<
+L—IJ Z, (e)J XV (0dede + 0 jo Z.(e) JHY(E)dEds (31)

t—

t

LS ij(e) JZ S(OH ()dede + P J “ 2,0 L_ W (0)deds.

uL,L; Jo

uL,L,L, Jo
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Clearly, 9, (X,Y,V,5,W,H)>0 for all  dJ,/dt along the solutions of system (2) gives the following
X,Y,V,S,W,H >0and 9, (X,,0,0,S,,0,0) = 0. Calculating  equation:

d9 = <1 - &> [p—aX-yXV]+ 1 [11 J 2, (&)X, V. de —kY - UYS] + %o [a J P, (&)Y, de — pV
dt X L, 0 © 0

v So o __
—(1-—= YS -yS—-S3SH [‘VJ Hd—W]
+uL1( S>[£+u $=yS - SSH) + (S | Fa (08 Hde-
(32)
0 ©__ X, ©__
+L[AI 34(£)nge—wH] +1J P, (&) [XV - X, V,]de + 2120 J Z,(e)[Y - Y,]de
uAL,L;L, 0 L Jo P Jo
VS (P — vf o __
H - S.H,|d W -W,|de.
P | Z@lsm - s Ct LTI | Za@w -we
Adding up the terms in equation (32), we obtain the
following equation:
dd, X 1 1 v So
O (1-29) (p— aX) - nXV + X,V - —kY - —0YS — X,V —(1——) -
dt < X>(P oX) =XV + XV = RY = o¥S =XV e (10 ) 6 =99)
1 1 X
i lovso Lovs, - Vgsae Lgs - ow oY g xv oy (33)
L, L, uL, uL, uL L, uAL,L;L, ©
v Vgsy oW,
ulL, ul,L;
Using p = aX; and & =yS,, we obtain the following
equation:
dd X 1 1
B & o x - (5o, +( Poar, - Lo Los, v+ (55, - L2\
dt X uL,S © L L uL, AL,L,
k L,L SAL,L
g (s (@l )y e (LD )y gy
X uL,S yLy  \ ap (yk + vE) uAL,L;L,\ Byw
o 2 vy 2 yk+v€ vBw
=—(X-X,) - S-S R,-1)Y +—— (R, - 1)H.
0= = (s -5 e (- )y« P ()

Since R; <1 and R,<1, we get df,/dt<0 for all
X,Y,V,8,W,H>0. Also, d9,/dt = 0 when X = X, S = §,,,
and Y=H=0. Set T,={(X,Y,V,S,W,H): d9,/dt = 0}
and the largest invariant subset (L.L.S) of T, by T. Then, the

model solutions converge to T,. The set T, contains elements
with X () = X, S(t) = Sy, and Y (t) = H(¢) = 0, and hence,
Y (t) = H(t) = 0. The second and last equations of the model
(2) give the following equation:
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. o —
0=Y () = qJ Z,()X,V . de,
- (35)
0=H(t) = AJ Z, ()W de.
0
Thus, we get V (t) = W (t) = 0 for all . Then, Ty = {EP,},
and using Lyapunov-LaSalle asymptotic stability theorem

[40-42], EP, is G.A.S. O

In the following theorems, we need to use the equalities:

S.H S.HW, s, WH.
ln<¥> =In J)4In[ 2 ) +1In 1,
SH SjH]-W S W]-H

w W .H, W.H
ln<—£> =In N iIn( —2—), j=1,3
w W;H WH;

(36)

Furthermore,

XV XVY. X YV,
ln<¥> = ln( —— l) + ln<—’> + ln( ’),
XV XVY X Y.V

171 1

(37)

Theorem 2. If R, >1 and R, <
G.AS.

1, the equilibrium EPy is

Proof. Consider a Lyapunov function 9, (X,Y,V,S,W, H)
as follows:

X X S w H
9, = X,F +—Y+MV+—31F (WY g p(
X)L e U Tu\s, ) T, Y \wy ) T, Y\ A,

Ly

L USSH, JOO Z,(e) r F<S(€)H(€))d€de +
0 t—e

uL,L, S,H,

Differentiating 9,, we obtain the following equation:

a5,
dt

X
( gl) (€ + uYS - yS — GSH]
vp

:(1_X )[p—ax—nxani[nJ 2 (e)XVde—kY—vYS] ’7@‘
1

1 o _ t “’7X1 o t
+ JO Z,(e) L_s X (£)V (£)dede + o jo Z,(¢) L_s Y (I)déde (38)

VBW, JOO_ Jf W (0)
L Lp |, @], By Jaede

a J Z, (&)Y de - pV]
0

(- s
+ML1L3(1 W)I:«S Ty (S Hde - W

(39)
_H _ * _ anX, Jm— _
T ( H)[ JO L (W, de wH] L J Z1 @[V - XV Jdes T [ TZ @Y - Jae
| vSSiH, S.H, . (S.H, VW, j = wow W,
uL,L, j [ S,H, SH1+ln( SH )]ds+uL1L3L4 o L1y (W) de
Summing the terms of equation (39), we obtain the
following equation:
dg, X,
—=1-— X ——kY ( ) S YS, + S3S,H
dt ( X>(p aX) ul, (§=78) —-o¥S, + Ll"1
w
_ sj P (@S Hoy e+ W, - v J Z, (W, lds _ oy (40)
uL,L, uL,L, uL,L,L, uAL,L,L,
X 3S,H H, w
+ vpw H1+a}1 1L2Y+vd S J 33(s)ln< £ >d€+ uBW, J 34(s)ln< )ds
UM, L, L, ul, Ly Jo SH uL,L,L, w
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By utilizing the equilibrium conditions for EPy;, we get Then, we obtain the following equation:
the following equation:

p=aX,
&=vS,+S8H,S,,
SL,H,S, = W,
AL,W, = wH,.

(41)

d9, o 2 (11X, 1 1 vy 2 v S
Y i xox )M, - Sk 2ws, )y - (s Vg H(l——)
@ - XXX +( o RS Vo 5SS T SSH(1-

35, H HW W
s - 55 IJ Z, () W4, +—JSH LJ .524() lds——uSH (42)
ul, uL,L, Jo S,H,W L L,L, ul,
v oo vS’sSlHIJ ( H) v3S, H, ro_ (We>
Y 3s,H Zy (o)l d Z, (o)ln( = )de.
L, VM T L L s Jder=r L, |, Za@nlyy )de

Using the equalities given by equation (36) in case of
j =1, we get the following equation:

9, _ —E(X ~X.)? )+ SKAL;Ly + pow [ anSApL L LsL, v
X 1 : SALL,L, \ap(SKAL,L, + fow)
SSiH HW, S,HW
- gs,H, i—1—1n<ﬁ) -5 1] Z, (0|21 (S g, (43)
ul,y § § uL,Ly Jo S HW S H,W
_%J'wg (¢) Wng—l—ln WeHl de
ul,L, Jo T W H W,H ’
Therefore, equation (43) becomes
d9, _ _«a 2 vy 2 SKAL,L, + uw
= = X X) - (S-S 7 (R Y
dt X( 1) uLIS( 1) + SAL1L3L4 ( 4 )

(44)

S\ vSS,H S.H.W SS,H, [©—
—LsslH1F<J>—“" R I Zy@F( et de = 221 J Z, (e)F
s) L Jo HW WL, Jo

W_.H
£ l)ds.
W, H

Since R,<1, we find that d9,/dt<0 for all toT|theLLSof T, ={(X,Y,V,S,W,H): d9,/dt = 0}. The
X,Y,V,S,W,H>0. Also, d9,/dt =0 when X = X, S=§,, set Tl' contains elements with Y (¢) =0; then, Y(¢) =0
Y =0,W =W, and H = H,. Model (2) solutions converge  Second equation of system (2) implies
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. ©__ Th | 1 1, ilibrium EPy, i
0=V (1) = ﬂJ ()X, V de, (45) GAe(;rem 3. IfR, > 1 and R, <1, then the equilibrium EPy, is
0 LA.S.
which gives V (t) = 0 for all ¢. Therefore, T| = {EPy} and ) )
EP,, is G.A.S according to Lyapunov-LaSalle asymptotic ¥ roof. We introduce a Lyapunov function
stability theorem [40-42]. O 9, (X,Y,V,S5 W, H) as follows:
X 1 Y nX, v S v vf
=X, F| — |+—Y,F| — |+ —V,F| — | + —S,F| — H
=X (x2> L <Y2>+ 0 2 (V2>+uL182 (sz) tuns Y Y aLLL,
t
X,V XV (£ X, Y, [ — t Y(¢
L1 Zj S’l()JFM dEde+MJ yz(s)J F( X9 dode (46)
L ; X2V, £ 0 t-e Y,
—&
el Gl [, #e].,
H —_— .
T 7 K J Z5(¢) J S(O)H (¢)dede + L1L3L4ﬁ Z,(¢) W (¢£)dede
Differentiating 9,, we obtain the following equation:
d9, X, 1 YAT (®— X, Vz)
1-—= X -nX —(1-=—= X Y —vY 1-—=
dar ( >[p i V]+L1< Y)["jo Z1(eX Ve~ kY ~v S] © < %
x[arog ()Y, de - V] +i<1-§>[5+uys- S - SSH] + [5 rog (6)S.H ds—ﬁW]
0 2 € © MLI S Y ML1L3 0 3 ete
B 0 __ XV, J XV XV, . (XV
A Wde - oH | + +1n(S5) [
"L L3L4[ ,[o Zi(OWde—w L 1@ v, T xw, T ) | (47)
a X,Y, Y v
anX,Y, .sz(s)[——— 1n(?€>]ds+uL L3sj Z,(e)[SH - S,H,]de
B
TuLLL, J Zi(@)W =W ]Jde

By collecting the terms of equation (47), we have the
following equation:

dd, X, N Y,
1-22)(p—ax) -1 X,V ~2de -
dar ( X>(P X -7 jo Z1(OX Ve de

+n X,V + L<1——)(E yS)——vYS2 LSSZH—

1
X
+ Ay y
©

+a'1X2Y2J gz(s)ln(ﬁ)ds
e Jo Y

vBw nX,Vv, JOO_ (XEVE)
H Z, (o)l d 48
ulL,L,L, " L, Jo 1 (e)ln ¢ (48)
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By using the equilibrium conditions for EPy,, we obtain the following equation:
p=aX, +nX,Vs,

nL X,V, = kY, + vY,S,,

al,Y, =@V,

§=9S, —uY,S,,

(49)

do X X X,V X, V.Y
T _ —E(X—X2)2+;7V2X2(1——2>+ 20, - Lo Los |y -1V J Z (ot 2e
X X © L I L, Jo X,V,Y
1 1 X,Y S,
X,V — 0,8, + — oY, s - D22 J ARG Ye 2de+ WX,V — (s S,) - vY252<1 ——) (50)
L, Ly 4 S
X,V Ve X,V
T GRSt LRty AN G )d [ sz<s)1n( ‘)de.
ul, AL.L, L, XV L
Using the equalities given by equation (37) in case of
i = 2, we get the following equation:
dy, o 2 Uy 2 1 S, S [X X,
e F - (s-s Y,8,(2-2-2) _ux,v ——1—1<—)]
dt X( 2) uLIS( 2) 1U 292 s S, URAS
X5V, (= X VY X VY
vV (g5, - P\ 1K ZJ D) 22 1~ In 22 ) | de (51)
uL, AL,L, L, Jo X,V,Y X,V,Y

Therefore, equation (51) becomes

do, a

T - XX

X, v Bw
- X,V,F Y (gs, - \u
X, LSS (8=8) ~nX,V, <X>+uLl<"SZ AL3L4)

X XVyY X o __ Y
}1 V2 J g ( ) EVS 2 de - n 2V2 J gz (S)F £V2 de.
L, X,V,Y L, Jo

(52)

If Ry;<1, then Epy,y does not exist since H;<0 and
W <0. This implies that

H(t) = AL,W — wH <0,

. (53)
W (t) = SL,SH - fW <0.

Therefore, we get (IS — fw/AL;L,)H <0 for all H,S> 0.
Hence, we have (SS,—pBw/AL;L,)<0, and therefore,
d9,/dt<0forall X,Y,V,S,W, H > 0. In addition, d9,/dt = 0
when X =X,,5=S,,H=0,Y =Y,,and V = V,. Solutions

of the model (2) that converge to T, is the L.IS of T, =
{(X,Y,V,S,W,H): d9,/dt = 0}. The set T, has elements
with H(¢) = 0, and thus, H (¢) = 0. Using system (2) last
equation, we get the following equation:

0=H(t) =1 ro Z, (W de. (54)
0

Yield W (¢) = 0 for all values of t. Therefore, T, = {EPy/}
and EPy is G.A.S according to Lyapunov-LaSalle asymp-
totic stability theorem [40-42]. O
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Theorem 4. If R,>1 and 1<Ry;<1+ aySAL,L,L,/  Proof. We consider a Lyapunov
Pw (uogp + aynL,), then the equilibrium EPy is G.A.S. 9;(X,Y,V,S,W, H) as follows:

X 1 Y nX; \% v S v w
93 = X3F| — |+ —Y3F| — |+ —V3F| — | + —S;F| — | + WiF| —
X5) L 3 © Vi) ul S3) ulils W

)-<

vp 71X3V3 t X0V (£) “’7X3Y3 ¢ Y (0)
() [ [ (R Jaese s [T [ (5 o

+7
ulL,L;L, ’ L 3V3 t 3
SS.H 0 _ t H t

U35 3J 593(5)] p(SOHON 44, W J Z, (e )J QAR PN
uL,L, Jo e\ S;H, uL,L,L, e W,

By differentiating 9;, we obtain the following equation:

%:<1_§>[p_ax_;7xv1+l(1—5>[qJ z(e)xvcis—ky-vys] ”X3(1—§>
n X L\'7y o TV

X

© __ v W,
a Jo &, (e)Y de - (QV] il <1 - §> [E+uYS—-yS—-SSH] + L, <1 - W)

x \SJO Z, ()5, H,de ,Bw]+ML1L3L4<1 2)[x Zu(OW.de - o
I [ 7, 0 £ - 1 (5 ) [+ T [ 2w 5o (5 [ae
L Jo XV, XV, XV e Jo Y, Y, \Y

SS:H, ([ — H H H 194 0 __ w W w
+%J Zs(e) SH _ S.H, +ln<s£ 8) de + vpW, J Z, (& — -5 +ln< s) de.
uL,L, Jo S,H, S,H, SH uL,L.L, W, W

Collecting terms of equation (56) gives the following
equation:

dd X ©__ Y 1 1 1 X ©__ \%4
—3:<1——3>(p—ocX)—1J. gl(s)Xngide——kY+—kY3+—UY3S—uaJ Z,(e)Y 2 de
dt X L Jo Y& L L, o Jo %

©__ w
XV, + (1 —) (E—yS) - UYS3 g H- g J Z, (S, H 2 de + —— W,
uLl 1 0 w

v
ul,L, uL,L,

v Hy — up vp nX;Vs J ( Ve )
TuL,L,L, J LWy de oL oL L 71 (@ln( 5 )de
X XY, [ — Y SS,H, ([ — H
L ALY + M35 J %, (s)ln(—s>ds+ v3S;H, J &, (s)ln(Se S>de
@ © 0 Y ulL,L; Jo SH

+%J Z(s)ln(%)de.
uL,L;L, ) o w

By using the equilibrium conditions for EPy,

13

function

(55)

(56)

(57)
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[ p=aX;+4V5X5, we get the following equation:
nL,\V3X; = kY5 + 0Y;S;,
al,Y; = @V,
1 €= 98, + SH,S, - u¥sS,,
SL,H,S, = fW,
| AL,W, = wH;,

(58)

4 %o x e 17V3X3(1 -

X X 1o X,V XV.Y
3>+ M8 0L, - = k- —us, Y—uj P\ () 2 de
dt X © 0

X L, L L, X,V,Y

1 1 X,Y
+ 14XV — — Y8, +—uY3S—waJ .sz(s) 3de+ HX3Vs - —2 (S = 85)°
L L, © ulL,S

1 S S SS,H S,HW
——vY3S3(1 3>+L\553H3( 3>+L°S3H—v" 3 3J Py (e) e 3
L s) " uL, s) " uL, uL,L, Jo S;HW

(59)

(o3

v VW, J‘°° W H,
+—SS;H; -
ul, 7 uL,L,L, i@y

L1V J Z,(e) 1n<§)ds+”"S3H3 j (e )ln(s He )de+ vSS,H, J Z,(e) 1n(%)de.
L, 0 Y ul,L, 0 SH ul,L, 0 w

;1X3V3J (XV)
d—— SS;H +—SS;H, Z, (o)1 d
W.H Llo3 + il SS;H; + L (¢)In XV £

Using the equalities given by equations (36) and (37) in
case of i, j = 3, we get the following equation:

do, o 2 vy 1 S; S X,
o Tx-xy) - oY Sy 22— 2 ) XV 22— 1-1n
i - XK s ) LS (2 ) V3[ ( >]

X
SS;H; | S S X5V X V.Y, X\V.yYy
_ U9 —3—1—1n<—3> n 3J 1() —1-In[ 22223 ) |de
ul, |S S L X, V.Y X, V.Y
X5V «© Y,v Y.v SS;H; ([ — S.HW S.HW
_;7 3 3aj 2() 3 -1-1In e’ 3 dé‘—vds 3J 33(8) et le 3—1—11’1 et te'V 3 de
L, Y,V Y,V ul,Ly Jo S,H,W S,H,W

0
SS;H; ([ — H H
R [T 0 e -1 - in( S ) [
uL,L, o W,H W,H

Therefore, equation (60) becomes the following
equation:
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dd L SulpL,L,L,L X
Jz_E(X_X3)2+v(u“p+aW7 2)(8—83)2 anSurpLyLyLyly -1 _77X3V3F<73>
D ¢ anuSL,L, (SKAL;L, + fow) (uag + aynL,) X

SS,H S X;V, [ — X VY XV, ([ — Y.v
_U\53 3F<_3>_’7 3 3J gl(S)F e’ e 3 de_ﬂ 3 3J gZ(S)F e’ 3 de (61)
ul, S L, Jo X,V,Y L, Jo Y,V
SS:H, ([ — SHW SS:H, ([ — W H
s i J P, (e)F( el ) g - VP05 I P, ()F =73 ).
uL,L, Jo S,H,W uL,L, Jo W,H
. Es/le—(mﬁﬁm/;q)
Since 1< Ry <1+ anSAEL,LyL,/fw (uogp + aynL,), T e

then d9;/dt<0 for the positive values of Y

X,Y,V,S,W, and H. Moreover, d9;/dt = 0 when X = X,

S=Sy Y () =Yy, V() =Vy, W(t) =Wy, and H(t) = Hy. | , _aynpe (")

The model trajectories that converge to T be the L.1.S of 2 ap (yk + v€)

T, = {(X,Y,V,S, W, H): d9,/dt = 0}. Hence, T3 = {EPy 4}

ar.lt.d EPyp is G.A.S according to Lyapunov-LaSalle sta- AE uhpe™ ™ ansef(m2€z+m3e3+m4€4)

bility theorem. O Ry=| —+ - e

P gire (meme) 1 gy | uag +ayne
All equilibria of model (2) with the existence conditions
and global stability constraints are summarized in Table 1. ans)tpe*(mlel*’”zeﬂmaes*mﬁd)
) ocp[\“s'k/\e_(m3e3+m4e“‘) + ﬁvw].
5. Numerical Simulations (65)

We execute numerical simulations in this part to enhance
the outcomes of Theorems 1-4. Moreover, the impact of
time delays on system dynamical behavior will be tested. To
transform a model with distributed time delay (2) to a
discrete one, we choose a Dirac delta function D(.) as a
specific formula of kernel g, (.) as follows:

gi»)=D(v-¢), ¢e€l0,00), i=1234 (62)

Then, we get the following equation:

(o)
L= Jo D(c - ej)efmfcdc =e ™%, j=1,2,3,4  (63)

Thus, model (2) is reduced as follows:

[ X(t) = p—aX(t) - nX @V (t),
Y(t) = ne ™MOX(t—e )V (t—e)—kY(t) - oY (£)S(t),
V(t) = ae ™Y (t —e,) — pV (1),
S(t) = E+uY (1)S(t) — yS(t) — IS()H (1),
W (t) = Se ™SS (t —e;)H (t — ;) — W (1),
H(t) = e ™“W (t - ¢,) — wH ().

(64)

For model (64), the threshold parameters are given by
the following equation:

To solve system (18) numerically, we change some pa-
rameters values whilst assigning fixed estimate to the rest
parameters (Table 2). We modify the parameters 7, v, g, and
S to test the conclusions of Theorems 1-4. Furthermore, to
test the impact of the time delays upon COVID-19/AIDS
dynamics, delays parameters €,,€,,€;, and €, have been
changed.

5.1. Stability of Equilibrium Points. During this part, we
choose delay parameters as follows: €; =1, ¢, =0.8,¢; = 1,
and e, = 0.8. Additionally, we select three distinct starting
conditions of the model (18):

Initial-1: X(e) =5, Y (e) =0.0001, V (e)=0.0002,
S(e) =100, W (e) = 5, and H (¢) = 10,

Initial-2: X (e) =10, Y (e) =0.001, V(e) = 0.002,
S(e) =200, W (e) = 10, and H (¢) = 15,

Initial-3: X(e) =15, Y (e) =0.002, V(€)= 0.003,

S(e) =300, W(e) =15, and H (¢) = 20.

Here, € € [-max{e,, €,,€5,€,},0] and it is optional to
pick these values. Moreover, the initial conditions are split
into three groups to provide global stability for any starting
conditions. To dissolve system (18), we utilize MATLAB
solver dde23. Based on equilibrium points EP,, EPy;, EPy,
and EPyy global stability explained in Theorems 1-4, the
simulations are divided into four cases. In these instances,
we change values of #, v, g, and J of system (18). Other
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TaBLE 1: Equilibrium points of model (2), existence conditions, and global stability conditions.

Equilibrium Existence conditions Global stability conditions

EP, = (X,,0,0,S,,0,0) None R <1and R,<1

EP, = (X,,0,0,8,,W,H,) R >1 R,>1and R, <1

EP, = (X,,Y,,V,,5,,0,0) R,>1 R,>1and Ry<1

EPyy = (X3, Y5, V3,85, W5, Hy) Ry;>1and R, >1

R,>1and 1<Ry <1+ (anSAEL,L;L,)/ (Bw (uogo + ayyL,))

TABLE 2: Model (64) parameter values.

Parameters Value Reference
p 0.02241 [24]
o 1073 [24]
n Varied —
k 0.11 [24]
v Varied —
a 0.24 [24]
© Varied —
3 10 [19]
u 0.1 [44]
y 0.01 [45]
S Varied —
B 0.5 [43]
A 5 [35]
w 2 [35]
m; 0.1 —
m, 0.2 —
ms 0.2 —
my 0.3 —
€,i=1,...,4 Varied —

parameters values are set and recorded in Table 2. The four
scenarios are detailed as follows:

(i) Case 1 (stability of EP): we take 1 = 0.006, v = 0.01,
© = 0.3, and S = 0.0001. The thresholds in this case
are given by R, =0.322<1 and R, =0.008 < 1. In
harmony with Theorem 1, the equilibrium EP; =
(22.41,0,0,1000,0,0) is G.A.S (Figure 2). This is the
best case scenario when the person is free of SARS-
CoV-2 and HIV-1 infection.

(ii) Case 2 (stability of EPy): we get # = 0.0006, v =
0.01, p = 0.3, and J = 0.0016. This provides us with
R, =515>1 and R, =0.004<1. According to
Theorem 2, the equilibrium
EP; = (22.41,0,0,186.478,13.3211, 27.266) is
G.A.S (Figure 3). This simulates the situation in
which a person has HIV-1 infection with depressed
CD4" T cell levels, but SARS-CoV-2 infection is not
present.

(iil) Case 3 (stability of EPy): we select =29, v =
0.002, =01, and J =0.0001. This gives
R, =56.997>1 and R; = 0.3535< 1. In this situa-
tion, the system solutions converge globally to
equilibrium
EP,, = (0.4285,0.0087,0.018,1094.69,0,0).  This
result accords with Theorem 3 (Figure 4). This
scenario simulates the case of a person infected with
SARS-CoV-2 but not HIV-1 infection.

(iv) Case 4 (stability of EPy ): we consider = 2.9, v =
0.02, = 0.1,and J = 0.0016. This implies that R; =
5.19433> 1, Ry <1+ aySAEL, LyL,/Bw (uap + ayn
L,) = 6.1436, and R, = 30.1279>1. In agreement
with Theorem 4, the equilibrium EPyp = (0.7155,
0.005,0.0105, 186.478 ,13.48,27.59) is G.A.S (Fig-
ure 5). In this case, COVID-19/AIDS coinfection
occurs, where an HIV-1 patient gets infected with
SARS-CoV-2. CD4" T cells, which are the main
target of HIV-1, are recruited to eliminate SARS-
CoV-2 infection from the body. However, if the
patient has low CD4" T cell counts, the clearance of
SARS-CoV-2 may not be achieved. This can cause
severe infection and death.

5.2. Impact of Time Delays on COVID-19/AIDS Dynamics.
Here, we adjust parameters of delay ¢;,i =1,2,...,4 and
set the parameters values # =2.9,v=10.02,p0 =0.1, and
S =0.0016. Since Ry, R,, R;, and R, offered by equation
(65) rely on €;,i=1,2,...,4, varying parameters ¢; will
convert stability of the equilibria. We consider the fol-
lowing cases:

(D.PSl)e; =€, =€;3=€,=0
(D.P.S2) €, =0.3,¢, =0.4,e5 = 0.5, and ¢, = 0.6
(D.P.S3) €, =10,¢, = 11,65 = 12, and ¢, = 13

With the above values, we solve model (64) with given
initial conditions:

Initial-3: (X (€),Y (e),V(e),S(e),W(e), H(e))=(5,
0.002, 0.003, 300, 15, 20).

The inclusion of time delays can increase the number of
uninfected epithelial and CD4+ T cells while diminish the
number of other compartments, as shown in Figure 6.
Table 3 shows the values R, and R, for selected values of ¢;,
i=1,2,...,4. Clearly, R, and R, decrease when ¢; are
increased, and accordingly, the stability of EP; can be
changed. Let us compute the critical value of the time delay
that changes the stability of EP,. Without loss of generality,
we let the parameters €; = €, = €3, and €, = €, = €1,, and
write R, and R, as functions of €;, and €,,, respectively, as
follows:

Es)te— (m3 er4)634

Ry (e3) = Byw >
(66)

R ~ ayﬂpe—(mﬁ-mz)e12

2(612) = ag (yk + vE) .
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TaBLE 3: The variation of R, and R, with respect to the delay parameters.

Delay parameters R, R,
€, =€ =0 8 7.75602
€, =04 and €5, =0.2 7.24 6.88
€, =0.6 and €5, = 0.4 6.55 6.48
€,=3and e, =1 4.85 3.15
€,=5and e =3 1.79 1.731
€, = 6.82823 and €, = 4.15888 1 1
€,=7and € =5 0.66 0.95
€,=8and e =6 0.3983 0.704
€, =14 and €5 = 12 0.0198 0.1163
€, =18 and €5, = 16 0.0027 0.035
€, =24 and €3, = 20 0.0004 0.0058

To compel basic reproduction numbers R, and R, to
verify R, (e€5,) <1 and R, (€;,) <1, respectively, we choose

the following equations:
1 31
— I fi} (67)

min min
€,2€;, ,whereey, = max40,
my+m, Pyw

And
min min aynp
> ,wh = 0, .
€1, =€, ,whereeg,, max{ my +m, oc@(yk + v&,)}
(68)

Therefore, if €5, > €X" and €, > €l then EP, is G.A.S.
Computing €5, and €,, gives €5, = 4.15888 and €, = 6.82823,
respectively. It follows

(i) If €5, >4.15888 and €, >6.82823, then R, (€3,) <1,
R, (e1,) <1, and EP, is G.A.S.

(ii) If €5, <4.15888 or €, <6.82823, then R, (e3)>1,
R, (€1,) > 1, and EP, will lose its stability.

6. Discussion

Coinfection between COVID-19/AIDS has become a se-
rious problem during COVID-19 pandemic. Mathematical
modeling represents a main tool in helping experimental
studies understand new diseases. We studied a within-host
COVID-19/AIDS coinfection model with distributed de-
lays in this paper. The model explores the contacts between
healthy epithelial cells, infected epithelial cells, free SARS-
CoV-2 particles, uninfected CD4" T cells, infected CD4"
T cells, and free HIV-1 particles. There are four equilib-
rium points for the model with the following listed
properties:

(a) Uninfected equilibrium EP,: its existence is per-
manent and it is G.A.S if R, <1 and R, <1. This
represents the situation of a person without SARS-
CoV-2 or HIV-1 infections.

(b) The HIV-1 monoinfection equilibrium EPy; exists if
R, >1, and it is G.A.S if R, <1. At this point, the
person has only HIV-1 infection, but he is not in-
fected by SARS-CoV-2.

(c) SARS-CoV-2 monoinfection equilibrium EPy, is
appeared when R, > 1, and if R; <1, then it is G.A.S.
It is the instance of a person who is suffering from
SARS-CoV-2 infection only.

(d) COVID-19/AIDS coinfection equilibrium EPy
exists and G.AS it R,>1 and
1<R; <1+ anSAL,LyL,/fw (uag + aynL,). In this
case, the patient suffers from COVID-19/AIDS
coinfection.

The numerical and theoretical results were found to be in
agreement. The time delays increase the concentrations of
uninfected epithelial and CD4" T cells, while they decrease
concentrations of free SARS-CoV-2 and HIV-1 particles.
Thus, parameters of delay can be examined and used in
developing effective treatments for COVID-19/AIDS coin-
fected patients. Moreover, the model with distributed delays
confirmed the effect observed in [20] that low numbers of
CD4" T cells can increase the risk of severe SARS-CoV-2
infection in coinfected patient. Thus, our model can be used
to estimate the parameters required to get rid of SARS-CoV-
2 in HIV-1 patients. Also, a bifurcation analysis can be
executed in order to get a deeper understanding of the
stability changes. Furthermore, the work can be developed
by finding a better approximation of all parameters in model
(2) through fitting with real data. We will keep these points
in mind for future projects. [46].
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