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In this paper, we characterize w-Noetherian rings and SM rings. More precisely, in terms of the u-operation on a commutative
ring R, we prove that R is w-Noetherian if and only if the direct limit of rGV-torsion-free injective R-modules is injective and that
R is SM, which can be regarded as a regular w-Noetherian ring, if and only if the direct limit of GV-torsion-free (or rGV-torsion-
free) reg-injective R-modules is reg-injective. As a by-product of the proof of the second statement, we also obtain that the direct
and inverse limits of u-modules are both u-modules and that SM rings are regular w-coherent.

1. Introduction

In this paper, we assume that R is a commutative ring with
identity with total quotient ring T(R).

Generalizing the properties of the integral domain to
commutative ringsmakes it natural to consider regular ideals of
rings, and many new kinds of rings that are defned by taking
regular ideals emerge. Examples include the Krull ring that was
introduced byKennedy [1] and the Prüfer v-multiplication ring
(PvMR) that was presented by Matsuda [2]. Tese can be
referred to [3–5]. Te w-operation can be used as a research
tool for commutative rings, but it is inaccurate for the above
kind of rings. For example, Wang and Kim introduced the
concept of the w-semi-hereditary ring in [6], which is also a
PvMD-like ring, where a connected ring R is w-semi-hered-
itary if and only if R is a Prüfer v-multiplication domain
(PvMD). Tis tells us that a direct description of rings defned
by regularity using the w-operation is still lacking. Recently,
Zhang [7] introduced the regular w-fat module to provide
some homological characterizations of the PvMR, which is a
good attempt.

In [8], Chang and Oh introduced the notion of general
Krull rings, which are also defned by regularity. Also, they

asked the following question. Is there a star operation ∗ on a
ring so that a general Krull ring can be characterized as a ring
in which each proper principal ideal can be written as a fnite
∗ -product of prime ideals [8, Question 0.2]? In order to
answer the above question, they introduced a new star
operation u on a ring R, and they showed that R is a general
Krull ring if and only if each proper principal ideal of R is
written as a fnite u-product of prime ideals [8,Teorem 5.6].

Coincidentally, the u-operation on a ring was also in-
troduced by Tao [9], called the w∗-operation in her master
thesis independently. Unlike Chang and Oh who studied the
u-operation from a ring theory perspective, Tao studied this
star operation from a module theory perspective.

In more detail, Noetherian rings can be characterized by
injectivity, which is known as the Cartan–Eilenberg–Bass the-
orem, i.e., a ring R is Noetherian if and only if the direct sum of
any number of injective R-modules is injective, if and only if the
direct sum of any countable number of injective R-modules is
injective, if and only if every injective R-module is Σ-injective, if
and only if the direct limit of injectiveR-modules is injective. An
injective R-module E is said to be Σ-injective if every direct sum
of copies of E is injective. In [10], Zhang et al. proved the w-
-theoretic analog of the Cartan–Eilenberg–Bass theorem for
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Noetherian rings. Te w-Noetherian ring is defned to be the
ring which satisfes the ascending chain condition (ACC) on
w-ideals by Yin et al. [11]. Also, a ring R is w-Noetherian if and
only ifR satisfes theACCon itsu-ideals (see [8,Teorem6.9] or
[9, Proposition 4.1.9]).

In [12], SM rings are introduced by Wang and Liao. A
ring R is called SM if R satisfes the ACC on its regular
w-ideals [12, Defnition 5.10]. SM rings can be regarded as
regular w-Noetherian ones loosely. Tao also proved that a
ring R is SM if and only if R satisfes the ACC on its regular
u-ideals [9,Teorem 4.2.1].Tus, a natural question arises as
to whether SM rings have both w-theoretic and u-theoretic
analogs corresponding to the Cartan–Eilenberg–Bass the-
orem for Noetherian rings. Actually for this purpose, the
notions of reg-injective and 􏽐-reg-injective R-modules are
introduced in [12]. An R-module E is reg-injective if
Ext1R(R/I, E) � 0 for any regular ideal I of R [12, Defnition
5.2]. A reg-injective R-module E is 􏽐-reg-injective if every
direct sum of its copies is reg-injective [12, Defnition 6.4].
In [12, Teorem 6.10] and [9, Teorem 4.2.5], it is proved
that a ring R is SM if and only if the direct sum of any
number of GV-torsion-free (or rGV-torsion-free) reg-
injective R-modules is reg-injective, if and only if the direct
sum of any countable number of GV-torsion-free (or
rGV-torsion-free) reg-injective R-modules is reg-injective, if
and only if every GV-torsion-free (or rGV-torsion-free) reg-
injective R-module is Σ-reg-injective. However, what about
the direct limit of GV-torsion-free (or rGV-torsion-free)
reg-injective R-modules for SM rings? Motivated by this
question, we frst show that the u-operation can induce a
torsion theory, denoted by τu, by a Gabriel topology

I � I|I is an ideal of Rwith Iu � R􏼈 􏼉. (1)

Also, for w-Noetherian rings, we complete the u-theoretic
analog of the Cartan–Eilenberg–Bass theorem for Noetherian
rings in terms of our existing knowledge of general torsion
theory. Ten, for SM rings, we complete both the w and
u-theoretic analogs of the Cartan–Eilenberg–Bass theorem
for Noetherian rings. In the process, the discussion of the
direct limit of u-modules is also necessary.

2. Preliminaries

Now we introduce some notations and results needed in this
paper from [9, 13]. Let J be a fnitely generated ideal of R. If
the natural homomorphism φ: R⟶ J∗ � HomR(J, R) is
an isomorphism, then J is called a GV-ideal, denoted by
J ∈ GV(R). Let M be an R-module. Defne

torGV(M) � x ∈M|Jx � 0 for some J ∈ GV(R){ }. (2)

Tus, torGV(M) is a submodule of M. Also, M is said to
be GV-torsion (resp., GV-torsion-free) if torGV(M) � M

(resp., torGV(M) � 0). Clearly R is a GV-torsion-free R

-module [11, Corollary 1.5]. A GV-torsion-free module M is
called a w-module if Ext1R(R/J, M) � 0 for any J ∈ GV(R).
Te w-envelope of a GV-torsion-free module M is the set
given by

Mw � x ∈ E(M)|Jx ⊆M for some J ∈ GV(R){ }, (3)

where E(M) is the injective hull of M. It is easy to see that M

is a w-module if and only if Mw � M. A nonzero ideal P of R

is said to be a primew-ideal if P is both a prime ideal and a
w-ideal and a maximalw-ideal if P is maximal in the set of all
proper w-ideals of R. Note that each maximal w-ideal is
prime [13, Teorem 6.2.14]. A GV-torsion-free module M is
of fnite type if Mw � Nw for some fnitely generated sub-
module N of M [13, Proposition 6.4.2]. A sequence
A⟶ B⟶ C of R-modules and homomorphisms is said
to be w-exact if the sequence Am⟶ Bm⟶ Cm is exact for
any maximal w-ideal m of R. An R-module M is said to be of
fnitely presented type if there is a w-exact sequence
F1⟶ F0⟶M⟶ 0, where F1 and F0 are fnitely
generated and free modules [13, Defnition 6.4.9].

An ideal I of R is regular if I contains a nonzero di-
visor. An ideal J of R is called anrGV-ideal if J is a regular
GV-ideal. Let rGV(R) denote the set of all rGV-ideals of R.
Ten, rGV(R) is a multiplicative system of ideals of R, i.e.,
rGV(R) satisfes that (i) R ∈ rGV(R) and (ii) if
J1, J2 ∈ rGV(R); then, J1J2 ∈ rGV(R). It is clear that
rGV(R)⊆GV(R). But the converse does not hold in
general.

Example 1 (see [9, Example 2.1.1]). Let F be a feld, and let
D � F[y, z] and K � F(y, z), where y and z are indeter-
minates over F. Ten, for the trivial extension
R � D∝ (K/D)w, we have that T(R) � R. Ten, rGV(R) �

R{ }. By [14, Teorem 4.7], R is not a DW ring, i.e., the ring
satisfes that every ideal of R is a w-ideal. Ten, GV(R)≠ R{ }

by [13, Teorem 6.3.12]. Tus, GV(R)⊈rGV(R).
Let M be an R-module. Defne

torrGV(M) � x ∈M|Jx � 0 for some J ∈ rGV(R){ }. (4)

Tus, torrGV(M) is a submodule of M. Also, M is said
to be rGV-torsion (resp., rGV-torsion-free) if torrGV(M) �

M (resp., torrGV(M) � 0). It is clear that any GV-torsion-
free R-module is rGV-torsion-free, while any rGV-torsion
R-module is GV-torsion.

Example 2 (see [9, Example 2.2.4]). Let J ∈ GV(R), but
J ∉ rGV(R). Then, R/J is GV-torsion, but not rGV-torsion.

Proposition 1 (see [9, Proposition 2.2.6 and Proposition
2.2.7])

(1) An R-module M is rGV-torsion if and only if
HomR(M, N) � 0 for any rGV-torsion-free R-module
N.

(2) An R-module N is rGV-torsion-free if and only if
HomR(M, N) � 0 for any rGV-torsion R-module M.

(3) Let Mi􏼈 􏼉 be a family of R-modules. Ten, 􏽑 Mi is
rGV-torsion-free if and only if each Mi is rGV-tor-
sion-free.

(4) If M is an rGV-torsion-free R-module, then E(M) is
also rGV-torsion-free.
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An rGV(R)-torsion-free R-module M is called au-
module if Ext1R (R/J, M) � 0 for any J ∈ rGV(R)[9, Def-
nition 3.1.1]. In [9, Defnition 3.2.1], the u-envelope of an
rGV-torsion-free R-module M is the set given by

Mu � x ∈ E(M)|Jx⊆M for some J ∈ rGV(R){ }. (5)

It is clear that (Mu)u � Mu and that J ∈ rGV(R) if and
only if Ju � R[9, Proposition 3.2.5].

Proposition 2 (see [9, Teorem 3.1.7 and Teorem
3.2.12]). Te following statements are equivalent for anrGV-
torsion-free R-module.

(1) M is a u-module.
(2) Mu � M.
(3) If 0⟶M⟶ N⟶ C⟶ 0 is an exact sequence

in which N is a u-module, then C is rGV-torsion-free.
(4) Tere exists an exact sequence

0⟶M⟶ N⟶ C⟶ 0 such that N is a
u-module and C is rGV-torsion-free.

(5) Ext1R(C, M) � 0 for any rGV-torsion R-module C.
(6) Ext1R(Au/A, M) � 0 for any rGV-torsion R-module A.

An ideal I of R is called a u-ideal if I is a u-module. It is
clear that w-ideals of R are u-ideals, but the converse does
not hold. One can refer to [8, Example 4.9]. A nonzero ideal
p of R is said to be a prime u-ideal if p is both a prime ideal
and a u-ideal, denoted by p ∈ u-Spec(R), and a maximal
u-ideal if p is maximal in the set of all proper u-ideals of R,
denoted by p ∈ u-Max(R). Note that each maximal u-ideal
is prime [9, Teorem 3.3.4].

Proposition 3 (see [9, Teorem 3.3.5, Teorem 3.3.6, and
Teorem 3.3.7])

(1) An R-module M is rGV-torsion if and only if Mm � 0
for any maximalu-idealm.

(2) Let M be an rGV-torsion-free R-module. Ten,
Mp � (Mu)p.

(3) Let M be an rGV-torsion-free R-module and let A

and B be submodules of M. Ten, Au � Buif and only
if Am � Bm for any maximalu-idealm of R.

An R-module M is said to be u-fnitely generated if there
exists some fnitely generated submodule N of M such that
(M/N) is an rGV-torsion R-module [9, Defnition 3.4.1]. An
rGV-torsion-free R-module M is u-fnitely generated if and
only if Mu � Bu for some fnitely generated submodule B of
M[9, Proposition 3.4.3].

Proposition 4 (see [9, Proposition 3.4.5]). Let
0⟶ A⟶ B⟶ C⟶ 0 be an exact sequence of
R-modules.

(1) If A and C are u-fnitely generated, then B is u-fnitely
generated.

(2) If B is u-fnitely generated, then C is u-fnitely
generated.

3. Injective Modules over w-Noetherian Rings

Next, as in [15], we show that the u-operation can induce a
torsion theory, denoted by τu, by a Gabriel topology

I � I ∣ I is an ideal of Rwith Iu � R􏼈 􏼉. (6)

By the proof of [16, Proposition 4.6], the class of all τu-
-torsion R-modules, denoted byTτu

(R), is the set {M|M is an
R-module and (0: Rm)u � R for each nonzero element m ∈M

}. Let TrGV(R) denote the set of all rGV-torsion R-modules.
Te following proposition shows that TrGV(R) and Tτu

(R)

coincide. Tus, τu-torsion-free (resp., τu-torsion) modules and
rGV-torsion-free (resp., rGV-torsion) modules coincide. Te
proof of the following proposition is very similar to that of [15,
Proposition 2.10]; however, we give a proof for completeness.

Proposition 5. For a ring R, TrGV(R) � Tτu
(R).

Proof. Note that M is an rGV-torsion R-module if and only
if for any nonzero element m ∈M there exists some
J ∈ rGV(R) such that mJ � 0; if and only if (0: Rm)u � R for
any nonzero element m ∈M; and if and only if M is a
τu-torsion R-module.

Now we recall some terminology in [17], which is similar to
that in [1515]. Let M be an R-module. A submodule N of M is
called τu-pure (resp., τu-dense) inM ifM/N is rGV-torsion-free
(resp., rGV-torsion). Obviously ifN is a τu-dense submodule of
an rGV-torsion-free R-module M, then Nu � Mu. Set
CM
τu

(N): � x ∈M|(N: Rx)u � R􏼈 􏼉, which is called the
τu-closure of N in M. Ten, N is called τu-closed in M if
CM
τu

(N) � N. It is easy to verify that if M is rGV-torsion-free,
then CM

τu
(N) � Nu ∩M; N is τu-dense in M if and only if

CM
τu

(N) � M; and τu-closed submodules of M and its τu-pure
submodules coincide. □

Lemma 1. Let M be an rGV-torsion-free R-module. If M is a
u-module, then τu-pure submodules and u-submodules of M

coincide.

Proof. Let N be a submodule of M. Ten, the sequence

HomR

R

J
,
M

N
􏼠 􏼡⟶ Ext1R

R

J
, N􏼠 􏼡⟶ Ext1R

R

J
, M􏼠 􏼡, (7)

is exact for any J ∈ rGV(R). Note that if N is a τu-pure
submodule of M, then M/N is rGV-torsion-free. So,
HomR(R/J, M/N) � 0. Obviously, Ext1R(R/J, M) � 0 be-
causeM is a u-module.Tus, Ext1R(R/J, N) = 0, and soN is a
u-module. Conversely, if N is a u-module, then it is easy to
prove that M/N is rGV-torsion-free. Tus, N is a τu-pure
submodule of M.

Recall that an R-module M is said to be τu-Noetherian if
M satisfes the ACC on its τu-pure submodules [16, p. 175].
Tus, an rGV-torsion-free R-module M is τu-Noetherian if
M satisfes the ACC on its u-submodules by Lemma 1.Tus,
an rGV-torsion-free τu-Noetherian R-module is also called

Journal of Mathematics 3



u-Noetherian in [9]. A ring R is τu-Noetherian if R is a
τu-Noetherian R-module. Note that R is rGV-torsion-free
over R. Ten, R is τu-Noetherian if and only if R satisfes
ACC on its u-ideals.

In [9] or [8], it is proved that τu-Noetherian rings coincide
with w-Noetherian ones. Also, in terms of u-operations, some
characterizations of w-Noetherian rings are provided in
[9]. □

Proposition 6 (see [9, Proposition 4.1.9 and Teorem
4.1.10]). Te following statements are equivalent for a ringR.

(1) R is a w-Noetherian ring.
(2) R is τu-Noetherian.
(3) Every ideal is u-fnitely generated, i.e., for each ideal I

of R, there exists some fnitely generated subideal I0 of
I such that Iu � (I0)u.

(4) Every u-ideal is u-fnitely generated.
(5) Every nonempty set ofu -ideals of R has a maximal

element.
(6) Every primeu-ideal of R is u-fnitely generated over R.
(7) Te direct sum of any number of rGV-torsion-free

injective R-modules is injective.
(8) Te direct sum of any countable number of

rGV-torsion-free injective R-modules is injective.
(9) Every rGV-torsion-free injective R-module is

􏽐-injective.

Remark
(1) In fact, with the help of the language of torsion

theory, the equivalences of (2)–(6) of Proposition 6
can be obtained directly by [16, Proposition 20.1] or
[17, Proposition 2.3.3], while the equivalences of (2)
and (7)–(9) of Proposition 6 can be obtained directly
by [16, Proposition 20.17].

(2) Although τu-Noetherian rings coincide with w-Noe-
therian ones, w-Noetherian R-modules are not neces-
sarily τu-Noetherian. An R-module M is w-Noetherian
if M satisfes ACC on its w-submodules. If N is a w-
-submodule of M, then N is GV-torsion-free, which
implies that N is rGV-torsion-free. Since Nw � N, we
can get that Nu � N. Ten, N is a τu-pure submodule
of M. So, τu-Noetherian modules are w-Noetherian by
their defnitions. But the converse does not hold by [9,
Example 4.1.7]. In more detail, let J ∈ GV(R) and
J ∉ rGV(R).Ten,R/J isGV-torsion, not rGV-torsion
over R. Set L(R/J) :� α ∈ R{ /J|if Jα � 0where J ∈
rGV(R), then α � 0}.Tus, L(R/J) is an rGV-torsion-
free submodule of R/J and L :� (L(R/J))u ∩ (R/J) is a
τu-pure submodule of R/J. Let M be a direct sum of
countably infnite number of R/J. Ten, M is a w-
-Noetherian R-module since M is GV-torsion. Note
that the chain L⊆L⊕L⊆L⊕L⊕L⊆ . . . of τu-pure sub-
modules of M is not stationary. Ten, M is not a
τu-Noetherian R-module.

Next, with the help of the language of torsion theory, we
can get more characterizations of w-Noetherian rings in
terms of u-operations. For this purpose, frst we need some
notions. An R-module M is τu-fnitely generated if M has a
fnitely generated τu-dense submodule [16, p. 157]. Tus, an
rGV-torsion-free R-module M is τu-fnitely generated (also
u-fnitely generated in this case) if there exists a fnitely
generated submodule N of M such that Nu ∩M � M,
equivalently Nu � Mu. An R-module M is τu-fnitely pre-
sented if it is isomorphic to F/K, where F is a fnitely
generated free R-module and K is a τu-fnitely generated
submodule of F[16, p. 164]. A ring R is τu-coherent if every
fnitely generated ideal of R is τu-fnitely presented [18,
Defnition 1.2]. From [18, Teorem 3.3], we can get that R

is a τu-coherent ring if and only if the direct limit of
rGV-torsion-free FP-injective R-modules is FP-injective.
Recall that an R-module M is said to be FP-injective if
Ext1R(N, M) � 0 for all fnitely presented R-modules N. It
can be also called an absolutely pureR-module. For more
details, one can refer to [16].

Now, based on Proposition 6, we complete the u-version
of the Cartan–Eilenberg–Bass theorem for Noetherian rings.
For this, we need the following.

Lemma 2. Let Mi|i ∈ Γ􏼈 􏼉 be a family of rGV-torsion-free
R-modules. Ten, lim

⟶
Mi and lim

←
Miare also rGV-torsion-

free.

Proof. Let 0⟶ J⟶ R⟶ R/J⟶ 0 be an exact se-
quence, where J ∈ rGV(R). Ten, R/J is fnitely presented.
Tus, HomR(R/J, lim

⟶
Mi) � lim

⟶
HomR(R/J, Mi) for any

J ∈ rGV(R) by [10, Lemma 2.1]. So, lim
⟶

Mi is rGV-torsion-
free. Since lim

←
Mi is a submodule of 􏽑i∈ΓMi, which is

rGV-torsion-free by Proposition 1 (3), it is clear that lim
←

Mi

is rGV-torsion-free. □

Theorem 1. Te following statements are equivalent for a
ringR.

(1) R is aw-Noetherian ring.
(2) Every fnitely generated R-module is τu-fnitely

presented.
(3) Every fnitely generated R-module is τu-Noetherian.
(4) Te direct limit of rGV-torsion-free injective

R-modules is injective.
(5) rGV-torsion-free FP-injective R-modules and

rGV-torsion-free injective ones coincide.

Proof
(1)⇒(2) Let M be a fnitely generated R-module.Ten,
there exists an exact sequence
0⟶ K⟶ F⟶M⟶ 0, where F is a fnitely
generated free R-module. Since w-Noetherian rings
and τu-Noetherian ones coincide, it follows that F is a
τu-Noetherian R-module by [16, Proposition 20.4].
Ten, K is τu-fnitely generated [16, Proposition 20.1].
Tus, M is τu-fnitely presented by [16, Proposition
19.3].
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(2)⇒(1) Let I be an ideal of R. Since R/I is fnitely
generated over R, it is τu-fnitely presented by (2).Ten,
I is τu-fnitely generated by [16, Proposition 19.3].
Tus, R is a τu-Noetherian ring again by [16, Propo-
sition 20.1] or [17, Proposition 2.3.3]. Ten, R is
w-Noetherian.
(1)⇒(3) Let M be a fnitely generated R-module.Ten,
there exists an exact sequence 0⟶ K⟶ F⟶
M⟶ 0, where F is a fnitely generated free R-module.
By [16, Proposition 20.4], F is a τu-Noetherian R-module.
Again by [16, Proposition 20.4],M is also a τu-Noetherian
R-module.

(3)⇒(1) It is clear.
(1)⇒(5) Te proof of this implication is very similar
to that of (1)⇒(6) in [15,Teorem 3.17]; however, we
give a proof for completeness. Assume that R is a
w-Noetherian ring. For any ideal I of R, I is u-fnitely
generated over R by Proposition 6. Tus, there exists a
fnitely generated subideal I1 of I such that Iu � (I1)u.
So, I/I1 is an rGV-torsion R-module. Let M be an
rGV-torsion-free FP-injective R-module. Ten, for the
exact sequence 0⟶ I/I1⟶ R/I1⟶ R/I ⟶ 0, we
can get the following exactsequence:

HomR I/I1, M( 􏼁⟶ Ext1R
R

I
, M􏼒 􏼓⟶ Ext1R

R

I1
, M􏼠 􏼡. (8)

Since I/I1 is rGV-torsion over R and M is rGV-torsion-
free over R, it follows that HomR(I/I1, M) � 0 by
Proposition 1 (1). Also, sinceM is FP-injective, we can get
that Ext1R(R/I1, M) � 0. Ten, Ext1R(R/I, M) � 0. Tus,
M is an injective R-module.
(5)⇒(1)Note that the direct sum of FP-injective
R-modules is FP-injective by [19, p. 564]. Ten, (1)
holds by the equivalence of (1) and (7) in Proposition 6.
(2) + (5)⇒(4) By (2), R is τu-coherent. Ten, we can
get that the direct limit of rGV-torsion-free FP-
injective R-modules is FP-injective by [4,Teorem 3.3].
By (6) and Lemma 2, the direct limit of rGV-torsion-
free injective R-modules is injective.
(4)⇒(1)Since GV-torsion-free R-modules are
rGV-torsion-free, we can get that the direct limit of
GV-torsion-free injective modules is injective by
(4). Ten, R is w-Noetherian by [10, Teorem
2.9]. □

4. The Direct and Inverse Limits of u-Modules

One main purpose of this paper is to generalize the
Cartan–Eilenberg–Bass theorem for Noetherian rings to
SM rings. For this, the discussion of the direct limit of
u-modules is necessary [20]. First we show that any
rGV-ideal of R is τu-fnitely presented.

Let M be an R-module, M∗ � HomR(M, R), and
EndR(M) � HomR(M, M). Ten, we have the natural ho-
momorphism η: M⊗ RM∗ ⟶ EndR(M) by

η(x⊗f)(y) � f(y)x, x, y ∈M, f ∈M
∗
. (9)

Lemma 3 (see [13,Teorem 2.6.17]). Let M be an R-module.
Ten, M is fnitely generated projective if and only if η is an
isomorphism.

Lemma 4. Let M be an rGV-torsion-free R-module and let η
be as in the above. If ηm is an isomorphism for any
m ∈ u-Max(R), then M is u-fnitely generated.

Proof. Since M is rGV-torsion-free, it is easy to see that
EndR(M) is also rGV-torsion-free. Note that (Im(η))m

� (EndR(M))m by considering that ηm is an isomorphism for
any m ∈ u-Max(R). Ten, (Im(η))u � (EndR(M))u by
Proposition 3. Tus, there exists some J ∈ rGV(R) such that
J1M⊆Im(f), where 1M denotes the identity map on M. Set
J: � (a1, a2, . . . , an). Ten, for any i � 1, 2, . . . , n, there are
fnite sets xi1, xi2, . . . , xiti

􏽮 􏽯⊆M and fi1, fi2, . . . , fiti
􏽮 􏽯⊆M∗

such that ai1M � η(􏽐
ti

j�1(xij ⊗fij)). Let B be the submodule
of M generated by xij|i � 1, 2, . . . , n; j � 1, 2, . . . , ti􏽮 􏽯. Ten,
for any x ∈M, we have aix � ai1M(x) �

η(􏽐
ti

j�1(xij ⊗fij))(x) � 􏽐
ti

j�1 fij (x)xij ∈ B. Tus, JM⊆B,
which implies that M⊆Bu. It is clear that Bu⊆Mu. Ten, Mu �

Bu. Terefore, M is u-fnitely generated. □

Lemma 5. Let J ∈ rGV(R). Ten, Ext1R(J, N) is rGV-torsion
for any R-module N.

Proof. Let J ∈ rGV(R). For the exact sequence 0⟶ J⟶
R⟶ R/J⟶ 0, we can get an exact sequence

0 � Ext
1
R(R, N)⟶ Ext

1
R(J, N)⟶ Ext

2
R

R

J
, N􏼠 􏼡, (10)

where N is an R-module. Note that Ext2R(R/J, N) is an
R/J-module and so an rGV-torsion R-module. Ten,
Ext1R(J, N) is rGV-torsion over R.

Let Sbe amultiplicatively closed set ofR. AnR-moduleM is
said to be S-torsion ifMS � 0, and thatM is said to be S-torsion-
free if sx � 0, for s ∈ S and x ∈M, implies x � 0. □

Lemma 6. Let J ∈ rGV(R) and m ∈ u-Max(R). Ten,
HomR(J, N)m � Homm(Jm, Nm) for any R-moduleN.
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Proof. Set S ≔ R\m and set C ≔ x ∈ N|sx �{ 0 for some
s ∈ S}. Ten, C is S-torsion and (N/C) is S-torsion-free. For

the exact sequence 0⟶ C⟶ N⟶ N/C⟶ 0, we can
get the following exact sequence:

0⟶ HomR(J, C)⟶ HomR(J, N)⟶ HomR J,
N

C
􏼒 􏼓⟶ Ext1R(J, C). (11)

By Lemma 1, Ext1R(J, C)m � 0. Note that HomR(J, C) is
S-torsion. Ten, HomR(J, C)m � 0. Tus, HomR(J, N)m �

HomR(J, N/C)m. By [21, Lemma 1.7], HomR(J, N/C)m �

HomRm
(Jm, (N/C)m). Note that (N/C)m � Nm/Cm � Nm.

Ten, HomR(J, N)m � HomRm
(Jm, Nm). □

Theorem 2. Any rGV-ideal of R is τu-fnitely presented.

Proof. Let J ∈ rGV(R). Ten, there exits an exact sequence
0⟶ A⟶ F⟶ J⟶ 0, whereF is fnitely generated
free R module. Let m be a maximal u-ideal of R. Ten,
Ext1R(J, N)m � 0 for any R-module N by Lemma 1. Note that
Jm � Rm. Ten, Ext1Rm

(Jm, Nm) � 0. Tus, we have the fol-
lowing commutative diagram (12) with exact rows:

(12)

Note that f1 is an isomorphism by Lemma 5 and f2 is an
isomorphism by [13, Teorem 2.6.16 (1)]. Ten,
HomR(A, N)m � HomRm

(Am, Nm). In particular, (A∗)m �

(Am)∗ and (EndR(A))m � EndRm
Am. For the exact sequence

0⟶ Am⟶ Fm⟶ Jm⟶ 0, since Fm and Jm are f-
nitely generated and free over Rm, we can get that Am is also
fnitely generated free over Rm.

Consider the following commutative diagram:

(13)

By Lemma 3, the arrow in the bottom row is an iso-
morphism. Note that the vertical arrows are isomorphisms
by the above. Ten, the arrow in the top row is an isomor-
phism. So, η: A⊗ RA∗ ⟶ EndR(A) is a u-isomorphism.
Note that A is an rGV-torsion-free R-module. Ten, A is
u-fnitely generated over R by Lemma 4. Tus, J is τu-fnitely
presented over R.

Next, we show that the direct and inverse limits of u

-modules are also u-modules. To do so, we need the
following. □

Lemma 7. Let Mi􏼈 􏼉 be a family of rGV-torsion-free R

-modules. Ten, lim
⟶

HomR(J, Mi) � HomR(J, lim
⟶

Mi) for
each J ∈ rGV(R).

Proof. Let J ∈ rGV(R). Since J is fnitely generated, there is a
fnitely generated free module F such that 0⟶
K⟶ F⟶ J⟶ 0 is an exact sequence of R-modules.
Note that J is τu-fnitely presented byTeorem 2-, and so K is
u-fnitely generated. Since K is rGV-torsion-free, we can get
that there exists a fnitely generated submodule K1 of K such
that Ku � (K1)u. Ten, there is an exact sequence
F1⟶f K1⟶ 0, where F1 is a fnitely generated free
R-module. Tus, we can get an exact sequence
F1⟶f K⟶ K/Im(f)⟶ 0. For anymaximal u-ideal m,
(K /Im(f))m � (Km/Im(f)m) � ((K1)m /Im(f)m) � 0. So,
K/Im(f) is rGV-torsion. Ten, we have the following
commutative diagram (14) with exact rows:

(14)
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By Lemma 2, lim
⟶

Mi is rGV-torsion-free. Ten, it fol-
lows from Proposition 1 (1) that

HomR

K

Im(f)
, lim
⟶

Mi􏼠 􏼡 � 0,

HomR

K

Im(f)
, Mi􏼠 􏼡 � 0.

(15)

By [10, Lemma 2.1], c is an isomorphism. Ten, β is a
monomorphism by the Five Lemma.

Consider the following commutative diagram (16):

(16)

By the above proof, β is a monomorphism. Again by [10,
Lemma 2.1], f2 is an isomorphism. Hence, f1 is an epi-
morphism by the Five Lemma and f1 is a monomorphism
also by the above proof. Terefore, f1 is an
isomorphism. □

Corollary 1. Let Mi􏼈 􏼉 be a family of rGV-torsion-free R

-modules. If K is rGV-torsion-free and u-fnitely generated, then

β: lim
⟶

HomR K, Mi( 􏼁 � HomR K, lim
⟶

Mi􏼒 􏼓, (17)

is a monomorphism.

Theorem 3. Let Mi􏼈 􏼉 be a family of u-modules over R. Ten,
lim
⟶

Mi is au-module.

Proof. Let J ∈ rGV(R). Ten, 0⟶ J⟶ R⟶ R/J ⟶
0 is an exact sequence. Consider the following commutative
diagram:

(18)

By Lemma 7, f1 is an isomorphism. Ten, f2 is an
isomorphism by the Five Lemma. Since each Mi is a
u-module, Ext1R(R/J, lim

⟶
Mi) � lim

⟶
Ext1R(R/J, Mi) � 0.

Hence, lim
⟶

Mi is a u-module. □

Lemma  (see [22, Teorem 2.22]). Te inverse limit of an
inverse system Mi,ψ

j

i􏽮 􏽯of modules exists
andlim
←

Mi � (ai) ∈ 􏽑 Miai � ψj

i aj,whenever i≤ j􏽮 􏽯.

Theorem 4. Let Mi,ψ
j
i􏽮 􏽯 be an inverse system of u-modules

overR. Ten, lim
←

Miis a u-module.

Proof. It sufces to show that every R-homomorphism
f: J⟶ lim

←
Mi can be extended to R for each J ∈ rGV(R).

Let λ: lim
←

Mi⟶ 􏽑 Mi be an embedding and let
λ1: J⟶ R be an embedding. Consider the following
diagram:

(19)

Since 􏽑 Mi is a u-module, there is a homomorphism
g: R⟶ 􏽑 Mi such that gλ1 � λf. Set
g(1): � (ai) ∈ 􏽑 Mi. For each x ∈ J, f(x) �

g(x) � x · (ai) � (xai) ∈ lim← Mi. Ten, xai �

ψj
i (xaj) � xψj

i (aj) whenever i≤ j by Lemma 8. Hence,
J(ai − ψj

i (aj)) � 0. Because Mi is rGV-torsion-free, we can
get that ai − ψj

i (aj) � 0, which implies ai � ψj
i (aj) whenever

i≤ j. Tus, g(1) � (ai) ∈ lim
←

Mi again by Lemma 8.
Terefore, lim

←
Mi is a u-module. □

Journal of Mathematics 7



5. Reg-Injective Modules over SM Rings

In this section, for SM rings, we complete both the w and the
u-theoretic analogs of the Cartan–Eilenberg–Bass theorem
for Noetherian rings. In [9], some characterizations are
given in terms of u-operations.

Proposition 7 (see [9, Teorem 4.2.1]). Te following
statements are equivalent for a ringR.

(1) R is an SM ring.
(2) R satisfes ACC on its regularu-ideals.
(3) Every regularu-ideal of R is u-fnitely generated.
(4) Every nonempty set of regular u-ideals of R has a

maximal element.

(5) Every regular primeu-ideal ofR is u-fnitely generated.
(6) Every regular ideal of R is u-fnitely generated.

Theorem 5. Let R be an SM ring. Ten, every fnitely gen-
erated regular ideal of R is τu-fnitely presented.

Proof. Let I � (a0, a1, . . . , an) be a fnitely generated regular
ideal of R, where a0 is a regular element in R. We prove this
by induction on n. If n � 0, then I � R, which implies that I

is τu-fnitely presented. Now assume that
Ik � (a0, a1, . . . , ak) is τu-fnitely presented, where k< n.
Ten, we have the following commutative diagram (20) with
exact rows:

(20)

where f1(r0, r1, . . . , rk) � r0a0 + r1a1 + . . . + rkak for any
(r0, r1, . . . , rk) ∈ Rk+1 and f2(r0, r1, . . . , rk+1) �

r0a0 + r1a1 + . . . + rk+1ak+1 for any (r0, r1, . . . , rk+1) ∈ Rk+2.

Now we explain why(Ik: RRak+1) � Lk+1/Lk. Defne
g: Lk+1⟶ (Ik: RRak+1) by g(r0, r1, . . . , rk+1) � rk+1 for
any (r0, r1, . . . , rk+1) ∈ Lk+1.Ten, it is easy to verify that g is
well defned. For any r ∈ (Ik: RRak+1), rak+1 ∈ Ik. Ten,
there exists some elements r0, r1, . . . , rk such that rak+1 �

r0a1 + r1a1 + . . . + rkak. Tus, (−r0, −r1, . . . , −rk, r) ∈ Lk+1
and g(−r0, −r1, . . . , −rk, r) � r, which implies that g is an
epimorphism. It is clear that Lk⊆Ker(g). For any
(r0, r1, . . . , rk+1) ∈ Ker(g), g(r0, r1, . . . , rk+1) � rk+1 � 0.
Ten, (r0, r1, . . . , rk) ∈ Lk. Ten, Ker(f)⊆Lk. Tus,
Ker(f) � Lk. So,(Ik: RRak+1) � Lk+1/Lk.

Note that Ik⊆(Ik: RRak+1). Ten, (Ik: RRak+1) is a
regular ideal of R. Since R is an SM ring, we can get that
(Ik: RRak+1) is u-fnitely generated by Proposition 7. By
assumption, Ik is τu-fnitely presented, and so Lk is u-fnitely
generated [3, Proposition 19.3]. Tus, Lk+1 is u-fnitely
generated by Proposition 4. Hence, Ik+1 is τu-fnitely
presented.

It is well known that Noetherian rings are coherent
ones, and w-Noetherian rings are w-coherent ones [13, p.
393]. Recall that R is w-coherent if each fnite type ideal of
R is of fnitely presented type [13, Defnition 6.9.14]. By
the same way of Teorem 5, we can get that if R is an SM
ring, then every fnitely generated regular ideal of R is of
fnitely presented type, where such a ring is called regu-
larw-coherent [7, Defnition 2.4]. Ten, we can get the
following corollary, which is corresponding to the clas-
sical result. □

Corollary 2. SM rings are regular w-coherent.

Next, our purpose is to complete the Car-
tan–Eilenberg–Bass theorem for SM rings. To do so, we need
the following.

Lemma 9. Let Mi􏼈 􏼉 be a family of rGV-torsion-free
R-modules. If R is an SM ring, then lim

⟶
HomR(I, Mi) �

HomR(I, lim
⟶

Mi) for any fnitely generated regular ideal I

of R.
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Proof. Let I be a fnitely generated regular ideal of R. Since R

is an SM ring, we can get that I is τu-fnitely generated by
Teorem 5. Ten, there exists an exact sequence

0⟶ K⟶ F⟶ I⟶ 0, where Fis fnitely generated
and free over R and K is u-fnitely generated. Tus, we have
the following commutative diagram (21) with exact rows:

(21)

By Corollary 1, f3 is a monomorphism. By [10, Lemma
2.1], f2 is an isomorphism. Ten, f1 is an epimorphism by
the Five Lemma. Note that f1 is a monomorphism again by
Corollary 1. Tus, f1 is an isomorphism. □

Lemma 10. Let N be an rGV-torsion-free R-module and let
Mbe au-module. Ten, HomR(N, M) � HomR(Nu, M).

Proof. For the exact sequence 0⟶ N⟶
Nu⟶ Nu/N⟶ 0, we can get an exact sequence
0⟶ HomR(Nu/N, M)⟶ HomR(Nu, M)⟶ HomR

(N, M)⟶ ExtR(Nu/N, M). Note thatNu/N is rGV-
-torsion and M is a u-module. Ten, HomR(Nu/N, M) �

ExtR(Nu/N, M) � 0 by Proposition 1 (1) and Proposition 2.
Tus, HomR(N, M) � HomR(Nu, M). □

Proposition  . Let Mi􏼈 􏼉 be a family of u-modules. If R is an
SM ring, then lim

⟶
Ext1R(R/I, Mi) � Ext1R(R/I, lim

⟶
Mi) for

any regular u-idealI of R.

Proof. Let I be a regular u-ideal of R. From the exact se-
quence 0⟶ I⟶ R⟶ R/I⟶ 0, we have the following
commutative diagram (22) with exact rows:

(22)

By [10, Lemma 2.1], f1 is an isomorphism. Since R is SM,
we can get that I is u-fnitely generated by Proposition 7.Ten,
there exists a fnitely generated subideal I0 of I such that I �

(I0)u. It is easy to verify that I0 is regular. Tus,
lim
⟶

HomR((I0)u, Mi) � lim
⟶

HomR(I0, Mi) by Lemma 10.

lim
⟶

HomR(I0, Mi) � HomR(I0, lim⟶ Mi) by Lemma 9.

HomR(I0, lim⟶ Mi) � HomR((I0)u, lim
⟶

Mi) by Teorem 3

and Lemma 10.Ten, lim
⟶

HomR(I, Mi) � HomR(I, lim
⟶

Mi).
Recall that an R-module E is reg-injective if

Ext1R(R/I, E) � 0 for any regular ideal I of R [12, Defnition
5.2]. □

Proposition 9. Let R be a commutative ring and let E be au-
module over R. Ten, the following statements are equivalent.

(1) E is a reg-injective R-module.
(2) Ext1R(R/I, E) � 0 for any regular u-ideal I of R.
(3) For any regular u-ideal I of R, every homomorphism

f: I⟶ E can be extended to R.

Proof
(1)⇒(2) Tis is trivial.
(2)⇒(1) Let I be a regular ideal of R. Ten, Iu is a
regular ideal of R and (Iu/I) is rGV-torsion. Since E is a
u-module, we can get that Ext1R(Iu/I, E) � 0 by Prop-
osition 2. From the exact sequence 0⟶ Iu/I⟶
R/I⟶ R/Iu⟶ 0, we can get an exact sequence

0 � Ext1R R/Iu,E􏼐 􏼑⟶ Ext1R(R/I, E)⟶ Ext1R Iu/I, E( 􏼁 � 0. (23)
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Tus, Ext1R(R/I, E) � 0. Terefore, E is injective.
(2)⇔(3) Tis is clear.
Recall that a reg-injective R-module E is 􏽐-reg-injective
if any direct sum of its copies is reg-injective [12,
Defnition 6.4]. □

Theorem 6. Te following statements are equivalent for a
ringR.

(1) R is an SM ring.
(2) Te direct sum of any number of rGV-torsion-free

reg-injective R-modules is reg-injective.
(3) Te direct sum of any number of GV-torsion-free

reg-injective R-modules is reg-injective.
(4) Te direct sum of any countable number of rGV-tor-

sion-free reg-injective R-modules is reg-injective.
(5) Te direct sum of any countable number of GV-tor-

sion-free reg-injective R-modules is reg-injective.
(6) Every rGV-torsion-free reg-injective R-module is

􏽐-reg-injective.
(7) Every GV-torsion-free reg-injective R-module is

􏽐-reg-injective.
(8) Te direct limit of rGV-torsion-free reg-injective

R-modules is reg-injective.
(9) Te direct limit of GV-torsion-free reg-injective R

-modules is reg-injective.

Proof
(1)⇔(2)⇔(4)⇔(6) See [9, Teorem 4.1.10].
(1)⇔(3)⇔(5)⇔(7) See [12, Teorem 6.10].
(1)⇒(8) Let Ei􏼈 􏼉 be a family of rGV-torsion-free reg-
injective R-modules. Ten, each Ei is a u-module by
defnition. Since R is an SM ring, we can get that
Ext1R(R/I, lim

⟶
Ei) � lim

⟶
Ext1R(R/I, Ei) � 0 for any

regular u-ideal I of R by Proposition 8. Note that lim
⟶

Ei

is a u-module by Teorem 3. Ten, lim
⟶

Ei is reg-
injective by Proposition 9.
(8)⇒(9) Tis follows by the fact that GV-torsion-free
R-modules are rGV-torsion-free.
(9)⇒(5) Tis follows by the fact that a direct sum is a
direct limit of fnite sums. □
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