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The main intent of this article is to innovate a new iterative method to approximate fixed points of contraction and nonexpansive
mappings. We prove that the new iterative method is stable for contraction and has a better rate of convergence than some
distinctive iterative methods. Furthermore, some convergence results are proved for nonexpansive mappings. Finally, the solution
of a nonlinear fractional difference equation is approximated via the proposed iterative method. Some numerical examples are
constructed to support the analytical results and to illustrate the efficiency of the proposed iterative method.

1. Introduction

The fixed point theory is an imperative arm of mathematics.
It has become not only a field with significant advancement
but also a vital tool for solving different kinds of problems in
several fields of mathematics. The fixed point theory is a
powerful tool because it has a variety of applications in
different fields like differential and integral equations, var-
iational inequalities, approximation theory, economics, bi-
ological  sciences, medical sciences, engineering,
optimization theory, fractal theory, game theory, and control
theory. Indeed, the strength of fixed point theory lies in its
wide range of applications inside and beyond mathematics.

All over this paper, we presume that Z* is the set of all
non-negative integers, 9% a Banach space, @+ 2 ¢ %, and
F(@)=ke2:8: 29— Pand%k=k}. A mapping
G: D — D is said to be a contraction mapping if
3B € [0, 1), such that Vs,t € 9:

1¥s — @il < Blls - t]. (1)

If B =1, then & is a nonexpansive mapping on <.

In 1965, an underlying existence result for fixed points of
nonexpansive mappings was proved independently by
Browder [1], Gohde [2], and Kirk [3]. After that, fixed point

theory for nonexpansive and allied classes of mappings has
been examined broadly and has provoked a parallel study in
Banach space geometry.

On the other hand, it is well known that the Picard
iterative method failed to estimate the fixed points of
nonexpansive mappings. So, in 1953, Mann [4] intro-
duced a one-step iterative method to estimate the fixed
points of nonexpansive mappings. But, it can be effort-
lessly seen that Mann’s iterative method was unsuccessful
to estimate the fixed points of pseudo-contractive map-
pings. Therefore, in 1974, Ishikawa [5] defined a two-step
Mann iterative method to estimate the fixed points of such
type mappings. The speed of convergence of iterative
sequence is important from the practical point of view.
The faster iterative method saves time while approxi-
mating fixed points of nonlinear mappings. Recently, Ali
et al. [6], and Garodia and Uddin [7] introduced new
iterative methods to achieve a better rate of convergence.
Quite recently, several Man-type and Ishikawa-type it-
erative methods have been studied by different researchers
for the approximation of fixed points of single-valued
nonlinear functions, e.g., see [8-10]. The following iter-
ative methods are generated by an initial point 7, € 9,
where @ is a self-mapping on 2.
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The S-iterative method (Agarwal et al. [11]) is as follows:

Ty = (1—u,)%71, +4,%0,,
{nl (1= p) %7, + 4 @)

0,=(1-06,)1,+60,81,,necZ".

The Picard-S iterative method (Gursoy and Karakaya
[12]) can be given as

Tl = ?U
0y = (1 - ‘un)?‘[n + #ngfn’ (3)
(&, =(1-6)1,+6,%1,neZ".

The Vatan iterative method (Karakaya et al. [13]) can be
given as

{ Toel = g((l - ‘bln)O'n + ‘ungan)’ (4)

0,=%((1-6,)1,+6,%1,),neZ".

The Thakur-New iterative method (Thakur et al. [14])
can be given as

Tl = ?0’
Op = Qj(( - Mn)Tﬂ + A“nfn)’ (5)
¢&,=01-6,)1,+0,%1,neZ".

The M* iterative method (Ullah and Arshad [15]) can be
given as

+1 = ?Un,
= G((1 - )70 + 1, GE,); (6)
(&, =(1-6)1,+0,%1,,neZ".

The M iterative method (Ullah and Arshad [16]) can be
given as

n+1 - ?O'
0, =%, (7)
&, =(1-p)r, +u, 81, neZ".

Strongly inspired by the above equations, we define the
following a novel iterative method:

T, € 9,
T+l = ?((1 - ‘Mn)O'n + Mngo'n)’ (8)
0y = g((1 - en)grn + enfn)’

(,=%(%1,),ne",

where {y,} and {6,} are control sequences in (0, 1).

Remark 1. This iterative method (8) is different from all the
iterative methods existing in the literature.

The rest of the manuscript is unified as follows: Section 2
contains some definitions and lemmas that will be used in
the main findings. In Section 3, the rate of convergence of the
proposed iterative method is compared with some known
and remarkable iterative methods by analytically and nu-
merically. The stability of the new iterative method is also
discussed with respect to contraction. In Section 4, weak and
strong convergence theorems are proven for nonexpansive
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mappings via the newly defined method. In Section 5, the
solution of a nonlinear fractional difference equation is
estimated via the proposed iterative method. The conclusion
of the paper is given in the last section.

2. Preliminaries

For the purpose of convenience, we recall the following
concepts and results that will be used in the sequel.

Lemma 1 (see [17]). Let {u,} and {e,} be sequences in R,
that satisfy the following inequality:

Uyl = (1 n) Uy + € (9)
where v, € (0,1), VneZ" with Y v,=0c0. If
lzm (e/v)—O then lim u, =0.

Definition 1 (see [18]). A Banach space & satisfies Opial’s
condition if for each T,—p € B,
lim inf|7, - pll< lim inf]r, — gl holds true, and Vg € A

with g # p.

Definition 2 (see [19]). Let 98 be a Banach space, 3+ 9 ¢ A
and ¥: D9 — D be a function. ¥ satisfies condition (I)if 3
is an increasing mapping &: [0,00) — [0,00) such that
£(0) =0, £(w)>0, Yw>0, and d(p.¥p) > E(d (p, F(2))),
Vp e D.

Lemma 2 (see [20]). Let {r,} and {o,} be sequences in a
uniformly convex Banach space B with lim supl||t,|<c,
lim supllo,ll<cm and lim |s,t,+ (1=syo,| =c¢, for
Some ¢ > 0. Then, llm Iz, —aoﬁl 0, where 0<a<s,<b<1
and ¥n>1. "

Lemma 3 (see [21]). If &1 D — B is a nonexpansive
function, where & is a uniformly convex Banach space and D
is a convex closed subset of . Then, I — & is semiclosed on 9B,
where I stands for identity map on 9.

Definition 3 (see [22]). Let (%, || - ||) be a normed space and
@ be a self-mapping on % and let two iterative methods {7, }
and {0,} converge identical to the point k. Further, assume

that the following error estimates are available:
—k|<d,,
I~ <, o
o, — K| <e

where {d,}, {e,} ¢ R, such that d, — 0 and ¢, — 0 as
n— oo.

Definition 4 (see [22]). Let {d,}, {e,} c R, such that
d,— dande, — easn— oo. If
d,—d
lim | | =0, (11)
n—eo le, — ¢

then {d,} converges to d faster than {e,} to e.
And if
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0< lim ld”_d|<oo, (12)

n—co le, — ¢
then {d,} and {e,} have the equal rate of convergence.

Definition 5 (see [23]). Let {y,} ¢ & be an approximate
sequence of {7,}. Then, an iterative method is defined as

{1069,

13
Tn+1 = 5(?> Tn)’ ne Z+’ ( )

for some relation &, such that 7, — k as n — 00, is called
-stable; ife, = |ly,,, —&E(&, y,),ne Z", weget lim ¢, =
0e lim y, =k. e

n—=a~oo

3. Rate of Convergence and the Stability of the
Proposed Method

The motive of the current section is to demonstrate conver-
gence, rate of convergence, and stability results for contraction
in an arbitrary Banach space by the proposed iterative method.

lo, - k| =|€((1-06,)%7,+6,8,)-|k

Theorem 1. Let B be a Banach space and & a nonempty,
convex closed subset of B and G: D — D be a contraction
mapping. Then, the iterative sequence {t,} defined in the
method (8) converges to one and only one point of F(Z).
Moreover, the sequence {t,} is stable with respect to con-
traction mapping.

Proof. Since & is a contraction mapping, 8 € [0,1) and
Vse D, and k € F(9):

I1€s -kl =1%s - Tkl < Bls - llk. (14)

By iterative method (8), we get
6Kl =5 (5) - l<Fls-K 09

Using equation (15), we get

<B|(1-6,)%1, +6,&,-|k<p((1-6,)|%T, - k| +6,]¢, —K|)
<P ((1 =0~ k| + 0.8z, K|)

= (1-(1-p0b,)|r. k|-

Since 0<f<1 and 8, € (0,1), so with the fact 0< (1 -
(1-p)8,) <1, we get

low - Kl <[, - k) )
Using equation (17), we get
lwn =K =% (1 - )0, + 0, %0,) - K|
<p|(t - )0, +u,o, - k|
<B((1 =)o = k| + |0, ~ k)
<B((1 = p)lo = K| + Bysalo, — Kl)
<B(1-(=Pp,)|o, — K]
<P’||z, - k|-

(18)

(16)

Inductively, we get
[0 = Kl <o - K| (19)

Since 0 << 1, it concludes that {r,} converges to k.
Here, we prove the stability of the method (8). Let {y,,}
be an estimate sequence of {7,} in 9, then the sequence
defined by the iterative method (8) is 7,,, = £(%,1,) and
€,= v, - (&, v )l,neZ". Now, we show that
lim ¢, =0 lim y, =k.
n—~oo —00

n
Let lim e, =0, then by the method (8), we obtain
n—=aoo

||1//n+1 - k" < ||1//n+1 - f(?, I//n)“ +||€(?’ l//n) - k“ =€ +||f(?) ll]n) - k” < €y
+ﬁ3 (1 -1 _ﬁ)‘un)"vjn - k”

(20)



Put u, = ||y, — k|| and v, = (1 - B)u, € (0,1), then
Uy <P (1=v)u, + ¢, (21)

Since lim €, =0, (¢,/v,) — 0 as n — co. Thus, by
n—-

o0
Lemma 1, lim u, =0, thatis, lim vy, =k.
—00

Conver:eTy?Oassume that lim ¥, = k, then we have
€n ="1Vn+l -§(9, V/n)“
<[y = K| +[E(Z y) - K (22)

< ”w"*l - k” +ﬂ3 (1 -(1 _/S)Aun)"vfn - k"

This shows that lim ¢, = 0. Thus, the iterative method
(8) is stable with reglpge'cotO to contraction.

The following theorem shows that the iterative method
(8) has the better speed of convergence than the methods
(2)-(7) for contraction. O

Theorem 2. Let B be a Banach space and 2D a nonempty,
convex closed subset of B, and &: D — D be a contraction.
Assume that the sequence {Tl’n} is defined by S (2), {TM} by
Picard-S (3), {73’,1} by Vatan (4), {1‘4,,1} by Thakur-New (5),
{Ts’n} by M* (6), {Tm} by M (7) and {z,} by (8) iterative
method. Then, the iterative method (8) converges to a fixed
point k of € faster than the M*, S, Vatan, Picard-S, Thakur-
New and M iterative methods.

Proof. In view of equation (19), we obtain
|7 = K| <B Pz K| = @, n e Z°. (23)
As proved by Sahu ([24], Theorem 3.6), we get
l7i, = k| <B" V(1= (1 - Bu,6,)" |10 K| = @y, n € Z°.
(24)
From Gursoy and Karakaya’s study [12], we get
|72 — K| < (1-1- /J’)ynf),,)"ﬂnrz)o ~k|=ay,,nez".
(25)
As proved by Ullah and Arshad ([25], Theorem 4), we get

||T3’n - k|| Sﬁz("“) (1-(1- ,B)yn)wrl||'r3]0 - k|| =a3,, n€ z".

(26)
Now, by iterative method (5), we obtain
I€, - & =|(1-6,)r,+6,&7, - kK|
<(1-6 -k 0 -k
e R R .

= (1-6,+p0,)|r. - |
=(1-(1-p8,)|z, K|

Since € (0,1] and 8, € (0, 1), so with the fact 0<1 -
(1-p)6, <1, we have

16, =kl <]z - & (28)

By equation (28), we get
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low =Kl =1 (1 = )7, + ps80) = |
<B[(1 = )T+ = K]
<Bl(1-p)|zn K| + pall& - K[] (29
<Pl =)l = Kl + pal| 7~ K]

= Bl |
Thus, using the equation (29), we obtain that
[7ss = Kl =190, ~ k| <Blo, - k| < B[z~ K.~ (30)
Inductively, we get
[t =kl . o
Let
[t~ K| < rye ~ k| =@y ne z'.  (32)

By iterative method (6) and using equation (28), we get
|8 =Kl <z~ K- (33)
Now, using equation (33), we get
o, = Kl =% (1 - )7, + 1, 55,) = K|
<B[(1 - p,)7,0 + |1, %8, — K] ]
<B[(1 = )|z — K| + Bua €, — K] ] (34)
<B[(1 = )7 = k| + B — K]
= B[ = (1= By ] [ = K[| < B ~ K[
Thus, using equation (34), we obtain that
k| =[¥o, -kl <Blo, - k| <r. - K| (39

||Tn+1

Inductively, we get
l7er = Kl < B2 = . (36)
Let
ltsn =K <B " Vlrse —k| = as,on ezt (37)
By iterative method (7) and using equation (28), we get
e, = Kl <[, - k] G9)
Now, using equation (38), we have

low =Kl =%, K| < B, - K]

(39)
<B|r, - K-
By equation (39), we obtain
o - M-l Hstlo-d
<P||r, - K|
Inductively, we obtain
[t~ Kl <8z, - K] (an
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Let

l76. — K| gﬁz(”ﬂ)urao —k| = ag,,neZ". (42)
Now,
- BVl - K|
a [B(1- (1= P8 |70 - K|
P
1-(1-pBu,b, "71,0 - k”

Since f<1 and (B/1 - (1 - p)u,0,) <1, we have
(a,/at; ) — 0asn —> co. Thus, {7,,} has a better speed
of convergence than {TLH} and

a

(43)

ﬁ3(n+l)"‘[0 _ k“
- (1 - ﬁ)ﬂnen)]m-l"‘rlo - k”

, (44)
(o ) e
1= (1=B,b,) |20 — K|

implies (a,/a,,) — 0 as n — oo. Thus, {r,} has better
speed of convergence than {Tz’n}.
Next,

0("_

G, - ﬁz(nﬂ) [(1

Bz, — K
A B[ (1= Bp]) 0 - K|

SR
1-(1-Pu, ”73,0 - k"

Thus, (a,/a3,) —> 0asn — oo. Hence, {7,,} has better
speed of convergence than {Tln}.
Furthermore,

(45)

. B K|

ayp - /32("+1)||T4)0 _ k"

i |70 = K]
||T40 k“

R L
“5”1 ﬂz (}’H—l)“TS’O _ k"

v 70 = K|
||Tso k|

(4

— 0, asn— 0o.

(46)

=B

— 0, asn— 0o.

And

5
ﬁ ) [33(n+1)||1_0 _ k"
“6,71 [))2 (Vl+l)||T6’0 _ k"
(47)
"“—"TO t" — 0, asn — oo.
||760 - k“

Thus, the sequence {7,,} has better speed of convergence
than the sequences {14),1}, {1'5),,}, and 16),1}.
The following example supports the above result. [

Example 1. Take % =R and 9 =[1,100] c R. Let
E: D —> D be given by Ts=Vs?—s+1, for all s e D.
Then, & is a contraction mapping and admits an unique
fixed point k = 1. Here, we choose the control sequences
Y, = 0.25 and 6, = 0.35, for all n € Z* with the initial guess
To = 5.

The proposed method (8) has better speed of conver-
gence than S, Picard-S, Vatan, Thakur-New, M*, and M
iterative methods with control sequences u, =0.25,
0, = 0.35,n € Z*, and the initial point 7, = 5 (Tables 1 and 2
and Figure 1). With the same inputs, we compare the CPU
time for distinct iterative methods (Table 2).

3.1. Observations. In the present article, we compare the
speed of convergence of different iterative methods only in
number of iterations. In Table 1, we observe that proposed
method (8) converges to a fixed point k = 1 in 10 iterations
and other methods, as shown in Figure 1, and converges
more than 10 iterations. Thus, method (8) converges faster
than methods (2)-(7).

We also compare the convergence behavior of the
proposed iterative method for different initial points. We
noticed that the rate of convergence also depends on the
initial points, and one can easily see it in Table 3 and
Figure 2.

4, Convergence Theorems
First, we demonstrate the following fruitful lemmas that help

us to obtain the sequel.

Lemma 4. Let & be a uniformly convex Banach space,
D (+ D) be a convex closed subset of B, and let &: D — D
be a nonexpansive mapping. If {t,} is defined by (8), then
nﬂnoo [z, — k| exists when Vk € F(Z).

Proof. As ¥ is a nonexpansive mapping, so we get

”?Tn - k" < "Tn - k|| (48)
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TaBLE 1: A comparison table for the speed of convergence of iterative methods.

Iter. New S Picard-S Vatan Thakur-New M* M
1 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
2 3.410995 4.567208 4.158387 4.013700 4.158384 4.058541 4.073272
3 2.064573 4.143397 3.358521 3.090238 3.358514 3.172745 3.199868
10 1.000000 1.449346 1.000866 1.000098 1.000866 1000196 1.000234
15 1.000000 1.046473 1.000003 1.000000 1.000003 1.000000 1.000001
16 1.000000 1.023580 1.000001 1.000000 1.000001 1.000000 1.000000
17 1.000000 1.011771 1.000000 1.000000 1.000000 1.000000 1.000000
18 1.000000 1.005826 1.000000 1.000000 1.000000 1.000000 1.000000
32 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
TABLE 2: A comparison table for the CPU time for convergence of iterative methods.
Iterative methods New (s) S (s) Picard-S (s) Vatan (s) Thakur-New (s) M* (s) M (s)
CPU time (in seconds) 0.015 0.028 0.018 0.016 0.018 0.018 0.016
V1, € D and Vk € F(¥). By the iterative method (8), we Using equation (49), we have
obtain
&, - k| =% (%) - k| < |7 - k] (49)
low—K| =% (1 - 6,)%7, + 6,£) ~ K| <|(1 - 6,)%7, + 6,6, |
< (1-6,)]|%r, ~ k] + 6,]&, - K o)
< (1-6,)|r,— k| + 6,]&, - |
< "Tn - k||
Using equation (50), we have
||Tn+1 - k“ = “?((1 - Aun)an + ‘un?an) - k" < "(1 - [’ln)an + lui’l(go-ﬂ - k“
< (1-w)|o, - k|| + 1| €0, - K|
< (1=u,)|o, = k|| + w0 = K| (51)
< (1= )l - K]+l K]
=z, - |-
li —k| =«
Hence, {||7, — kll} is nonincreasing Vk € F(¥). Hence, ninoo"‘rn k” * (52)
nh—rvnoo I, = kel exists. = By equation (50) and (52), we obtain
Lemma 5. Let all the assumptions of Lemma 4 be true. If {z,} nﬁnm suplo, — k| < nli_f)noo sup|z, k| <a. (53)
is defined in the method (8), then F (%) + @ if and only if {7}
is bounded and lim |1,-Z7,|| =0. As & is a nonexpansive mapping, we get
n—~o
|0, - K| =[ %0, - Gk| <o, - K|
Proof. Presume that F(9)#& and ke F(¥). Then, ) . (54)
lim |z, - k| exists by Lemma 4 and {r,} is bounded. nh_r,noo sup|€o, — k| < nlﬂ?oo sup|lo,, — k| < a.
n—s~a0

Presume that
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TABLE 3: A comparison table for the speed of convergence of iterative method (8) for different initial points.
Iter. 7, =0.5 Ty =15 Ty =2.0 T, =4.0 Ty =15 Ty =25
1 0.500000 1.500000 2.000000 4.000000 15.000000 25.000000
2 0.981067 1.069972 1.217159 2.537170 13.132886 23.087463
3 0.998508 1.006144 1.022586 1.474128 11.282689 21.180400
7 1.000000 1.000000 1.000001 1.000037 4.254545 13.633143
8 1.000000 1.000000 1.000000 1.000003 2.752868 11.777916
9 1.000000 1.000000 1.000000 1.000000 1.603111 9.943726
15 1.000000 1.000000 1.000000 1.000000 1.000000 1.166649
20 1.000000 1.000000 1.000000 1.000000 1.000000 1.000001
21 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Now,
o= nlim [Tp1 — k| = lim |€((1-u,)0, +u,%0,) - k|
—00 n—~oo
< lim |(1-u,)o, +p, %o, - k|
n—aoo
= nh_r)nm"(l - nun) (Gn - k) T Uy (?O'n - k)" (55)
< Jim (1=, k| + 4| o, - K])
<

lim ((1 - /ln)||Tn - k“ + yn"rn - k”) <a.

n—aoo
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Thus, lim [0, - o] = 0. (57)
lim "(1 - /’ln) (Gn - k) +u, (?an - k)“ = . (56)
n—a~o

By (53)-(56) and applying Lemma 2, we get

Now, by using equation (57), we obtain

|70 = Gt =€ (1 - )0 + 1,%0,) = Er] < |(1 = )0 + 1,50, = T
=1 - pn)o, = (1~ w) G0, + G0, = 1,
<(1- ;4,,)"0” - fﬁan" +||560n - Tn+1||
=(1-w)|o, - %o,| +|€0, - €((1 - w0, + 1, G0,)| (58)
< (1-plow - o] +]o, - (1 - u)o, - 4, Zo,
=(1=w)|on - Zo,| + o, - Zo,|

Jo, - %o,

Thus,
Jim [z, - g7, = 0. (59)

Conversely, presume that {r,} is bounded and
lim |7, - €7, =0. Let k € A(D, {r,}), then we have
n—~odo

r(Ck, {r,}) = lim sup|r, — K|
< lim sup(”‘rn - ?‘rn" +”ng - ?k")
< lim sup||r, - (60)

=r(kA{7})

=7 (D A7})-

This implies that €k € A(D, {1,}). Thus, we know that
A(D,{r,}) consists of only one element because % is
uniformly convex; hence, €k = k. O

Theorem 3. Let all the assumptions of Lemma 4 be true.
Presume that B contents Opial’s property, then the sequence
{z,,} given in (8) converges to a point of F (%) weakly.

Proof. Assume {(Tn‘l»‘ and {Tnk} are two subsequences of {z,}
such that 7, —k and 7, —q as j — 0o (—, stands for
weakly convergent), where k, g € F(%). In view of Lemma 4,

lim |7, — k| exists and by Lemma 5, lim |7, - €7,[| =0.
Tn view of Lemma 3, (I - ©)k = 0, i.e.'k = €k, in the same
way q = &q.
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Now, we prove that k = g. If k# ¢, then using Opial’s
condition, we get

lim
n;, — oo

lim [z, - |
n—~oo j

Ty~ k“

lim
flj — 0

AN

T“j B q"

Jim [ =l o
RLM ST

lim
n, — 00

lim "Tn - k”

n—a~oo

N

T~ k”

A contradiction implies that k=g. Thus, 7,—k and

Theorem 4. Let all the assumptions of Lemma 4 be true.
Then, {t,} defined by (8) goes to an fixed element of & if and
only if lim inf d(7,,F(¥)) =0, where d(7,,F(¥))

= inf{|lz, — kl: k € F(€)}.

Proof. One can prove the first part easily. For reverse,

presume lim inf d(7,, F(¥)) =0. In view of Result 4.1,
n—~oo

lim |z, - k| exists, Vk € F(€) and lim d(z,,F(Z)) =0

n—~oo n—~oo

is given.
We now prove that {r,} converges to an element of 9.
Since lim d(7,,F(¥)) =0, for $>0,3P e NwithVn>P.
n—aoo

(5, F(©) <2
(62)

Vk € F(9). O =inf{|r,—k|: ke F(9)} <.
Specifically, inf{llzp - kll: k € F(2)} < (B/2). So
Ik € F(&) with ||tp — klI{(B/2). Now, for m,n > P, we have
[7im = zall < (s = Kl + 7 = Kl < |75 = K| +]7p = K[| = 2] - K[| < . (63)

This shows that the sequence {7,,} is Cauchy in Z, so that
Jan element r €2 and lim 7,=r. Now, lim

d(1,,F(%)) = 0=d (r, (%)) = 0, and thus, r € F(%). U

Theorem 5. Let all the assumptions of Lemma 4 be true and
€ contents condition (I). Then, {z,} defined by (8) converges
strongly to a point of F (%).

Proof. Using Lemma 5 and condition (I), we obtain

0< lim £(d(r,,F(¥)))< lim ||r, - €7,| =0

(64)
= lim &(d(7,,F(¥))) =0.
This implies that
nIme (d(z,,F(9)))=0. (65)
Thus, the result is followed by Theorem 4. O

Example 2. Let & = R* with the norm ||(s,t)]| = |s| + [t],
V(s,t) € B, and D = {(s,t): (s,t) € [0,1] x [0,1]} Cc AB. A
function ¥: @ — D is given as

G (s,t) = (cos(s), cos(t)),V(s,t) € D. (66)

Then, & is a nonexpansive mapping and has a fixed point
(k,q) = (0.739085,0.739085), whether € is not a
contraction.

The proposed method (8) goes to the fixed point (k,q) =
(0.739085, 0.739085) of the function € better than S, Picard-
S, Vatan, Thakur-new, M*, and M iterative methods with the
control sequences y, = 0.85, 0, = 0.35, n € Z*, and initial
point (0.5, 0.8) (Tables 4-6 and Figure 3). With the same
inputs, we compare the CPU time for the conbergence of
distinct iterative methods (Table 6).

5. Solution of a Nonlinear Fractional
Difference Equation

The main intent of the present section is to approximate the
solution of a fractional difference equation via an iterative
method (8). Consider the following:

{D‘sy(z):F(z+6—1,y(z+5—1)), zel 45 0<0<1,

y(0) =y
(67)

where D° indicates the Caputo-like discrete fractional dif-
ference of order 6, F: [0,00) X B — R is a continuous
function, I,_5={1-6,2-4,...} and B =C(I,_s) is a real
Banach space with the norm

1o = max.e; |y (2], ¥y € B. (68)

It is shown in [26] that y(z) is a solution of the initial
value problem (IVP) (67) if and only if y(z) is a solution of
the following relation:



10 Journal of Mathematics

TABLE 4: A comparison table for the rate of convergence of iterative methods for Example 2.

Iter. New S Picard-S

(0.500000, 0.800000)

(0.500000, 0.800000)

(0.500000, 0.800000)

2 (0.728448, 0.742483) (0.817381, 0.718359) (0.684134, 0.752887)
3 (0.738520, 0.739267) (0.712404, 0.746080) (0.726516, 0.742226)
6 (0.739085, 0.739085) (0.740115,0.738814) (0.738936, 0.739122)
10 (0.739085, 0.739085) (0.739099, 0.739082) (0.739085, 0.739085)
11 (0.739085, 0.739085) (0.739081, 0.739086) (0.739085, 0.739085)
12 (0.739085, 0.739085) (0.739087, 0.739085) (0.739085, 0.739085)
13 (0.739085, 0.739085) (0.739085, 0.739085) (0.739085, 0.739085)
o
=
=}
E
£
—f 3in # # § 8 # 8
| | | | | | | | | | | | J
1 2 3 4 5 6 7 8 9 10 11 12 13 14
(Number of iterations)
S --- M*
--- Picard-S M
Vatan —%— New
-B- Thakur-New
FiGure 3: Comparison by the graph.
TABLE 5: A comparison table for the rate of convergence of iterative methods for Example 2.
Iter. Vatan Thakur-New M* M
1 (0.500000, 0.800000) (0.500000, 0.800000) (0.500000, 0.800000) (0.500000, 0.800000)
2 (0.758961, 0.734316) (0.683455, 0.752848) (0.758026, 0.734260) (0.691844, 0.750366)
3 (0.737514, 0.739464) (0.726326, 0.742215) (0.737582, 0.739468) (0.730107, 0.741200)
4 (0.739210, 0.739055) (0.736173, 0.739798) (0.739205, 0.739055) (0.737394, 0.739482)
5 (0.739075, 0.739088) (0.738422, 0.739248) (0.739076, 0.739088) (0.738767, 0.739160)
6 (0.739086, 0.739085) (0.738934, 0.739122) (0.739086, 0.739085) (0.739025, 0.739099)
7 (0.739085, 0.739085) (0.739051, 0.739094) (0.739085, 0.739085) (0.739074, 0.739088)
8 (0.739085, 0.739085) (0.739077, 0.739087) (0.739085, 0.739085) (0.739083, 0.739086)
9 (0.739085, 0.739085) (0.739083, 0.739086) (0.739085, 0.739085) (0.739085, 0.739085)
10 (0.739085, 0.739085) (0.739085, 0.739085) (0.739085, 0.739085) (0.739085, 0.739085)
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TABLE 6: A comparison table for the CPU time for convergence of iterative methods.
Iterative methods New (s) S (s) Picard-S (s) Vatan (s) Thakur-New (s) M* (s) M (s)
CPU time (in seconds) 0.017 0.017 0.023 0.018 0.022 0.022 0.018
1 z—=0

y(2) =y, T8 Y -b-1D"VFb+o-1,y(b+5-1),0<0<1,

b=1-6 (69)
y(0) = yo.
IF (2, y) = F (2, W)l < Llly — wlloo- (71)
The following lemma plays a key part to demonstrate the (C,):

main finding of this segment. LT (k + ) o

Lemma 6 (see [26]). We have

g I'(z+9)

_1_ 10D _
(z-b-1) =T ) (70)

b=1-¢

Now, set I, ={1,2,3,...,k} and 9B =C(I}) is a real
Banach space, where k € N. Presume that the following as-
sumptions are true.

(C,): Assume F: [0,k] x B — B is a locally Lipschitz
continuous function with constant L, i.e.,

z—0

Gy(z) =y, +m b=1-8

for z € I. Then, the sequence {t,} developed by iterative
method (8) converges to a unique solution of IVP (67).

1

1€y (z) - w(2)l “T©)

b=1-0

5

1 L
<—
()4

ST (2)) ~ Wheo

<M" _ w”
ST+ )Tk~ Wleor

(z-b-1)Vy-wl,
-0

T+ DIk -

The existence and uniqueness of a solution of the IVP (67)
can be found in [26].

Presently, we are going to demonstrate the main result of
the present section.

Theorem 6. Presume that the conditions (C,) and (C,) are
satisfied. Let an operator G: B —> B be given by

Y (z-b-D"VF(b+5-1,y(b+5-1), (73)

Proof. It is enough to show the operator & is a contraction
mapping on . For any y,w € 9B, we obtain that

z-0
Y (@-b-DCVIEb+0-1,y(b+0-1)-F(b+-Lwb+5-1)l,

(74)
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Thus, & is a contraction on 9. Hence, by applying
Theorem 1, the sequence {z,} converges to a unique solution
of IVP (67). O

6. Conclusion

The main intent of this article was to propose a novel and
effective iterative method for the estimation of fixed points
of contraction and nonexpansive mappings in the frame
work of Banach space. It is also shown that the new iterative
method is stable with respect to contraction mapping. The
rate of convergence of the distinct iterative methods has
been discussed. Therefore, the newly introduced iterative
method is more efficient and effective than the previously
defined iterative methods. The researchers may apply the
new iterative method to approximate the solution of non-
linear problems to achieve a better rate of convergence.
Besides, the results of the present paper generalize and
amplify the relevant results in the literature. Thus, it can be
concluded that the work done in the paper is new and useful
in the area of nonlinear analysis. The fixed point iterative
methods are very useful to estimate the solution of nonlinear
differential equations, nonlinear fractional differential
equations, nonlinear integrodifferential equations, etc. The
interested researchers may apply the proposed iterative
method to estimate the solution of above discussed
problems.
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