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Te main intent of this article is to innovate a new iterative method to approximate fxed points of contraction and nonexpansive
mappings. We prove that the new iterative method is stable for contraction and has a better rate of convergence than some
distinctive iterative methods. Furthermore, some convergence results are proved for nonexpansive mappings. Finally, the solution
of a nonlinear fractional diference equation is approximated via the proposed iterative method. Some numerical examples are
constructed to support the analytical results and to illustrate the efciency of the proposed iterative method.

1. Introduction

Te fxed point theory is an imperative arm of mathematics.
It has become not only a feld with signifcant advancement
but also a vital tool for solving diferent kinds of problems in
several felds of mathematics. Te fxed point theory is a
powerful tool because it has a variety of applications in
diferent felds like diferential and integral equations, var-
iational inequalities, approximation theory, economics, bi-
ological sciences, medical sciences, engineering,
optimization theory, fractal theory, game theory, and control
theory. Indeed, the strength of fxed point theory lies in its
wide range of applications inside and beyond mathematics.

All over this paper, we presume that Z+ is the set of all
non-negative integers, B a Banach space, ∅≠D ⊂B, and
F(G) � k ∈ D: G: D⟶ D andGk � k{ }. A mapping
G: D⟶ D is said to be a contraction mapping if
∃β ∈ [0, 1), such that ∀s, t ∈ D:

‖Gs − Gt‖≤ β‖s − t‖. (1)

If β � 1, then G is a nonexpansive mapping on D.
In 1965, an underlying existence result for fxed points of

nonexpansive mappings was proved independently by
Browder [1], Göhde [2], and Kirk [3]. After that, fxed point

theory for nonexpansive and allied classes of mappings has
been examined broadly and has provoked a parallel study in
Banach space geometry.

On the other hand, it is well known that the Picard
iterative method failed to estimate the fxed points of
nonexpansive mappings. So, in 1953, Mann [4] intro-
duced a one-step iterative method to estimate the fxed
points of nonexpansive mappings. But, it can be efort-
lessly seen that Mann’s iterative method was unsuccessful
to estimate the fxed points of pseudo-contractive map-
pings. Terefore, in 1974, Ishikawa [5] defned a two-step
Mann iterative method to estimate the fxed points of such
type mappings. Te speed of convergence of iterative
sequence is important from the practical point of view.
Te faster iterative method saves time while approxi-
mating fxed points of nonlinear mappings. Recently, Ali
et al. [6], and Garodia and Uddin [7] introduced new
iterative methods to achieve a better rate of convergence.
Quite recently, several Man-type and Ishikawa-type it-
erative methods have been studied by diferent researchers
for the approximation of fxed points of single-valued
nonlinear functions, e.g., see [8–10]. Te following iter-
ative methods are generated by an initial point τ0 ∈ D,
where G is a self-mapping on D.
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Te S-iterative method (Agarwal et al. [11]) is as follows:

τn+1 � 1 − μn( Gτn + μnGσn,

σn � 1 − θn( τn + θnGτn, n ∈ Z+
.

 (2)

Te Picard-S iterative method (Gursoy and Karakaya
[12]) can be given as

τn+1 � Gσn,

σn � 1 − μn( Gτn + μnGξn,

ξn � 1 − θn( τn + θnGτn, n ∈ Z+
.

⎧⎪⎪⎨

⎪⎪⎩
(3)

Te Vatan iterative method (Karakaya et al. [13]) can be
given as

τn+1 � G 1 − μn( σn + μnGσn( ,

σn � G 1 − θn( τn + θnGτn( , n ∈ Z+
.

 (4)

Te Takur-New iterative method (Takur et al. [14])
can be given as

τn+1 � Gσn,

σn � G 1 − μn( τn + μnξn( ,

ξn � 1 − θn( τn + θnGτn, n ∈ Z+
.

⎧⎪⎪⎨

⎪⎪⎩
(5)

Te M∗ iterative method (Ullah and Arshad [15]) can be
given as

τn+1 � Gσn,

σn � G 1 − μn( τn + μnGξn( ,

ξn � 1 − θn( τn + θnGτn, n ∈ Z+
.

⎧⎪⎪⎨

⎪⎪⎩
(6)

Te M iterative method (Ullah and Arshad [16]) can be
given as

τn+1 � Gσn,

σn � Gξn,

ξn � 1 − μn( τn + μnGτn, n ∈ Z+
.

⎧⎪⎪⎨

⎪⎪⎩
(7)

Strongly inspired by the above equations, we defne the
following a novel iterative method:

τ0 ∈ D,

τn+1 � G 1 − μn( σn + μnGσn( ,

σn � G 1 − θn( Gτn + θnξn( ,

ξn � G Gτn( , n ∈ Z+
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where μn  and θn  are control sequences in (0, 1).

Remark 1. Tis iterative method (8) is diferent from all the
iterative methods existing in the literature.

Te rest of the manuscript is unifed as follows: Section 2
contains some defnitions and lemmas that will be used in
themain fndings. In Section 3, the rate of convergence of the
proposed iterative method is compared with some known
and remarkable iterative methods by analytically and nu-
merically. Te stability of the new iterative method is also
discussed with respect to contraction. In Section 4, weak and
strong convergence theorems are proven for nonexpansive

mappings via the newly defned method. In Section 5, the
solution of a nonlinear fractional diference equation is
estimated via the proposed iterative method. Te conclusion
of the paper is given in the last section.

2. Preliminaries

For the purpose of convenience, we recall the following
concepts and results that will be used in the sequel.

Lemma 1 (see [17]). Let un  and ϵn  be sequences in R+

that satisfy the following inequality:

un+1 ≤ 1 − vn(  un + ϵn, (9)

where vn ∈ (0, 1), ∀n ∈ Z+ with 
∞
n�0 vn �∞. If

lim
n⟶∞

(ϵn/vn) � 0, then lim
n⟶∞

un � 0.

Defnition 1 (see [18]). A Banach space B satisfes Opial’s
condition if for each τn⇀p ∈B,
lim

n⟶∞
inf‖τn − p‖< lim

n⟶∞
inf‖τn − q‖ holds true, and ∀q ∈B

with q≠p.

Defnition 2 (see [19]). LetB be a Banach space,∅≠D ⊂B
andG: D⟶ D be a function.G satisfes condition (I) if ∃
is an increasing mapping ξ: [0,∞)⟶ [0,∞) such that
ξ(0) � 0, ξ(w)> 0, ∀w> 0, and d(p,Gp)≥ ξ(d(p, F(G))),
∀p ∈ D.

Lemma 2 (see [20]). Let τn  and σn  be sequences in a
uniformly convex Banach space B with lim

n⟶∞
sup‖τn‖≤ c,

lim
n⟶∞

sup‖σn‖≤ c,m and lim
n⟶∞

‖snτn + (1 − sn)σn‖ � c, for
some c≥ 0. Ten, lim

n⟶∞
‖τn − σn‖ � 0, where 0< a≤ sn ≤ b< 1

and ∀n≥ 1.

Lemma 3 (see [21]). If G: D⟶B is a nonexpansive
function, whereB is a uniformly convex Banach space andD
is a convex closed subset ofB.Ten, I − G is semiclosed onB,
where I stands for identity map on D.

Defnition 3 (see [22]). Let (B, ‖ · ‖) be a normed space and
G be a self-mapping onB and let two iterative methods τn 

and σn  converge identical to the point k. Further, assume
that the following error estimates are available:

τn − k
����

����≤ dn,

σn − k
����

����≤ en,
(10)

where dn , en  ⊂ R+ such that dn⟶ 0 and en⟶ 0 as
n⟶∞.

Defnition 4 (see [22]). Let dn , en  ⊂ R+ such that
dn⟶ d and en⟶ e as n⟶∞. If

lim
n⟶∞

dn − d




en − e



� 0, (11)

then dn  converges to d faster than en  to e.
And if
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0< lim
n⟶∞

dn − d




en − e



<∞, (12)

then dn  and en  have the equal rate of convergence.

Defnition 5 (see [23]). Let ψn  ⊂ D be an approximate
sequence of τn . Ten, an iterative method is defned as

τ0 ∈ D,

τn+1 � ξ G, τn( , n ∈ Z+
,

 (13)

for some relation ξ, such that τn⟶ k as n⟶∞, is called
G-stable; if ϵn � ‖ψn+1 − ξ(G,ψn)‖, n ∈ Z+, we get lim

n⟶∞
ϵn �

0⇔ lim
n⟶∞

ψn � k.

3. Rate of Convergence and the Stability of the
Proposed Method

Te motive of the current section is to demonstrate conver-
gence, rate of convergence, and stability results for contraction
in an arbitrary Banach space by the proposed iterativemethod.

Theorem 1. Let B be a Banach space and D a nonempty,
convex closed subset ofB and G: D⟶ D be a contraction
mapping. Ten, the iterative sequence τn  defned in the
method (8) converges to one and only one point of F(G).
Moreover, the sequence τn  is stable with respect to con-
traction mapping.

Proof. Since G is a contraction mapping, β ∈ [0, 1) and
∀ s ∈ D, and k ∈ F(G):

‖Gs − k‖ � ‖Gs − Gk‖≤ β‖s − ‖k. (14)

By iterative method (8), we get

ξn − k
����

���� � G Gτn(  − k
����

����≤ β2 τn − k
����

����. (15)

Using equation (15), we get

σn − k
����

���� � G 1 − θn( Gτn + θnξn( −
����

����k

≤ β 1 − θn( Gτn + θnξn−
����

����k≤ β 1 − θn(  Gτn − k
����

���� + θn ξn − k
����

���� 

≤ β2 1 − θn(  τn − k
����

���� + θnβ τn − k
����

���� 

� β2 1 − (1 − β)θn(  τn − k
����

����.

(16)

Since 0≤ β< 1 and θn ∈ (0, 1), so with the fact 0< (1 −

(1 − β)θn)< 1, we get

σn − k
����

����≤ β2 ξn − k
����

����. (17)

Using equation (17), we get

τn+1 − k
����

���� � G 1 − μn( σn + μnGσn(  − k
����

����

≤ β 1 − μn( σn + μnGσn − k
����

����

≤ β 1 − μn(  σn − k
����

���� + μn Gσn − k
����

���� 

≤ β 1 − μn(  σn − k
����

���� + βμn σn − k
����

���� 

≤ β 1 − (1 − β)μn(  σn − k
����

����

≤ β3 τn − k
����

����.

(18)

Inductively, we get

τn+1 − k
����

����≤ β3(n+1) τ0 − k
����

����. (19)

Since 0≤ β< 1, it concludes that τn  converges to k.
Here, we prove the stability of the method (8). Let ψn 

be an estimate sequence of τn  in D, then the sequence
defned by the iterative method (8) is τn+1 � ξ(G, τn) and
ϵn � ‖ψn+1 − ξ(G,ψn)‖, n ∈ Z+. Now, we show that
lim

n⟶∞
ϵn � 0⇔ lim

n⟶∞
ψn � k.

Let lim
n⟶∞
ϵn � 0, then by the method (8), we obtain

ψn+1 − k
����

����≤ ψn+1 − ξ G,ψn( 
����

���� + ξ G,ψn(  − k
����

���� � ϵn + ξ G,ψn(  − k
����

����≤ ϵn
+ β3 1 − (1 − β)μn(  ψn − k

����
����.

(20)
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Put un � ‖ψn − k‖ and vn � (1 − β)μn ∈ (0, 1), then

un+1 ≤ β
3 1 − vn( un + εn. (21)

Since lim
n⟶∞
ϵn � 0, (ϵn/vn)⟶ 0 as n⟶∞. Tus, by

Lemma 1, lim
n⟶∞

un � 0, that is, lim
n⟶∞

ψn � k.
Conversely, assume that lim

n⟶∞
ψn � k, then we have

ϵn � ψn+1 − ξ G,ψn( 
����

����

≤ ψn+1 − k
����

���� + ξ G,ψn(  − k
����

����

≤ ψn+1 − k
����

���� + β3 1 − (1 − β)μn(  ψn − k
����

����.

(22)

Tis shows that lim
n⟶∞
ϵn � 0. Tus, the iterative method

(8) is stable with respect to contraction.
Te following theorem shows that the iterative method

(8) has the better speed of convergence than the methods
(2)–(7) for contraction. □

Theorem 2. Let B be a Banach space and D a nonempty,
convex closed subset ofB, andG: D⟶ D be a contraction.
Assume that the sequence τ1,n  is defned by S (2), τ2,n  by
Picard-S (3), τ3,n  by Vatan (4), τ4,n  by Takur-New (5),
τ5,n  by M∗ (6), τ6,n  by M (7) and τn  by (8) iterative
method. Ten, the iterative method (8) converges to a fxed
point k of G faster than the M∗, S, Vatan, Picard-S, Takur-
New and M iterative methods.

Proof. In view of equation (19), we obtain

τn+1 − k
����

����≤ β3(n+1) τ0 − k
����

���� � αn, n ∈ Z+
. (23)

As proved by Sahu ([24], Teorem 3.6), we get

τ1,n − k
����

����≤ β(n+1) 1 − (1 − β)μnθn( 
n+1 τ1,0 − k

����
���� � α1,n, n ∈ Z+

.

(24)

From Gursoy and Karakaya’s study [12], we get

τ2,n − k
����

����≤ β2(n+1) 1 − (1 − β)μnθn( 
n+1 τ2,0 − k

����
���� � α2,n, n ∈ Z+

.

(25)

As proved by Ullah and Arshad ([25],Teorem 4), we get

τ3,n − k
����

����≤ β2(n+1) 1 − (1 − β)μn( 
n+1 τ3,0 − k

����
���� � α3,n, n ∈ Z+

.

(26)

Now, by iterative method (5), we obtain

ξn − k
����

���� � 1 − θn( τn + θnGτn − k
����

����

≤ 1 − θn(  τn − k
����

���� + βθn τn − k
����

����

� 1 − θn + βθn(  τn − k
����

����

� 1 − (1 − β)θn(  τn − k
����

����.

(27)

Since β ∈ (0, 1] and θn ∈ (0, 1), so with the fact 0< 1 −

(1 − β)θn < 1, we have

ξn − k
����

����≤ τn − k
����

����. (28)

By equation (28), we get

σn − k
����

���� � G 1 − μn( τn + μnξn(  − k
����

����

≤ β 1 − μn( τn + μnξn − k
����

���� 

≤ β 1 − μn(  τn − k
����

���� + μn ξn − k
����

���� 

≤ β 1 − μn(  τn − k
����

���� + μn τn − k
����

���� 

� β τn − k
����

����.

(29)

Tus, using the equation (29), we obtain that

τn+1 − k
����

���� � Gσn − k
����

����≤ β σn − k
����

����≤ β2 τn − k
����

����. (30)

Inductively, we get

τn+1 − k
����

����≤ β2(n+1) τ0 − k
����

����. (31)

Let

τ4,n − k
����

����≤ β2(n+1) τ4,0 − k
����

���� � α4,n, n ∈ Z+
. (32)

By iterative method (6) and using equation (28), we get

ξn − k
����

����≤ τn − k
����

����. (33)

Now, using equation (33), we get

σn − k
����

���� � G 1 − μn( τn + μnGξn(  − k
����

����

≤ β 1 − μn( τn + μnGξn − k
����

���� 

≤ β 1 − μn(  τn − k
����

���� + βμn ξn − k
����

���� 

≤ β 1 − μn(  τn − k
����

���� + βμn τn − k
����

���� 

� β 1 − (1 − β)μn  τn − k
����

����≤ β τn − k
����

����.

(34)

Tus, using equation (34), we obtain that

τn+1 − k
����

���� � Gσn − k
����

����≤ β σn − k
����

����≤ β2 τn − k
����

����. (35)

Inductively, we get

τn+1 − k
����

����≤ β2(n+1) τ0 − k
����

����. (36)

Let

τ5,n − k
����

����≤ β2(n+1) τ5,0 − k
����

���� � α5,n, n ∈ Z+
. (37)

By iterative method (7) and using equation (28), we get

ξn − k
����

����≤ τn − k
����

����. (38)

Now, using equation (38), we have

σn − k
����

���� � Gξn − k
����

����≤ β ξn − k
����

����

≤ β τn − k
����

����.
(39)

By equation (39), we obtain

τn+1 − k
����

���� � Gσn − k
����

����≤ β σn − k
����

����

≤ β2 τn − k
����

����.
(40)

Inductively, we obtain

τn+1 − k
����

����≤ β2(n+1) τ0 − k
����

����. (41)
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Let

τ6,n − k
����

����≤ β2(n+1) τ6,0 − k
����

���� � α6,n, n ∈ Z+
. (42)

Now,

αn

α1,n

�
β3(n+1) τ0 − k

����
����

β 1 − (1 − β)μnθn(  
n+1 τ1,0 − k

����
����

� βn+1 β
1 − (1 − β)μnθn

 

n+1 τ0 − k
����

����

τ1,0 − k
����

����
.

(43)

Since β< 1 and (β/1 − (1 − β)μnθn)< 1, we have
(αn/α1,n)⟶ 0 as n⟶∞.Tus, τn  has a better speed

of convergence than τ1,n  and

αn

α2,n

�
β3(n+1) τ0 − k

����
����

β2(n+1) 1 − (1 − β)μnθn(  
n+1 τ2,0 − k

����
����

�
β

1 − (1 − β)μnθn

 

n+1 τ0 − k
����

����

τ2,0 − k
����

����

, (44)

implies (αn/α2,n)⟶ 0 as n⟶∞. Tus, τn  has better
speed of convergence than τ2,n .

Next,

αn

α3,n

�
β3(n+1) τ0 − k

����
����

β2(n+1) 1 − (1 − β)μn ( 
n+1 τ3,0 − k

����
����

�
β

1 − (1 − β)μn

 

n+1 τ0 − k
����

����

τ3,0 − k
����

����
.

(45)

Tus, (αn/α3,n)⟶ 0 as n⟶∞. Hence, τn  has better
speed of convergence than τ3,n .

Furthermore,

αn

α4,n

�
β3(n+1) τ0 − k

����
����

β2(n+1) τ4,0 − k
����

����

� βn+1 τ0 − k
����

����

τ4,0 − k
����

����
⟶ 0, as n⟶∞.

αn

α5,n

�
β3(n+1) τ0 − k

����
����

β2(n+1) τ5,0 − k
����

����

� βn+1 τ0 − k
����

����

τ5,0 − k
����

����
⟶ 0, as n⟶∞.

(46)

And

αn

α6,n

�
β3(n+1) τ0 − k

����
����

β2(n+1) τ6,0 − k
����

����

� βn+1 τ0 − t
����

����

τ6,0 − k
����

����
⟶ 0, as n⟶∞.

(47)

Tus, the sequence τn  has better speed of convergence
than the sequences τ4,n , τ5,n , and τ6,n .

Te following example supports the above result. □

Example 1. Take B � R and D � [1, 100] ⊂ R. Let
G: D⟶ D be given by Gs �

��������
s2 − s + 1

√
, for all s ∈ D.

Ten, G is a contraction mapping and admits an unique
fxed point k � 1. Here, we choose the control sequences
μn � 0.25 and θn � 0.35, for all n ∈ Z+ with the initial guess
τ0 � 5.

Te proposed method (8) has better speed of conver-
gence than S, Picard-S, Vatan, Takur-New, M∗, and M
iterative methods with control sequences μn � 0.25,
θn � 0.35, n ∈ Z+, and the initial point τ0 � 5 (Tables 1 and 2
and Figure 1). With the same inputs, we compare the CPU
time for distinct iterative methods (Table 2).

3.1. Observations. In the present article, we compare the
speed of convergence of diferent iterative methods only in
number of iterations. In Table 1, we observe that proposed
method (8) converges to a fxed point k � 1 in 10 iterations
and other methods, as shown in Figure 1, and converges
more than 10 iterations. Tus, method (8) converges faster
than methods (2)–(7).

We also compare the convergence behavior of the
proposed iterative method for diferent initial points. We
noticed that the rate of convergence also depends on the
initial points, and one can easily see it in Table 3 and
Figure 2.

4. Convergence Theorems

First, we demonstrate the following fruitful lemmas that help
us to obtain the sequel.

Lemma  . Let B be a uniformly convex Banach space,
D(≠∅) be a convex closed subset ofB, and letG: D⟶ D

be a nonexpansive mapping. If τn  is defned by (8), then
lim

n⟶∞
‖τn − k‖ exists when ∀k ∈ F(G).

Proof. As G is a nonexpansive mapping, so we get

Gτn − k
����

����≤ τn − k
����

����. (48)
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∀τn ∈ D and ∀k ∈ F(G). By the iterative method (8), we
obtain

ξn − k
����

���� � G Gτn(  − k
����

����≤ τn − k
����

����. (49)

Using equation (49), we have

σn − k
����

���� � G 1 − θn( Gτn + θnξn(  − k
����

����≤ 1 − θn( Gτn + θnξn − k
����

����

≤ 1 − θn(  Gτn − k
����

���� + θn ξn − k
����

����

≤ 1 − θn(  τn − k
����

���� + θn ξn − k
����

����

≤ τn − k
����

����.

(50)

Using equation (50), we have

τn+1 − k
����

���� � G 1 − μn( σn + μnGσn(  − k
����

����≤ 1 − μn( σn + μnGσn − k
����

����

≤ 1 − μn(  σn − k
����

���� + μn Gσn − k
����

����

≤ 1 − μn(  σn − k
����

���� + μn σn − k
����

����

≤ 1 − μn(  τn − k
����

���� + μn τn − k
����

����

� τn − k
����

����.

(51)

Hence, ‖τn − k‖  is nonincreasing ∀k ∈ F(G). Hence,
lim

n⟶∞
‖τn − k‖ exists. □

Lemma 5. Let all the assumptions of Lemma 4 be true. If τn 

is defned in the method (8), then F(G)≠∅ if and only if τn 

is bounded and lim
n⟶∞

‖τn − Gτn‖ � 0.

Proof. Presume that F(G)≠∅ and k ∈ F(G). Ten,
lim

n⟶∞
‖τn − k‖ exists by Lemma 4 and τn  is bounded.

Presume that

lim
n⟶∞

τn − k
����

���� � α. (52)

By equation (50) and (52), we obtain

lim
n⟶∞

sup σn − k
����

����≤ lim
n⟶∞

sup τn − k
����

����≤ α. (53)

As G is a nonexpansive mapping, we get

Gσn − k
����

���� � Gσn − Gk
����

����≤ σn − k
����

����

lim
n⟶∞

sup Gσn − k
����

����≤ lim
n⟶∞

sup σn − k
����

����≤ α.
(54)

Table 1: A comparison table for the speed of convergence of iterative methods.

Iter. New S Picard-S Vatan Takur-New M∗ M
1 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
2 3.410995 4.567208 4.158387 4.013700 4.158384 4.058541 4.073272
3 2.064573 4.143397 3.358521 3.090238 3.358514 3.172745 3.199868
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
10 1.000000 1.449346 1.000866 1.000098 1.000866 1.000196 1.000234
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
15 1.000000 1.046473 1.000003 1.000000 1.000003 1.000000 1.000001
16 1.000000 1.023580 1.000001 1.000000 1.000001 1.000000 1.000000
17 1.000000 1.011771 1.000000 1.000000 1.000000 1.000000 1.000000
18 1.000000 1.005826 1.000000 1.000000 1.000000 1.000000 1.000000
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
32 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Table 2: A comparison table for the CPU time for convergence of iterative methods.

Iterative methods New (s) S (s) Picard-S (s) Vatan (s) Takur-New (s) M∗ (s) M (s)
CPU time (in seconds) 0.015 0.028 0.018 0.016 0.018 0.018 0.016
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Now,

α � lim
n⟶∞

τn+1 − k
����

���� � lim
n⟶∞

G 1 − μn( σn + μnGσn(  − k
����

����

≤ lim
n⟶∞

1 − μn( σn + μnGσn − k
����

����

� lim
n⟶∞

1 − μn(  σn − k(  + μn Gσn − k( 
����

����

≤ lim
n⟶∞

1 − μn(  σn − k
����

���� + μn Gσn − k
����

���� 

≤ lim
n⟶∞

1 − μn(  τn − k
����

���� + μn τn − k
����

���� ≤ α.

(55)
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Figure 1: Comparison by graph.

Table 3: A comparison table for the speed of convergence of iterative method (8) for diferent initial points.

Iter. τ0 � 0.5 τ0 � 1.5 τ0 � 2.0 τ0 � 4.0 τ0 � 15 τ0 � 25

1 0.500000 1.500000 2.000000 4.000000 15.000000 25.000000
2 0.981067 1.069972 1.217159 2.537170 13.132886 23.087463
3 0.998508 1.006144 1.022586 1.474128 11.282689 21.180400
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
7 1.000000 1.000000 1.000001 1.000037 4.254545 13.633143
8 1.000000 1.000000 1.000000 1.000003 2.752868 11.777916
9 1.000000 1.000000 1.000000 1.000000 1.603111 9.943726
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
15 1.000000 1.000000 1.000000 1.000000 1.000000 1.166649
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
20 1.000000 1.000000 1.000000 1.000000 1.000000 1.000001
21 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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Tus,

lim
n⟶∞

1 − μn(  σn − k(  + μn Gσn − k( 
����

���� � α. (56)

By (53)–(56) and applying Lemma 2, we get

lim
n⟶∞

σn − Gσn

����
���� � 0. (57)

Now, by using equation (57), we obtain

τn+1 − Gτn+1
����

���� � G 1 − μn( σn + μnGσn(  − Gτn+1
����

����≤ 1 − μn( σn + μnGσn − τn+1
����

����

� 1 − μn( σn − 1 − μn( Gσn + Gσn − τn+1
����

����

≤ 1 − μn(  σn − Gσn

����
���� + Gσn − τn+1

����
����

� 1 − μn(  σn − Gσn

����
���� + Gσn − G 1 − μn( σn + μnGσn( 

����
����

≤ 1 − μn(  σn − Gσn

����
���� + σn − 1 − μn( σn − μnGσn

����
����

� 1 − μn(  σn − Gσn

����
���� + μn σn − Gσn

����
����

� σn − Gσn

����
����.

(58)

Tus,
lim

n⟶∞
τn − Gτn

����
���� � 0. (59)

Conversely, presume that τn  is bounded and
lim

n⟶∞
‖τn − Gτn‖ � 0. Let k ∈ A(D, τn ), then we have

r Gk, τn (  � lim
n⟶∞

sup τn − Gk
����

����

≤ lim
n⟶∞

sup τn − Gτn

����
���� + Gτn − Gk

����
���� 

≤ lim
n⟶∞

sup τn − k
����

����

� r k, τn ( 

� r D, τn ( .

(60)

Tis implies that Gk ∈ A(D, τn ). Tus, we know that
A(D, τn ) consists of only one element because B is
uniformly convex; hence, Gk � k. □

Theorem 3. Let all the assumptions of Lemma 4 be true.
Presume that B contents Opial’s property, then the sequence
τn  given in (8) converges to a point of F(G) weakly.

Proof. Assume τnj
  and τnk

  are two subsequences of τn 

such that τnj
⇀k and τnj

⇀q as j⟶∞ (⇀, stands for
weakly convergent), where k, q ∈ F(G). In view of Lemma 4,
lim

n⟶∞
‖τn − k‖ exists and by Lemma 5, lim

n⟶∞
‖τn − Gτn‖ � 0.

In view of Lemma 3, (I − G)k � 0, i.e., k � Gk, in the same
way q � Gq.
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Figure 2: Comparison by the graph.
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Now, we prove that k � q. If k≠ q, then using Opial’s
condition, we get

lim
n⟶∞

τn − k
����

���� � lim
nj⟶∞

τnj
− k

�����

�����

< lim
nj⟶∞

τnj
− q

�����

�����

� lim
n⟶∞

τn − q
����

����

� lim
nk⟶∞

τnk
− q

�����

�����

< lim
nk⟶∞

τnk
− k

�����

�����

� lim
n⟶∞

τn − k
����

����.

(61)

A contradiction implies that k � q. Tus, τn⇀k and
∀k ∈ F(G). □

Theorem  . Let all the assumptions of Lemma 4 be true.
Ten, τn  defned by (8) goes to an fxed element of G if and
only if lim

n⟶∞
inf d(τn, F(G)) � 0, where d(τn, F(G))

� inf ‖τn − k‖: k ∈ F(G) .

Proof. One can prove the frst part easily. For reverse,
presume lim

n⟶∞
inf d(τn, F(G)) � 0. In view of Result 4.1,

lim
n⟶∞

‖τn − k‖ exists, ∀k ∈ F(G) and lim
n⟶∞

d(τn, F(G)) � 0

is given.
We now prove that τn  converges to an element of D.

Since lim
n⟶∞

d(τn, F(G)) � 0, for β> 0, ∃P ∈ N with ∀ n≥P.

d τn, F(G)( <
β
2

⇒inf τn − k
����

����: k ∈ F(G) <
β
2
.

(62)

Specifcally, inf ‖τP − k‖: k ∈ F(G) < (β/2). So
∃ k ∈ F(G) with ‖τP − k‖〈(β/2). Now, for m, n≥P, we have

τn+m − τn

����
����≤ τn+m − k

����
���� + τn − k

����
����≤ τP − k

����
���� + τP − k

����
���� � 2 τP − k

����
����< β. (63)

Tis shows that the sequence τn  is Cauchy inD, so that
∃an element r ∈ D and lim

n⟶∞
τn � r. Now, lim

n⟶∞
d(τn, F(G)) � 0⇒d(r, F(G)) � 0, and thus, r ∈ F(G). □

Theorem 5. Let all the assumptions of Lemma 4 be true and
G contents condition (I). Ten, τn  defned by (8) converges
strongly to a point of F(G).

Proof. Using Lemma 5 and condition (I), we obtain

0≤ lim
n⟶∞

ξ d τn, F(G)( ( ≤ lim
n⟶∞

τn − Gτn

����
���� � 0

⇒ lim
n⟶∞

ξ d τn, F(G)( (  � 0.
(64)

Tis implies that

lim
n⟶∞

d τn, F(G)( (  � 0. (65)

Tus, the result is followed by Teorem 4. □

Example 2. Let B � R2 with the norm ‖(s, t)‖ � |s| + |t|,
∀(s, t) ∈B, and D � (s, t): (s, t) ∈ [0, 1] × [0, 1]{ } ⊂B. A
function G: D⟶ D is given as

G(s, t) � (cos(s), cos(t)), ∀(s, t) ∈ D. (66)

Ten,G is a nonexpansive mapping and has a fxed point
(k, q) � (0.739085, 0.739085), whether G is not a
contraction.

Te proposed method (8) goes to the fxed point (k, q) �

(0.739085, 0.739085) of the functionG better than S, Picard-
S, Vatan,Takur-new, M∗, andM iterative methods with the
control sequences μn � 0.85, θn � 0.35, n ∈ Z+, and initial
point (0.5, 0.8) (Tables 4–6 and Figure 3). With the same
inputs, we compare the CPU time for the conbergence of
distinct iterative methods (Table 6).

 . Solution of a Nonlinear Fractional
Difference Equation

Te main intent of the present section is to approximate the
solution of a fractional diference equation via an iterative
method (8). Consider the following:

D
δ
y(z) � F(z + δ − 1, y(z + δ − 1)), z ∈ I1− δ, 0< δ ≤ 1,

y(0) � y0,

⎧⎨

⎩

(67)

where Dδ indicates the Caputo-like discrete fractional dif-
ference of order δ, F: [0,∞) × B⟶B is a continuous
function, I1− δ � 1 − δ, 2 − δ, . . .{ } and B � C(I1− δ) is a real
Banach space with the norm

‖y‖∞ � maxz∈I1− δ
|y(z)|, ∀y ∈B. (68)

It is shown in [26] that y(z) is a solution of the initial
value problem (IVP) (67) if and only if y(z) is a solution of
the following relation:

Journal of Mathematics 9
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Table 5: A comparison table for the rate of convergence of iterative methods for Example 2.

Iter. Vatan Takur-New M∗ M
1 (0.500000, 0.800000) (0.500000, 0.800000) (0.500000, 0.800000) (0.500000, 0.800000)
2 (0.758961, 0.734316) (0.683455, 0.752848) (0.758026, 0.734260) (0.691844, 0.750366)
3 (0.737514, 0.739464) (0.726326, 0.742215) (0.737582, 0.739468) (0.730107, 0.741200)
4 (0.739210, 0.739055) (0.736173, 0.739798) (0.739205, 0.739055) (0.737394, 0.739482)
5 (0.739075, 0.739088) (0.738422, 0.739248) (0.739076, 0.739088) (0.738767, 0.739160)
6 (0.739086, 0.739085) (0.738934, 0.739122) (0.739086, 0.739085) (0.739025, 0.739099)
7 (0.739085, 0.739085) (0.739051, 0.739094) (0.739085, 0.739085) (0.739074, 0.739088)
8 (0.739085, 0.739085) (0.739077, 0.739087) (0.739085, 0.739085) (0.739083, 0.739086)
9 (0.739085, 0.739085) (0.739083, 0.739086) (0.739085, 0.739085) (0.739085, 0.739085)
10 (0.739085, 0.739085) (0.739085, 0.739085) (0.739085, 0.739085) (0.739085, 0.739085)

Table 4: A comparison table for the rate of convergence of iterative methods for Example 2.

Iter. New S Picard-S
1 (0.500000, 0.800000) (0.500000, 0.800000) (0.500000, 0.800000)
2 (0.728448, 0.742483) (0.817381, 0.718359) (0.684134, 0.752887)
3 (0.738520, 0.739267) (0.712404, 0.746080) (0.726516, 0.742226)
⋮ ⋮ ⋮ ⋮
6 (0.739085, 0.739085) (0.740115,0.738814) (0.738936, 0.739122)
⋮ ⋮ ⋮ ⋮
10 (0.739085, 0.739085) (0.739099, 0.739082) (0.739085, 0.739085)
11 (0.739085, 0.739085) (0.739081, 0.739086) (0.739085, 0.739085)
12 (0.739085, 0.739085) (0.739087, 0.739085) (0.739085, 0.739085)
13 (0.739085, 0.739085) (0.739085, 0.739085) (0.739085, 0.739085)
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y(z) � y0 +
1
Γ(δ)



z− δ

b�1− δ
(z − b − 1)

(δ− 1)
F(b + δ − 1, y(b + δ − 1)), 0< δ ≤ 1,

y(0) � y0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(69)

Te following lemma plays a key part to demonstrate the
main fnding of this segment.

Lemma 6 (see [26]). We have



z− δ

b�1− δ
(z − b − 1)

(δ− 1)
�
Γ(z + δ)

δΓ(z)
. (70)

Now, set Ik � 1, 2, 3, . . . , k{ } and B � C(Ik) is a real
Banach space, where k ∈ N. Presume that the following as-
sumptions are true.

(C1): Assume F: [0, k] × B⟶B is a locally Lipschitz
continuous function with constant L, i.e.,

‖F(z, y) − F(z, w)‖∞ ≤L‖y − w‖∞. (71)

(C2):

LΓ(k + δ)

Γ(δ + 1)Γ(k)
< 1. (72)

Te existence and uniqueness of a solution of the IVP (67)
can be found in [26].

Presently, we are going to demonstrate the main result of
the present section.

Theorem 6. Presume that the conditions (C1) and (C2) are
satisfed. Let an operator G: B⟶B be given by

Gy(z) � y0 +
1
Γ(δ)



z− δ

b�1− δ
(z − b − 1)

(δ− 1)
F(b + δ − 1, y(b + δ − 1)), (73)

for z ∈ Ik. Ten, the sequence τn  developed by iterative
method (8) converges to a unique solution of IVP (67).

Proof. It is enough to show the operator G is a contraction
mapping on B. For any y, w ∈B, we obtain that

‖Gy(z) − Gw(z)‖∞ ≤
1
Γ(δ)



z− δ

b�1− δ
(z − b − 1)

(δ− 1)
‖F(b + δ − 1, y(b + δ − 1)) − F(b + δ − 1, w(b + δ − 1))‖∞

≤
1
Γ(δ)



z− δ

b�1− δ
(z − b − 1)

(δ− 1)
‖y − w‖∞

≤
LΓ(z + δ)

δΓ(δ)Γ(z)
‖y − w‖∞

≤
LΓ(k + δ)

Γ(δ + 1)Γ(k)
‖y − w‖∞.

(74)

Table 6: A comparison table for the CPU time for convergence of iterative methods.

Iterative methods New (s) S (s) Picard-S (s) Vatan (s) Takur-New (s) M∗ (s) M (s)
CPU time (in seconds) 0.017 0.017 0.023 0.018 0.022 0.022 0.018
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Tus, G is a contraction on B. Hence, by applying
Teorem 1, the sequence τn  converges to a unique solution
of IVP (67). □

6. Conclusion

Te main intent of this article was to propose a novel and
efective iterative method for the estimation of fxed points
of contraction and nonexpansive mappings in the frame
work of Banach space. It is also shown that the new iterative
method is stable with respect to contraction mapping. Te
rate of convergence of the distinct iterative methods has
been discussed. Terefore, the newly introduced iterative
method is more efcient and efective than the previously
defned iterative methods. Te researchers may apply the
new iterative method to approximate the solution of non-
linear problems to achieve a better rate of convergence.
Besides, the results of the present paper generalize and
amplify the relevant results in the literature. Tus, it can be
concluded that the work done in the paper is new and useful
in the area of nonlinear analysis. Te fxed point iterative
methods are very useful to estimate the solution of nonlinear
diferential equations, nonlinear fractional diferential
equations, nonlinear integrodiferential equations, etc. Te
interested researchers may apply the proposed iterative
method to estimate the solution of above discussed
problems.
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