
Research Article
StructurePreprocessingMethod for theSystemofUnclosedLinear
Algebraic Equations

Ling Li and Yongxian Li

School of Mathematics & Physics, Henan University of Urban Construction, Pingdingshan 467036, China

Correspondence should be addressed to Ling Li; liling@mju-edu.cn

Received 23 September 2022; Revised 30 November 2022; Accepted 14 December 2022; Published 27 December 2022

Academic Editor: Firdous A. Shah

Copyright © 2022 Ling Li and Yongxian Li. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Te complexity of open linear algebraic equations makes it difcult to obtain analytical solutions, and preprocessing techniques
can be applied to coefcient matrices, which has become an efective method to accelerate the convergence of iterative methods.
Terefore, it is important to preprocess the structure of open linear algebraic equations to reduce their complexity. Open linear
algebraic equations can be divided into symmetric linear equations and asymmetric linear equations.Te former is based on 2× 2.
Te latter is preprocessed by the improved QMRGCGS method, and the applications of the two methods are analyzed, re-
spectively. Te experimental results show that when the step is 500, the pretreatment time of quasi-minimal residual generalized
conjugate gradient square 2 method is 34.23 s, that of conjugate gradient square 2 method is 35.14 s, and that of conjugate gradient
square method is 45.20 s, providing a new reference method and idea for solving and preprocessing non-closed linear
algebraic equations.

1. Introduction

With the development of computer science and technology,
computational mathematics has become increasingly im-
portant. Te numerical calculation method in computa-
tional mathematics is commonly adopted to deal with
scientifc and engineering calculation problems [1]. Te
efective solution methods of large-scale unclosed algebraic
systems are considered one of the important research topics
in computational mathematics because many scientifc and
engineering felds are inseparable from the numerical so-
lution of diferential equations or integral equations, such as
structural mechanics, computational fuid mechanics,
electromagnetic feld calculation, material simulation and
design, life science, aerodynamics, system science, medical
science, astronomy, fnancial engineering, social science, and
other soft sciences. For linear partial diferential equation or
integral equation, it is difcult to fnd their analytical so-
lutions because of their high complexity. Te numerical
method is adopted as a tool to solve this problem. Te
common numerical methods in computational

mathematics, such as fnite element, fnite diference, fnite
volume, moment method, and meshless discretization
methods, have been extensively studied. Tese computa-
tional problems are ultimately transformed into solving one
or a group of large-scale open linear algebraic equations [2].

In practical application and engineering calculation, the
iterative method is commonly used to solve linear equations.
However, with the rapid development of science and
technology and the increasing scale of the required solutions,
the low-efciency solution of the steady iteration method
can no longer meet the needs of scientifc calculation, and in
fact it has rarely been used alone in the solution of equations.
At the same time, tropical algebra can be used to solve
combinatorial optimization problems. It combines the
concepts and methods of statistical physics, machine
learning, and other felds and has been well applied in noise
removal and optimal control. In addition, the homotopy
perturbation method transforms the problem of solving
some non-linear partial diferential equations into the initial
value problem of solving ordinary diferential equations
through traveling wave transformation and homotopy
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perturbation theory, which is a relatively common method
for solving non-linear problems. Later, Young proposed the
defnition and basic concept of non-stationary iterative
method. Te non-stationary Richardson iterative method is
the frst non-stationary iterative method, which can be di-
rectly extended to the steepest descent method, Chebyshev
semi-iterative method, preconditioned conjugate gradient
(PCG) method, and generalized CG (GCG) method. Based
on the stationary iterative method of Krylov subspace
represented by the CG method, the convergence rate of the
iterative method is still related to the spectral distribution of
the coefcient matrix. When the distribution of the eigen-
values of the iterative matrix is more concentrated, the
convergence speed of the iterative method is faster. When
the spectral distribution is more dispersed, the convergence
speed of the non-stationary iterative method tends to be slow
in general, and sometimes the iterative method does not
converge. In this case, the preprocessing technology can be
applied to the coefcient matrix to make the spectral radius
of the iterative matrix tend to gather, which is an efective
way to solve the dispersion of spectral distribution and
accelerate the convergence speed of the iterative method [3].
In order to further reduce the complexity of open algebraic
equations and efectively optimize the convergence per-
formance of this method, this paper studies the structure
preprocessingmethod of the open linear algebraic equations.
According to the type of equations, the treatment can be
divided into two parts, that is, the preprocessing of sym-
metric linear equations and the preprocessing of asymmetric
linear equations.

2. The Structure Preprocessing Method for the
System of Unclosed Linear
Algebraic Equations

In the felds of natural science, aerodynamics, economic
management, engineering technology, fuid mechanics,
structural mechanics, and aerospace engineering, many
practical problems can be solved by solving linear equations.

Ax � b, (1)

where matrix A is an n × n matrix and x and b are
n-dimensional column vectors.

Te methods for solving linear equations mainly include
square root method, elimination method, direct triangular
decomposition method, determinant and matrix inversion,
Seidel iteration method, Jacobi iteration method, super
relaxation iterationmethod, and other iterationmethods [4].

However, the above methods are not suitable for all
linear equations. Strictly speaking, they have great limita-
tions in solving some specifc problems. Terefore, some
scholars have made eforts on developing preprocessing
methods for linear equations [5]. Tese preprocessing
methods are generally to split coefcient matrix 8 of linear
equations in diferent ways, so that the iterative method
converges to obtain the solution of linear equations. In [6],
the general coefcient matrix of a linear equation system is
transformed into a symmetric positive defnite matrix, so

that the question of solving the original linear equation
system can be transformed into the question of fnding the
minimum value of an equivalent variational question. In
addition, in [7], various algorithms for solving a linear
equation system are given. Among them, the authors in [8]
developed an improved Gauss–Seidel iterative method to
solve the non-convergent linear equations and selected
appropriate processing factors to realize the iterative con-
vergence of the linear equations.

Scholars have made great eforts on solving large sparse
linear equations. GMRES algorithm, preconditioned con-
jugate gradient method, ICCG method, and other common
methods are used to solve large sparse linear equations.
Among them, GMRES algorithm is one of the most efective
algorithms for solving large sparse asymmetric linear
equations at present, and the Krylov subspace method is
commonly used to solve the preprocessing problem of large
sparse linear equations. Moreover, various iterative methods
have been developed on this basis, including the conjugate
gradient method, the generalized minimal residual method,
and so on. Conjugate gradient is a method between the
steepest descent method and Newton method. It only uses
the information of the frst derivative, but it overcomes the
shortcomings of the slowest descent method and Newton
method, which need to store, calculate, and inverse Hesse
matrix. Te generalized minimum residual method is also a
kind of unsteadymethod, which has the advantages of saving
storage space and having less computation, and is suitable
for parallel computing. However, the convergence of the two
algorithms is easily afected by applications and boundary
conditions [9–13].

Te preprocessing method of linear equations generally
involves the calculation of the iterative method. In such a
rapidly developing information age, there are more re-
quirements for solving linear equations, and the require-
ments for solving speed are becoming higher than ever.
Terefore, how to make the solution closer to the practical
application, faster, and more accurate is a major problem to
be considered.

For the preprocessing methods for solving linear
equations, the search and selection of preprocessor is the key
link. Te preprocessor G in this paper selects the approxi-
mation to the inverse of coefcient matrix A of linear
equations. Te method to obtain the inverse matrix of co-
efcient matrix is elaborated in detail in algebra book of
undergraduate course; in fact, the elementary transforma-
tion method is the most common one. It is one of the
teaching contents of undergraduate course to fnd the in-
verse matrix by elementary transformation, but the scale of
matrix that can be transformed by elementary transfor-
mation is generally small, and it can even be deduced and
calculated in the exercise book. However, in the felds of
natural science, economic management, engineering tech-
nology, fuid mechanics, aerodynamics, structural me-
chanics, aerospace engineering, etc., the matrices used in
practice are usually large-scale matrices or matrices with
relatively large condition numbers, which can hardly be
transformed [14]. According to the previous considerations,
the mathematical knowledge is combined with the current
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computer knowledge, and the algorithm is constructed to
realize the operation of matrix inversion in the computer
software, so as to reduce the difculty of matrix inversion
encountered in the actual calculation process [15].

In this section, the preprocessing methods of symmetric
linear equations are discussed. To be specifc, the coefcient
matrix is divided into component block forms, and then the
commonly used preprocessing methods are applied to the
saddle point question after partition, and three kinds of
preprocessors are obtained.

2.1. Principle and Method. At present, the preprocessors for
saddle point problems can be divided into block diagonal
preprocessor, block triangle preprocessor, constraint pre-
processor, and so on. For the two types of linear equations
obtained previously, they can be uniformly written in the
following form by repartitioning:

F BT

C 1
⎡⎣ ⎤⎦

A

x

p
􏼢 􏼣 �

c

d
􏼢 􏼣. (2)

In general, the above linear system can be considered as
saddle point question, where A is saddle point matrix [16].
BT is the scrambling parameter, (F, C) is a point in the set, x

is the penalty parameter of the matrix, p is the constraint
coefcient, c is the penalty parameter after the union, and d

is the penalty parameter after the union.
For a matrix with the above structure, the corresponding

block diagonal preprocessor and block lower triangle pre-
processor are constructed:

PD �
F 0

0 CF
−1

B
T

􏼢 􏼣,

Pt �
F 0

C −CF
−1

B
T

􏼢 􏼣,

(3)

where PD is the block diagonal preprocessor and Pt is the
lower triangular preprocessor of the block.

If the coefcient matrixA is symmetric, a constraint-type
preprocessor with the following forms can also be
constructed:

PC �
G B

T

B 0
⎡⎣ ⎤⎦, (4)

where PC is the constraint-type preprocessor and G is a
symmetric matrix, which is the approximate value of F.

For the block diagonal preprocessor, the following
conclusion can be obtained.

Lemma 1. If PD is used to preprocess A, then the coefcient
matrix T � P−1

D after preprocessing satisfes

T(T − 1) T
2

− T − 1􏼐 􏼑 � 0. (5)

Tis theorem shows that T is diagonalizable and has at
most four diferent eigenvalues: 0, 1, and 1/2 ±

�
5

√
/2 [17].

When T is non-singular, there are only three non-zero
eigenvalues. Tis shows that when T is non-singular, the
Krylov subspace is

K(T, r) � span r, Tr, T
2
r, . . .􏼐 􏼑. (6)

Te number of dimensions is no more than 3, where r is
the initial residual.Terefore, the Krylov subspace method is
terminated in at most 3 steps [18].

Similarly, for the subblock triangle preprocessor, we
have the following conclusions.

Lemma  . Set

A �
F B

T

C 0
⎡⎣ ⎤⎦,

Pt �
F 0

C −CF
−1

B
T

􏼢 􏼣.

(7)

If F ∈ Rm·m is non-singular and B ∈ Rm·m is full rank,
then the m + n eigenvalues of matrix P−1

t A after pre-
processing are equal to 1.

For the constrained preprocessor, the following con-
clusion can be obtained.

Lemma 3. Let A be a symmetric indefnite matrix in the
following form:

A �
F B

T

B 0
⎡⎣ ⎤⎦,

PC �
G B

T

B 0
⎡⎣ ⎤⎦,

(8)

where B ∈ Rn·m is full rank, G ∈ Rm·m is symmetric,G≠F, and
PC represents non-singular. Let Y ∈ Rm·(m− n) be a group of
bases of the zero space of B, i.e., span Y{ } � null(B); then,
P−1

C A has the following properties:

(1) P−1
C A has 2n eigenvalues of 1.

(2) Te remaining m− n eigenvalues satisfy the following
generalized eigenvalue question:

Y
T

F � aY
T
G, (9)

where YT is the residual matrix and a is the coefcient.

2.2.ApplicationResearch. Te following three preprocessing
methods are applied to symmetric algebraic linear equations.
Let equations be written as follows:

δQ 0 −QT
sd

0 Q HT
sd

−QT
sd HT

sd 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A

f

u

p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0

b

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

Let
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F �
δQ 0

0 Q
􏼢 􏼣,

B � −Q
T
sd H

T
sd

􏽨 􏽩,

(11)

where δ represents the coefcient, Q represents the mass
matrix of symmetric positive defnite, QT

sd and HT
sd are the

mass matrices of symmetric indefnite, and
f

u

p

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ is the

stagnation point of the Lagrange function [19].
Ten, A can be written as

A �
F B

T

B 0
⎡⎣ ⎤⎦. (12)

For linear equation (10), block diagonal and block
bottom triangle preprocessors are expressed as follows:

PD �

δQ 0 0

0 Q 0

0 0
QSDQ

−1
Q

T
sd

δ
+ HsdQ

−1
H

T
sd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Pt �

δQ 0 0

0 Q 0

−QsdHsd −
QsdQ

−1
Q

T
sd

δ
−HsdQ

−1
H

T
sd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

For constrained preprocessor, select

Y �
−QsdHsd

L
􏼢 􏼣, (14)

where L is the constraint matrix. Ten, Y column becomes
zero space of B, and

Y
T
FZ � −Q

T
sdH

T
sdL􏽨 􏽩

δQ 0

0 Q
􏼢 􏼣

−Q
−1
sd Hsd

L
⎡⎣ ⎤⎦

� Q + δ −Q
−1
sd Hsd􏼐 􏼑

T
Q −Q

−1
sd Hsd􏼐 􏼑,

(15)

where Z is a zero-space vector. So, the concrete form of PC is

PC �

0 0 −Q
T
sd

0 Q + δ −Q
−1
sd Hsd􏼐 􏼑

T
Q −Q

−1
sd Hsd􏼐 􏼑 H

T
sd

−Qsd Hsd 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

3. Preprocessing of Unsymmetrical Algebraic
Linear Equations

In this section, the preprocessing of the system of positive
defnite linear equations is studied. Te BCGmethod and its
CGS method of unsymmetrical linear equations have typical
irregular convergence behavior. Freund and Nachtigal put
forward quasi-minimal residual method (QMR) to remedy
the convergence of the BCG method and produce smooth
convergence curve. However, like the BCG method, the
QMR method uses coefcient matrix A and the product of
transposition AT and vector. In order to solve this problem,
Freund proposed the TFQMR method, which has the
property of quasi-minimum residuals and does not use the
product of ATand vectors. It is a Krylov subspace algorithm
and performs well in the experiment of solving large sparse
linear equations [20–26].

In order to improve the convergence of the CGSmethod,
Fokkema et al. extended the CGS method and derived the
generalized CGS method, which is called the GCGS method.
Te GCGS method efectively changes the convergence of
the CGS method and BiCGSTAB method. At the same time,
two new methods, CGS2 and SCGS, have been derived, but
they do not have quasi-minimum surplus, which leads to
irregular convergence behavior for some complex problems
[27, 28]. In this section, quasi-minimal residuals are in-
troduced into the GCGS method, yielding the QMRGCGS
method. Tis kind of method includes the TFQMR method
and QMRCGSTAB method as special cases. At the same
time, two new methods, namely, QMRGCGS2 method and
QMRSCGS method, are derived based on the QMRGCGS
method.

3.1. GCGS Method. Te orientation quantity x0 ∈ RN is
taken as the initial solution of equation Ax � b, and its
residual vector is r0 � b − Ax0. Te residual vector of the n-
th iteration of BCG method is rBCG

0 � b − Axn. It can be
expressed in the form of rBCG

n � ϕn(A)x0, where ϕn ∈ Pn and
ϕn(0) � 1. Te residual vector of the n-th iteration of the
CGS method is rCGS

n � (ϕn(A)2r0. Te residual vector of the
n-th iteration of the GCGS method is diferent from that of
the CGS method, and its expression is rGCGS

n �

ϕn(A)ψn(A)r0. Among them, ϕn(A) is still BCG polyno-
mial, and ϕn(A) is the approximate form of BCG polyno-
mial, so the GCGS method can be derived, and GCGS is
given by Algorithm 1 [29].

In Algorithm 1, taking 􏽥αk � αk and then 􏽥β � βk, the CGS
method is derived. Taking 􏽥αk � (ek, tk)/(tk, tk), 􏽥βk � 0 and
the BiCGSTAB method is derived. Related BCG polynomial
is used, and 􏽥αk � 􏽥ρk/􏽥σk and 􏽥βk � 􏽥ρk/(αk−1􏽥σk−1) are taken
correspondingly, where 􏽥ρk � (rk, 􏽥e0), 􏽥σk � (Avk, 􏽥e0), and
then the GCGS2 method is derived. When k � 0, 􏽥αk � b (b is
the reciprocal of the maximum eigenvalue of coefcient
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matrix) and 􏽥βk � 0; when k> 0, 􏽥αk � αk−1 and 􏽥βk � βk−1, so
that the SCGS method is exported [30–32].

3.2. QMRGCGSMethod. From the above analysis, it can be
seen that the CGS method uses the square of BCG poly-
nomial, and the GCGS method has been extended on this
basis. Using the product of BCG polynomials and ap-
proximate BCG polynomials, the GCGS method does not
have quasi-minimal residuals [33, 34]. Terefore, quasi-
minimal residuals are introduced into the GCGS method,
and the QMRGCGS method is derived [35, 36].

Set

sm �
ek−1, if m � 2k − 1 is odd,

vk, if m � 2k is even,
􏼨 (17)

where sm represents a QMRGCGS function, ek−1 represents a
function, and vk represents a function, and

pm �
αk−1, if m � 2k − 1 is odd,

αk, if m � 2k is even,
􏼨 (18)

where Pm represents the logarithmic equation of the
QMRGCGS function, ak−1 represents a function, and ak

represents a function.
Let

Sm � s0, s1, . . . , sm−1􏼈 􏼉,

Pm � p0, p1, . . . , pm− 1􏼈 􏼉
T
.

(19)

According to Algorithm 1,

rm � r0 − ASmPm

� rm−1 − pm−1Asm−1,
(20)

where rm represents the weight matrix. So,

Asm �
rm−1 − rm+1( 􏼁

pm

. (21)

Let

Rm � r0, r1, ..., rm−1( 􏼁, (22)

where Rm represents the weight set.Ten, it can be written as

ASm � Rm+1Cm, (23)

where Cm represents the function matrix, wherein

Cm �

1

−1 1

O O

−1 1

−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·
1

p0
,
1

p1
, . . . ,

1
pm−1

􏼨 􏼩. (24)

For the GCGS method, the following relation holds.

vk−1 � ϕk−1(A)ψk−1(A)r0. (25)

Since matrix ϕk and matrix ψk are of order k, according
to the defnition of sm, there is the following equation:

Mm r0, A( 􏼁 � span s1, s2, . . . , sm􏼈 􏼉 � SmPP ∈ Rm􏼈 􏼉, (26)

where Mm represents a vector and P represents a point on
the weight set. Quasi-minimal residuals are introduced.
From equation (26), the iteration result xm ∈ x0+ Mm(r0, A)

of Stepm can be written in the following form, and there is a
certain p ∈ Rm, so that

Select an initial guess x0 and some 􏽥r0.
r0 � b − Ax0
u−1 � w−1 � s−1 � 0
α−1 � σ−1 � 􏽥α−1 � 􏽥σ−1 � 1
for k � 0, 1, 2, . . . , do
ρk � (rk, 􏽥r0)

βk � (−1/􏽥r0)(ρk/σk−1)

vk � rk − βkuk−1
Select 􏽥βk

tk � rk − 􏽥βkek−1
wk � tk − βk(uk−1 − 􏽥βkwk−1)

c � Awk

σk � (c, 􏽥r0)

αk � ρk/σk

ek � tk − αkc

Choose 􏽥αk

uk � uk − 􏽥αkc

uk+1 � xk + αkvk + 􏽥αkek

If xk+1 is accurate enough, then quit
rk+1 � rk − A(αkvk + 􏽥αkek)

End

ALGORITHM 1: GCGS method.
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xm � x0 + SmP. (27)

Tus,

rm � r0 − ASmP � Rm+1 h
m+1
1 − CmP􏽨 􏽩, (28)

where hm+1
1 � (1, 0, ..., 0)T ∈ Rm+1. In fact, p of equation (27)

can be selected to make ‖rm‖ minimal. However, since Rm+1
is dense and its column vectors are not orthogonal to each
other, the amount of calculation is too large, and quasi-
minimal residuals are introduced.

Zm+1 � diag v1, v2, . . . , vm−1􏼈 􏼉, vk ≥ 0, k � 1, 2, . . . , m + 1.

(29)

As a weight matrix, take vk � 1/‖rk‖, k � 1, 2, ..., m + 1,
and equation (28) can be written as

rm � Rm+1Z
−1
m v1h

m+1
1 − Zm+1CmP􏼐 􏼑. (30)

Let Pm � Rm be the solution of minimal quadratic
question, that is, Pm satisfes

rm � v1h
m+1
1 − Zm+1CmPm

����
���� � min

p∈Rm

v1h
m+1
1 − Zm+1CmP

����
����.

(31)

So, the solution xm of the QMRGCGS method can be
expressed as

xm � x0 + SmPm, (32)

where Pm satisfes equation (31).
Te Givens transform is applied to Zm+1Cm, and a series

of Givens transform is set to G0, G1, . . . , Gm. Zm+1Cm is
transformed into a matrix ξm in the form of upper triangle,
namely,

ξm � Gm . . . G0G1Zm+1Cm,

ζm � Gn . . . G0G1v1h
m+1
1 .

(33)

Let ξm be thematrix obtained by removing the last row of
ξm and ζm be the vector obtained by removing the last el-
ement of ζm; then, Pm satisfying equation (31) can be
expressed as

Pm � ξ−1
m ζm. (34)

Tere are

xm � x0 + Smξ
−1
m ζm. (35)

Let

Dm � Smξ
−1
m , (36)

where Dm is a minimum function. Ten,

xm � x0 + Dmζm,

ζm �
ζm−1,

Im,
􏼨

(37)

where Im � JmI(m+1)
m , I(m+1)

m is the last element of vector ζm−1,
and Jm is the cosine of Gm; then,

xm � x0 + Dm−1ζm−1 + Impm. (38)

Tus,

xm � xm−1 + Impm. (39)

In this way, the result of preprocessing of the unsym-
metrical algebraic linear equations can be obtained.

3.2.1. Application Test of QMRCGS2 Method. Te
QMRGCGS2 method is used to preprocess the following
asymmetric algebraic linear equations.

−
z
2
u

zx
2 −

z
2
u

zy
2 + c x

zu

zx
+ y

zu

zy
􏼠 􏼡nu � f. (40)

Te equation has Dirichlet boundary condition in
(0, 1) × (0, 1). Te size of the grid is h � 1/64, n � 200, and
c � 100. On this basis, the Reynolds number on each ele-
ment is less than 1. A stable discrete scheme is generated by
using the central diference scheme [37, 38]. Figure 1 shows
the relative residual vectors and iterative steps obtained by
using CGS, CGS2, and QMRGCGS2 methods for 200 steps.
Te relative residual norm is ‖rn‖/‖r0‖, and the initial value is
x0 � 0. Te workload and storage of every two iterations of
the QMRCGS2 method are equal to those of the CGS
method and CGS2 method, so that k and n satisfy the
following relationship: k � 2n − 1 or k � 2n [39, 40]. Te
iterative steps are shown in Figure 1.

From Figure 1, it can be seen that the relative residual
norm of CGS2,SCGS, GCGS CGS, and GCGS2 methods
shows irregular convergence behavior, while the relative
residual norm of the QMRGCGS2 method tends to show
regular convergence behavior. Tat is to say, the
QMRGCGS2 method has smoother convergence behavior
than the CGS method and GCGS2 method [41–43]. Finally,
CGS2 and CGSmethods with good performance are selected
to compare their performance with the proposed
QMRGCGS2 method for practical application problems.
Te actual problem selected is Grenoble, which comes from
the Harwell-Boeing sparse matrix set with extensive appli-
cation background. Te order is 115, and the number of
non-zero elements is 421. Te relative residual norm and
iteration steps obtained by 150 steps of the three methods are
shown in Figure 2.

It can be seen from Figure 2 that the relative residual
norm of CGS2 and CGSmethods in the practical application
of Grenoble shows an irregular convergence behavior, while
the relative residual norm of the proposed QMRGCGS2
method tends to a constant, that is, the method has a
smoother convergence. Ten, calculate the pretreatment
time to verify the efectiveness of the pretreatment. Te
convergence criterion requires that the relative residual
norm is less than 10–8. Table 1 shows the iteration and
calculation time required for convergence. Te problem in
Table 1 is the two-dimensional three-temperature energy
discretization linear algebraic equation. Te scale size of the
grid node is 8000 (160× 53).
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Figure 1: Te relative residual norm of the equation.
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Figure 2: Relative residual norm and iteration step results obtained by 150 steps of three methods.

Table 1: Preprocessing time.

Steps QMRGCGS2 (s) CGS2 (s) CGS (s)
100 15.36 20.36 22.36
200 20.30 23.34 27.14
300 25.47 27.56 32.25
400 28.36 30.21 38.17
500 34.23 35.14 45.20
600 38.11 40.12 50.31
700 42.36 45.21 58.74
800 45.10 48.25 66.62
900 48.51 55.36 70.36
1000 52.36 60.47 76.00
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According to Table 1, when the step is 100, the pre-
treatment time of the QMRGCGS2 method is 15.36 s, that of
the CGS2 method is 20.36 s, and that of the CGS method is
22.36 s. When the step is 500, the pretreatment time of the
QMRGCGS2 method is 34.23 s, that of the CGS2 method is
35.14 s, and that of the CGS method is 45.20 s. It can be seen
from the test results that the QMRGCGS2 method is faster
than CGS, and the CGS2 method has a faster convergence
speed, indicating higher efciency of the preprocessing
method proposed in this paper.

4. Conclusions

In this paper, the preconditioning of symmetric linear
equations and asymmetric linear equations is studied, re-
spectively. Te experiment shows that when the step size is
500, the pretreatment time of the QMRGCGS2 method is
34.23 s, that of the CGS2 method is 35.14 s, and that of the
CGS method is 45.20 s. Te QMRGCGS2 method has more
smooth convergence behavior and faster convergence speed
than the CGSmethod and GCGS2method. It provides a new
method for solving asymmetric linear equations and has
certain promotion value.

However, in the research of asymmetric linear equations,
only m-step polynomial preprocessing numerical experi-
ment has been done. In future research work, the efec-
tiveness of the preprocessor when it is applied to other
Krylov subspacemethods will be studied. For the polynomial
preprocessor in this paper, how to choose an optimal value is
a question worthy of further study.
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