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In the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several
subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to
modulate the data and classify them into several subgroups. Te mixture of Rayleigh distribution is best to be used with the
lifetime process. Tis paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the
maximum likelihood function. Te technique is applied to simulated data by following several scenarios. Te accuracy of es-
timation has been examined by the average mean square error (AMSE) and the average classifcation success rate (ACSR). Te
results showed that the method performed well in all simulation scenarios with respect to diferent sample sizes.

1. Introduction

Fitting an appropriate distribution of data is one of the
recent issues that challenge research worldwide. One of
which arises from the date when it belongs to more than one
population. Terefore, fnite mixture models are employed
to tackle such issues. In many applications, one large
population can be formed from several subpopulations that
are mixed in an unknown proportion. In such a case, one can
come across a population of biological or electrical elements
that may be divided into two or more subpopulations based
on the possible causes of failure or any other categories such
as male, female, and age categories. Many researchers have
introduced several inferential methods to infer some aspects
of data following heavy-tailed distributions [1, 2].

Many methods have been proposed to apply the mixture
model to data in physical, biological, engineering sciences,
and other felds as a valid technique of machine learning
methods. A mixture of normal and Laplace distributions is
ftted to wind shear data [3, 4]. In addition, the mixture
model was used in modeling the crime and justice data [5]. A
mixture of exponential distributions was considered a valid
tool to infer device failure by dividing the population into

several subpopulations [6, 7]. Split-and-merge operations
were used to improve the likelihood via the mixture of the
t-distribution model to study image compression and pat-
tern [8]. Te mixture model was used as a classifer tool to
cluster individuals based on estimated density functions for
each individual based on blood cell data [9].

Te mixture model can be structured from densities
following the same families of distributions or diferent ones.
Either way, it is useful as a confrmatory or predicting tool.
Indeed, the maximum likelihood (ML) is the popular
method for inferring the model [10, 11]. However, the
challenge is the unknown number of allocations and ob-
servation memberships, through which the accuracy of
estimation is undermined. Tese issues have been tackled by
many proposed techniques over years. Terefore, deter-
mining the exact number of components by performing a
relevant test is considered an important starting point in
applying the mixture model [12, 13]. In the same manner,
the most common way of handling the above issues is by
using a latent variable that leads to a complete-data log
likelihood rather than using the incomplete one [14], and
then, the expectation-maximization (EM) algorithm is
employed to estimate model parameters [15–17].
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Moreover, Markov hidden model can be employed by
adding components-indicator labels to the mixtue model to
determine observations memberships. Tis is an extension of
Gaussian mixture model to model k-components of stationary
or non-stationary auto-regressive [18], or to model time series
data by non-Gaussianmixture [19]. Bayesian inference can also
be used to infer the parameters of mixture models by assuming
prior distribution for the parameters which in turn result in the
posterior distribution of the parameters.Tis framework can be
conducted by Markov chain Monte Carlo (MCMC) [20, 21].
Tis framework of estimation can avoid many difculties in its
applications that involve (ML) estimation [22–24].Te authors
in [25] introduced a general form of inverse Rayleigh distri-
bution, which is known as exponentiated inverse Rayleigh
distribution (EIRD), which extends amore fexible distribution
for modeling life data.

In this paper, we derived the expectation-maximization
(EM) algorithm to estimate parameters of the mixture of
Rayleigh distributions. Tis can be done through the
maximum likelihood of the model, and then, we can use the
EM algorithm to update estimators by iterative steps until
reaching convergence. Afterward, the accuracy of the model
inferred is examined by simulation based on diferent sce-
narios and the number of components. Te success rate of
clustering is also calculated accordingly.Te rest of the paper
is organized to give the theoretical details of the theoretical
part in Section 2. In Section 3, the method is applied to the
simulated data by using several scenarios. In Sections 4 and
5, the discussion and conclusion are involved to show the
complete picture of the method and its results.

2. Materials and Methods

A random variable of Rayleigh distribution is defned as the
time between two consecutive occurrences [26]. Te
probability density function is written as

f(x; σ) �
x

σ2
e

−x2/2σ2( ),wherex, σ > 0. (1)

In many lifetime scenarios, data can come frommore than
one component, and then, known distributions become in-
accurate to ft the data. In such a case, themixturemodel can be
used to handle the problem. When it comes to lifetime data, a
fnite mixture of Rayleigh distribution is used to model the
data. Te probability density function (PDF) of the mixture of
Rayleigh distribution with k components can be written as

f(x; θ) � 􏽘
k

j�1
πj

x

σ2j
e

−x2/2σ2
j􏼐 􏼑

, (2)

where 􏽐
k
j�1 πj � 1, 0<πj < 1, θ � (π1, π2, . . . , πk−1, σ1, σ2,

. . . , σk)T, x, σ > 0.

3. Inferential Method

Te classical way of estimating the parameters of the mixture
model is by the maximum likelihood (ML). Te incomplete-
data likelihood function of the k-component mixture model
is defned as follows:

L(θ; x) � 􏽙
n

i�1
􏽘

k

j�1
πj

xi

σ2j
e

−x2
i
/2σ2

j􏼐 􏼑
, (3)

where X � (x1, x2, . . . , xn)T.
Te allocations here are considered a hidden state that

needs to be defned by a latent vector Z. Te variable Z is a
Markovian vector, and it is defned as Z � (z1, z2, . . . , zn)T,
where Zi � (zi1, zi2, . . . , zik)T. zij is defned as

zij �
1, f item i belong to component j,

0, otherwise.
􏼨 (4)

Hence, the complete-data likelihood function is written
as

L(θ; X, Z) � 􏽙
n

i�1
􏽙

k

j�1
πj

xi

σ2j
e

−x2
i
/2σ2

j􏼐 􏼑⎡⎣ ⎤⎦
zij

, (5)

where X � (x1, x2, . . . , xn)T.
Taking the logarithm of Equation (2) results in

ℓ(θ; X, Z) � 􏽘
n

i�1
􏽘

k

j�1
zij log πj + logxi − log σ2j +

−x
2
i

2σ2j

⎧⎨

⎩

⎫⎬

⎭.

(6)

Many methods have been proposed to estimate pa-
rameters of Equation (3). One of which is the expectation-
maximization (EM) algorithm that is used with some
mixture models [27]. In this paper, the EM algorithm is
derived for the k-component mixture of Rayleigh distri-
bution. Te next section consists of the details of such a
method.

4. EM Algorithm

Equation (6) is the complete-data log-likelihood function
that needs to be maximized given the data. Te EM algo-
rithm is used here to estimate the model parameters by
considering zij missing data. It consists of two iterative steps,
E (expectation step) and M (maximization step). For m �

1, 2, . . . , M, we repeat the following two steps.

4.1. E-Step. Te unobservable data (here zij) are handled by
the E-step, which takes the expectation of the complete-data
log likelihood conditionally on the given observed data X,
using the value of θ of the current iteration. Let θ(0) be the
value chosen initially for θ. Te frst iteration of the EM
algorithm computes the conditional expectation of log L(θ)

given X by using θ(0) for θ, which can be written as

Q θ; θ(0)
􏼐 􏼑 � Eθ(0) (log L(θ) | x). (7)

As log θ is linear in the missing data zij, the E-step at the
(m + 1)th iteration requires the current expectation of the
random variable Zij, which corresponds to zij, to be cal-
culated conditionally on the given observed data X.

Eθ(0) Zij | x􏼐 􏼑 � Prλ(m) Zij � 1 | x􏼐 􏼑 � τm
ij xi; θ

(m)
􏼐 􏼑. (8)
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Ten, we get

τ(m)
ij xi; θ

(m)
􏼐 􏼑 �

π(m)
j fj xi; σ

(m)
j􏼐 􏼑

􏽐
k
j�1 π

(m)
j fj xi; σ

(m)
j􏼐 􏼑

. (9)

Te quantity τ(m)
j (x; θ(m)) is the posterior probability,

which implies that the ith element of the sample with the
observed value xi belongs to the jth component of the
mixture. By substituting zij into Equation (3) with
τ(m)

j (x; θ(m)), the Q function becomes

Q θ; θ(m)
􏼐 􏼑 � 􏽘

n

i�1
􏽘

k

j�1
τ(m)

ij xi; θ
(m)

􏼐 􏼑 log πj + log xi − log σ2j +
−x

2
i

2σ2j

⎧⎨

⎩

⎫⎬

⎭.

(10)

4.2. M-Step. To get the updated estimate θ(m+1), the global
maximization of Q(θ; θ(m)) with respect to θ over the pa-
rameter space is required by the M-step on the (m + 1)th

iteration. Given the updated τ(m)
ij (xi; θ

(m)) at the iteration
(m)th, the weighted parameter π(m+1)

j can be estimated by
taking the frst derivative of Q(θ; θ(m)) with respect to πj and
equating it to 0, which results in

􏽢π(m+1)
j �

􏽐
n
i�1 τ

(m)
ij

n
. (11)

Te component parameter σj at the iteration (m + 1)th

can be computed by deriving Q(θ; θ(m)) with respect to σj

and equating it to 0, and we get
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σj
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􏽐
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2
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⟶
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2
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σ3j

2σ2j 􏽘

n
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n
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(12)

Hence, at the iteration (m + 1)th, the component pa-
rameter can be estimated as

􏽢σ(m+1)
j �

����������

􏽐
n
i�1 τ

(m)
ij x

2
i

2􏽐
n
i�1 τ

(m)
ij

􏽶
􏽴

. (13)

Te algorithm is terminated as soon as we get conver-
gence or after the prespecifed number of iterations. Note
that the fnal iteration 􏽢zij can be estimated by generating it
from multinomial distribution as

􏽢zi∼Mult 1,τi( ). (14)

Te estimated value of 􏽢zi can be used as a classifer of
component members based on the defnition mentioned in
Equation (1).

Te elements of the component j are represented by Sj,
where

Sj � 􏽢zij � 1, i � 1, 2, . . . , n􏼐 􏼑. (15)

5. Assessing the Number of Components

Te abovementioned EM algorithm is based on known al-
location Sj. Terefore, we assess the appropriate number of
components by calculating the Bayesian information criteria
according to the formula [28]:

BIC � −2 log L(θ) + d log n, (16)

where L(θ) is the maximum likelihood function in (5) and
d � 2k − 1. Observation memberships can be updated after
getting Bayesian estimators of 􏽢zij as previously mentioned.

6. Simulations

To examine the performance of the EM algorithm on the fnite
mixture of Rayleigh distribution, we generate data by fol-
lowing two-component and three-component scenarios of the
mixture model. Te following scenarios were used to generate
xj according to predefned parameters θ � (π1, θ1, θ2)

T,
where (π1, θ1, θ2) � (0.35, 1, 4), (0.35, 0.5, 2), (0.25, 2, 3).

And θ � (π1, π2, θ1, θ2, θ3)
T, where ((π1, π2, θ1, θ2, θ3) �

(0.3, 0.6, 1, 4, 7), (0.3, 0.6, 0.5, 2, 4), (0.2, 0.5, 1, 2, 3). Te
sample sizes n � 90, 120, 200. A comparison was made by
calculating the average mean square error (AMSE) of the
estimated model and the average classifcation success rate
(ACSR) for the number of replications equal to R by using the
following formulas:

MSE �
􏽐

n
i�1 f xi; θ( 􏼁 − f xi;

􏽢θ􏼐 􏼑
2

n
, (17)

AMSE �
􏽐

R
r�1 MSEr

R
. (18)

Here, MSEr is the MSE of the model on the replication
nth.

For calculating ACSR, we let Ar be the number of items
with the correctly estimated membership divided by the
sample size n on the replication rth.

ACSR �
􏽐

R
r�1 Ar

R
. (19)

7. Results

Te results in Table 1 represent the data generated from the
two-component mixture model and show that the EM al-
gorithm is good at estimating the parameters of the model
with respect to AMSE, which means the estimated param-
eters are close to the real ones used in the generated data. It
can be seen that the AMSE is decreased as sample sizes are
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Figure 1:Te graphs of the PDF of the model for true parameters and estimated ones by the EM algorithm.Te columns of graphs represent
the sample sizes n� 90, 120, and 200, respectively. Te rows of graphs represent the parameter scenarios (π1, θ1, θ2)� (0.35, 1, 4), (0.35, 0.5,
2), and (0.25, 2, 3), respectively.

Table 1: Te results of AMSE and ACSR of applying the EM algorithm to simulated data from the two-component mixture model for three
diferent scenarios and three diferent sample sizes with 1000 replications.

N
π1 � 0.35, π2 � 0.65,

θ1 � 1, θ2 � 4
π1 � 0.35, π2 � 0.65,

θ1 � 0.5, θ2 � 2
π1 � 0.25, π2 � 0.75,

θ1 � 2, θ2 � 3
AMSE ACSR AMSE ACSR AMSE ACSR

90 0.002112 0.8290 0.007457 0.7724 0.002109 0.6781
120 0.001640 0.8404 0.006523 0.7834 0.001923 0.6963
200 0.00155 0.875 0.006312 0.7932 0.001722 0.7261
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Table 2:Te results of AMSE and ACSR of applying the EM algorithm to simulated data from the three-component mixture model for three
diferent scenarios and three diferent sample sizes with 1000 replications.

N
π1 � 0.3, π2 � 0.3, π3 � 0.4,

θ1 � 1, θ2 � 4, θ3 � 7
π1 � 0.3, π2 � 0.3, π3 � 0.4,
θ1 � 0.5, θ2 � 2, θ3 � 4

π1 � 0.2, π2 � 0.3, π3 � 0.5,
θ1 � 1, θ2 � 2, θ3 � 3

AMSE ACSR AMSE ACSR AMSE ACSR

90 0.004427 0.69505 0.01316 0.63154 0.01388 0.56236
120 0.00416 0.7236 0.01287 0.65709 0.01363 0.57903
200 0.004007 0.74838 0.01239 0.67596 0.01311 0.5921
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Figure 2: Te graphs of the PDF of the model for true parameters and estimated ones by the EM algorithm. Te columns of the graphs
represent the sample sizes n� 90, 120, and 200, respectively. Te rows of the graphs represent the parameter scenarios (π1, π2, θ1, θ2,
θ3)� (0.3, 0.3, 1, 4, 7), (0.3, 0.3, 0.5, 2, 4), and (0.2, 0.3, 1, 2, 3), respectively.
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increased. However, the ACSR is decreased when compo-
nent parameters are close to each other. Te graphs of the
PDF of the model with respect to true parameters and es-
timators are shown in Figure 1, which shows the curves of
probability distribution functions given the estimated pa-
rameters compared to the one of the true parameters values
that has been used in the simulation. Te results of applying
the EM algorithm to the three-component model are shown
in Table 1.

Te results of applying the EM algorithm to the three-
component model are shown in Table 2. It can be seen that
the results of AMS of the large sample sizes are better than
the small sample sizes. However, it is obvious that as the
component parameters are close to each other, the ACSR is
decreased, which means that the clustering of data becomes
difcult. Tis is obvious in Figure 2, where the of the
probability distribution functions of the third scenario does
not show the distance between the tops.

8. Conclusion and Discussion

We derived the formulas for estimating the parameters of
the fnite mixture of Rayleigh distribution by the EM al-
gorithm in a general form. Te mathematical formulas of
estimators are valid for the k-component mixture of Ray-
leigh distribution. However, the computations of the EM
algorithm can be more accurate when sample sizes are in-
creased.Te underlying reason for this is the computation of
the member variable as it is calculated with the E-step of the
algorithm, given the observations. Tis in turn will result in
great accuracy when it comes to estimating component
parameters and weights. We apply the proposed framework
to simulated data. Te data were simulated according to two
and three components as a special case from the general one.
It can be seen from the results that the algorithm is per-
formed in a good manner when sample sizes are large and
parameters are not close enough to each other. We con-
sidered the AMSE and ACSR to be tools for measuring the
accuracy of the estimation and clustering of data into their
groups.Temethod was illustrated by graphs as well to show
the estimated graph and compare it to one of the true pa-
rameters that are used in generating data for several
scenarios.

Data Availability
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