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In this paper, we study the regularity criterion for the local smooth solution of the 3D nematic liquid crystal flows. More precisely,

it is  proved the smooth  solution (u,d) can be  extended beyond T  provided that
T T o
o (Wl + 9Ly )/ [T+Tog(T +IVully +IVdly )dr<eo or fo I3au, 3 + IVl

\/1 +log(1+ ||Vu||Bo + ”Vd”BO )dt <00,0<r<1.

1. Introduction

Liquid crystals is a state of the matter which has both
properties of the liquid and the solid crystal. And as a kind of
liquid crystals, the nematic liquid crystal can flow like fluids
and has very nice properties. Ericksen et al. during 1960s (see
[1, 2]) established the hydrodynamic theory for describing
the nematic liquid crystal flows. Owing to the complexity of
original Ericksen-Leslie equations and for further research,
Lin [3] simplify the original Ericksen-Leslie equations,
which still retains most of the essential features of original
equations. In this paper, we investigate the following sim-
plified version for nematic liquid crystal flows in 3-
dimensions

ou+u-Vu—puAu+Vp=-AV- (VdoVd),
d,d+u-Vd=y(A d+vdld),
V-u=0,ld =1,

u(x,0) = uy(x),d(x,0) =d,(x),

1

here u=u(x,t)€R> denotes the velocity field,
d=d(x,t) €S? (the unit sphere in R*) the macroscopic
average of molecular orientation field and p = p(x,t) rep-
resents the scalar pressure, V-u =0 is the incompressible
condition. And y, A, y are positive constants, which shall be

assumed to be all equal to 1 in consideration of their
concrete values playing no role in our arguments. The
notation Vd®Vd represents the 3 x 3 matrix whose the
(i, j)th component is given by

3
> 0,d0;d, (i, j <3).
k=1

(2)

It is well-known that the system (1) has a unique local
smooth solution (see [4]). More precisely, if initial data
uy € HS(R",R") with V- u, = 0 and d, € H**' (R", S?) for
s>mn, then

u € C([0,T); H* (R"))nC'([0,T]; H ' (R")),

3
d e O([0.T) (R4 S)) nC (0T (RAST)).

However, the global existence of solutions is an difficult
problem. Hence much efforts have been paid to study the
regularity criteria to extend local solutions. For the regu-
larity criteria readers may refer to [5-13] and references
therein.

On one hand, the above system (1) reduces to the in-
compressible Navier-Stokes equations when the orientation
field d equals a constant. It is well-known that Navier-Stokes
equations has an unique smooth solution (see [14]) provided
that the solution u satisfies
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T
j ol o < 00, @)
0

where w = V x u. Later, Kozono and Taniuchi [15], Kozono
et al. [16] generalized the criterion (4) to

T

T
J IIwIIBMOdt<oo,J lolo df<co, (5)
0 0 o000
respectively, where BMO is the space of Bounded Mean
Oscillation and B « represents the homogeneous Besov
space. And based on (5) Fan et al. [17], Guo and Gala [18]
respectively improve (5) by the following conditions

IVuell o

mm

JT
° \/1 +In(e+IVuly )

dt < oo, (6)

IVull-

oo 00

JT
0 \j1 +ln(e FIVal )

It is obvious that the logarithmic improvement is here, in
time only, and that can be seen as a natural Gronwall type
extension of the Prodi-Serrin conditions. On the other hand,
when the velocity field u = 0, the system (1) becomes to the
heat flow of harmonic maps onto a sphere. And Wang [19]
established a blow up criterion, which implies the unique
smooth solution d € C* (R"; (0,T]) is global if

dt < co. (7)

T
j [Vd|l,.dt < co. (8)
0

Inspired by the conditions (4) and (8), Huang and Wang
[4] established a BKM type blow-up criterion for the system
(1). That is, if T is the maximal time, 0 < T < 0o, then

T
JO (loll o +1Vdll7e )dt = co. 9)

Naturally, similar to (6) and (7), Liu and Zhao [20]
extend (9) to the Logarithmically improved regularity cri-
terion. Namely, the local smooth solution (u,d) can con-
tinuously past any time T >0 if the following holds

T llwll o +||Vd||0
J 000 Beooo dt < o0, (10)
0 \/1+ln<e+||Vu||Bo +[Vdll o )
or
IVul +1Vdl
00,00 0 dt < co. (11)

J'T
0 \/ln<e FIVulp  +IVdl )
In view of it is difficult to reduce the condition on d, we
are mainly concerned with reducing the condition on u.
Inspired by the references above, we will use the components
of Vu to replace the condition (11). Our main results are
stated as follows:
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Theorem 1. Assume (u,d) is a local smooth solution to the
system (1) on the time interval [0, T)for some 0 < T < co. And
let initial datumu, € H> (R*)withV - uy = 0,d, €
H*(R?, S%). If (u, d) satisfies

2
+Ivdl?

dt<oo, (12)

JT [Vienll

0 \/1+log<1+||Vu||B-o Hvdly )

then (u,d) can be extended beyond T smoothly, where V,, =
(01,0,,0),uy, = (uy,u,,0). That is to say, if the solution blows
up at T, then

+[|IVd
IVl

JT Vil

dt | =0c0. (13)
0 \/1+log(1+||Vu||Bo IVl )

Remark 1
(1) In view of the fact that the norms ||w|| o and
IVaull o C o € approximate, it is obvious that the
condition(10) is weaker than the condition (8) and (9)

in some sense. And it can be seen that if the condition
(10) reduces to

T
j (Ivaanl, +1vdiy Jer<oo, ()

then the conclusion of Theorem (1) still remains
valid, which is also an improved result compared to
the regularity criterion (9).

(2) Noting that the norm IIVuh||B71 is equivalent to
IIuhII o , combining (10)-(12),”the condition (12)
can b replaced by the following condition:

+Ivdl

T ””h"Bgm
J

dt [<oco. (15)
0 1+1og(1+||w||30 IVl )

Remark 2. It is  well-known  that L®(R%) c
BMO(R?) ¢ B (R3) Thus the conclusion of Theorem
Lstill remains true if the condition (12) is substituted by

jT [Vit4nlgaio +1Vdlsmo
\/1 +log (1 +[Vullgyo +1Véllpymo)

dt) <oo.  (16)

Theorem 2. Assume (u,d) is a local smooth solution to the
system (1) on the time interval [0, T) for some 0 < T < 00. And

let initial datumu, € H> (R*)withV - uy = 0,d, €
H*(R?, S?). If (u, d) satisfies
4/3 2r
T | +[vdl%
J - s dt [<oo, (17)

0 \j1+1og(1+||w||ga Hvdly )
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here 0 <r <1, then (u,d) can be extended beyond T smoothly.
That is to say, if the solution blows up at T, then

4/3 2
r +Ivdl
J o dt [<oco. (18)

0 Jl+ﬂog<l+"Vu"§ +"Vd”ﬁ )

Remark 3. Owingto B o Containing the case B o asr =0

, the condition (17) is an improvement in some sense com-
pared to the condition (12).
However,4/3 — 2r = 4/3 whenr = 0, hence the condition (12)
is better than the condition (17) in the end point.

2. Preliminaries
In this section, we collect some useful analytic tools which

play an important part in our proof.

Lemma 1 (Page 82 in [21]). Let 1<g<p<oco and « bea
positive real number. Then there exists a constant C such that

£l <CUFIGE 1f1G s with = a(f; - 1>, 0=1 9

In particular, when f = 1,g =2and p = 4, wehavea = 1
and

£l <C||fII”2 IV £ (20)

Lemma 2. (Product and Commutator estimate[22, 23]).
Lets>0,1 < p< oo, andl/p=1/p, +1/p, = 1/p; + 1/
P4 With py,p5 € (1,+00) and py,p, € [1,+00]. Then,

|4 Dl < CUGIA A f s +1A G sl f e ). (21)
1A% £ - V]gl <CUV A" gl +1A° IV gle )
(22)
where [A°, flg = A°(fg) — fA°g.

Lemma 3 (see [24], Lemma 2). LetVf € B;’Oo,f € Hfor
alls > 3/2. Then there exists a positive constant C such that

1 <C(1 419 e Tog” (1411 )"™) @3)

where H® denotes the standard Sobolev space and

log x, x>e,
log"x ={ § (24)
1, 0O<x<e.

3. Proof of Main Results

Proof of Theorem 1. In this section, we shall first show the
proof of Theorem 1. Since the existence of local smooth
solutions is obvious owing to the initial value condition for
(u,d) in Theorem 1, we only need to show the priori es-
timate for the local smooth solution. And by the condition
(12), we will give the following priori estimate

tlin}f sup<||VAu||iz + ||A2d||iz) <00, (25)

which is enough to guarantee the smooth solution (u, d)
pasts time T smoothly.

Firstly, we will show the L! estimate of u and Vd together
because the terms V - (Vd ©Vd) and u - Vd can be cancelled
when integrating. Applying u to the equation (1), and
integrating over R yields

d
S s +1vali, = —J[R}v@l Ad-udx,  (26)

where the following equalities have been used

j (u~Vu)-udx=0,J Vp-udx =0. (27)
R3 R3

Then, multiplying equation (1), by —A d and integrating
over R* one has

- %nwn; +lAdlt = J u-Vd-Ad-|VdPdA ddx.  (28)
[R3

By adding the above equalities and using the facts |d| =
1, A(ldI*) = 0=|Vd|* = —d - A d, we have

5 dt(uuuy FIVAIZ) +1VulZ +1A dIZ <A dIE. (29)

Integrating above inequality (29) in time yields

T
sup (lu()I% +IVd (D)%) + jo 190 (1) ds

0<t<T

(30)
<O ol +1v- )
Besides, it is sufficient to show the boundness for ||d|| ;.

Multiplying equation (1), by p|d|’~d for p>2 and inte-
grating both sides on R?, one has

d 2 "
aﬂd"fp +2|[VIdIP?| ). + plidlitre = plidlL,, (31)

where we use the equality

j (u-Vd) - pld|P~2ddx = —J V- uldPdx
R3 R3 (32)
=0.

Hence the (31) implies



d
gl < ldlls- (33)

Applying the Gronwall inequality and letting p — oo,
it can be deduced from above that

Idll oo < e"[|d] oo < 00 (34)

N =
CL|Q_

:J (u.V)u-AudHJ V. (VdoVd) - Audx
R3 R3
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Now we shall show the H' estimate of u and Vd.
Similarly going on the above process, multiplying the
equation (1), by —Au and integrating over R?, then taking A
on the equation (1),, multiplying with A d and integrating
over R?, and combining that two equations, one obtains that

- (IVulizz +1A dli) +1Aul: + VA dIf:

(35)

- | swvd)adaxs [ a(vdPa)-a ddx
R? R?

=1+, +1;+1,

In the following, we will estimate the terms

I;(i =1,2,3,4). For I,, making use of the incompressibility

II:J 3(u-V)u-Audx:J \
R R* k=1

-, <lz Oyt B4 Dyt + i% 3,0,

3
Z u;0;u ;00U dx,

>dx

condition and integration by parts several times, one can be
concluded that

jok=1 i,j,k=1
2 3 2 3 2 3 3
j < D) 0wl Opu; + Y Y 0yuduu Ozt + Y Y OpthyOsth Optd; + ) a3u3a3uja3uj>dx (36)
ik=1j=1 i=1 j=1 k=1 j=1 j=1

j (Z 3,0, aku+2a3ua
ik=1 j=1

i,j=1

2 3
+ Z Ok U3 05U30, U5 + Z a3u363uja3uj>dx.

k=1 j=1

Osu; + Za3uau3 SUs + Z Okt303U jO) U

Jik=1
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Noting that 0ju; = —(0,u; + 0,u,), and using the
Lemma 3, I; can be estimated as follows
I < CJ-RJthhVulzdx
< C|Vyuy | o IVUll3
< C[1 [V log” (1417 Aul) |I9ul;
< C[l +||thh”B-nomlog”2 (1 +||VAu||L2)]||VuIIiz

[Vatnl

log'"? (1 +VAul2)
\/1+10g LIVuly  +IVdlp )

X \/1 + log 1 +||Vu|| 0 +||Vd||Bo )IIVuIIiZ + ClVull},

V| 0
e ” h h”Bm)00 10g1/2(1 +|IVAul|;2 "‘"Az d"U)

\/1+1og<1+||w||30 IVl )

X\/1+log<1+||Vu||B-o IVl )||Vu||§z+cuw||§z

[Vt 50 ) s
<C| 1+ B log(1 +[IVAul 2 +[|A%d]| . )IVul .,
\/l+log<l+||Vu||Bo +Ivdly )

where we have used the following inequality

\/1 + log<1 HIVullp +||Vd||B.2m) < Cylog (1 +[Vud oo +1Vdll o

< Cyllog(1 + IVl IVAUIES + Va2 A%}

< C\/1°g<1 VAUl +|A%d]..

(37)

(38)
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In view of I, and I; containing terms that could be
cancelled, adding I, and I; together and by the incom-
pressibility condition V - u = 0, it follows that

I+1;= Y [(0:0,di0;dy + 0,d,0,0;d ) Au; — (Awd,d Ady, + 2Vud,Vdy Ad), + u;d,Ady Ady) |dx
R34

3
i,j,k=1
3

Y -2Vu,0,VdiAdydx (39)

3
R* k=1

SCJ VUl VVd|A dldx.
R3

Hence, it can be deduced from Ho lder inequality,
Young inequality and the inequality (20) that

L+ I, < C|Vul 2 llA d]I}. < CliVull 2 IVdll e IVA dlll 2

1
< CIVdlg [Vuli: + VA dl;

NZI
< 00 \/1 + log(l +HVullp +[Vdll )

\/1 +log(1+1Vully  +1Vdl

. (40)
IVulll; + VA dI;

191

<C log(1 +[IVAul 2 +|A%d] . ) IVul:

\/1 + log<1 +IVull o +1IVdll

1 2
+ Z"VA d”L2’

where the fact that the norms [|A df| ;1 and [[Vd]» are

equivalent has been used. For I, by the product estimate
(21) and inequality (20), we obtain
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I, - JRSA(Wdlzd) A ddx <[ A(1VdPd)| 41A dls
3

<C(IVA dll VAl sl oo +1A eIVl )IA dlly

1
<CIA di VAl + VA d;

1
<CIVdly VA dlipldlolA i + VA dIf.

(41)
1
<CIVdlp 1A dlif: +IVA dIf:
Ivdl , ,
<C — log(1 +[IVAul 2 +|A%d] . )IA dIl7.
\/1 ; log(l HIVuly  +IVdl
1 2
+IVA dI,
IVdll < Clldlj21A dll2. (42)

here the following Gagliardo-Nirenberg inequality has been
used Combining (35), (37), (39), and (41) one has

d
< (IVull: +18 1) +18ul}: +1VA dIf;

V|l o+l
<C| 1+ ¥l T log(1 +[IVAul - +[A%d] ) (43)

\/1+log<1+||Vu||Bo +[|Vdl o >

x(IVull7: +l1A dllf. ).

Noting (12), one may conclude that for any small For any T, <t <T, we set
constant € > 0, there exists T, <T such that 5 5 )
, M@= sup (IV8u@I: +[FdOL ) (@)
T ||Vh1/lh||BO +"Vd"B0 Ty<s<t
J o000 o000 di <e. (44)
Using (44) and (45), and applying Gronwall inequality to

T \/1 " 1og<1 IVl +IVd] o )
Boowo Booco (43) in the interval [T, ] gives
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t
1Vu ()2 +1A d D1 + jT (lAu (% +IVA d ()2 )ds

< (Il +1a a(m)li.)

: [Vt o +1VAle
X exp CJ- 1+ Poo Pow log(l +[[VAul7, +||A2d||iz> ds 46
T \/1 +log(1+1uly  +IVl (46)
< (Ivu(@o)l: +1a d(To)]}: )explC(T -~ To) + Ce log(1 + M (1)}
<CoC(T)exp{Ce log(1 + M (1))}
<CoC(T) (1 + M (1),
where the letter C, means a constant depending on At last, the boundedness of the norm |[VAul,. and
(||Vu(T0)||iz + A d(T())”iz), C(T) depends on the maxi- |A%d|;. are needed so as to guarantee the validness of in-
mum value of time T, and C is a generic constant which may ~ equality (25) and (46). Employing VA and A* to the
be different from line to line. equations (1); and (1), respectively, and taking the L? inner
product with (VAu, A’d), we see that
1d 2 2 412 2 12 2 4112
o (1voull: + |2, ) +|aul, +[va’d];,
- —J VA (- V) - VAudsx - J VA(Vd- A d) - VAudx
R3 RS
(47)
- | 4 va) Ndde- [ AY(1vdrd)- aax
R3 [R3
= ]1 +]2+]3+]4-
For J,, applying V-u =0, Ho lder inequality, the
commutator estimate (22) and Young inequality, we have
=] VA Vi vaudx
R3
<IVA u- Vil 4IVAull 14
3
<C(IVul VAUl s +IIVAUll IVl ) IV AUl 14 (48)

< ClIVull 2 IVAul 7,

16y 72, 11/6
<ClIVull 2 [Vl 2 1Al 2

<CIvall} + 4%l
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here we have used the following Gagliardo-Nirenberg For J,, by the above inequalities used for J; and product
inequality: estimate (21), we have
IV AUl < CIVal 0| a%u}7 (49)

], = J A(Vd - A d) - Nudx < |A(VAA d)|| 2| A% .
R3
< (VA | A%d] o +IVA dllllA )| A%u] .

2 1
< CIVdll|A%d|,, + CIVA dlijllA dl}. + EHVAuIIiz

1/2
12

11/6 5/6

716
< CldlllA dilzlA di|va’d|,.” +Cla di}, e

[va*d] A dii|va'd)

1 2
+ EIIVAuIILz

< ClA dIZe|vazd],” + cla di?|a%d| + é||A2u||;

< ClA dll + é||VA2d|liz + éllVAulliz,

here we have used the following Gagliardo-Nirenberg
inequalities:

1/4
IVdlls <CldI21A dI, 1A dlls <ClA dl |[vad],.

IVA dls <ClA iR [vald],”, [a%d] . <Cla dif?[va’d],"™

For J;, similar as (48) and by the above Gagliardo-
Nirenberg inequalities, one may conclude

J; = _JR3 [Az, u- V]d -A*ddx < || [Aza u- V]d“ é"Azd”U
L3

< (IVullp [A%d] . + 1Vl 8% . ) [A%d] .

1
< CIVula 4%, + CIVAI A%l + o],

11/6 11/6

1
PIvad]l) + Cldlo A dlala dIE|vatd],) + ],

<ClIVull.|a%d],; |

<CIVul2llA I}, + ClA dl}3 + é”VAzd”iz + é"Azu"iz.

(50)

(51)

(52)
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For J,, by the product estimate (21) and the fact |vd|* =
—d - A d, we infer that
_ 2 2\ A2 _ 24\ 2
J, = JWA (Ivdl’d)-A’d d x JR3VA(|Vd| d)-(VA*d)dx

<|va(ivard)|r*|vata

L2

gc<||VA(|Vd|2)d

. +lvarva dj,, )jvatd],,

<C(IVdll | A%l oo +11A AN IVA dllalldll e )| VAR . (53)

11/12
12

1/4
12

7/12

<c(1a di21a A vard]" +1a i vatd] s di|vatd])” Y [vatdl,,

11/12
12

5/6

<c(Ia dip? vl ) +1a divadliy ) |va’d],,

1 2
<CllA d|' + 8||VA2d||L2.

Inserting the above estimates (48), (50), (52), (53) to Integrating the above inequality with respect to time
(47), and combining (46) yields from T to t, Ty <t <T, it follows that

(1 +1vaul, o}, ) sfatul, +[varal

<C(IVullit +l1A dll}}) < CCC(T) (1 + M (1)),

(1+1vaur: +|a%a o, ) + j (Iauls, +[va’d;, )ar

t
TO
<1 +||VAu(T0)||jz +||A2d(T0)||§2 + J; CC,C(T) (1 + M (1)) ““dr (55)

e fmau(ry s d(r + [ e s

here we choose € = 1/7C. The above inequality and equality
(45) imply that

t
(1+ M(1) + jT (IVAuIE, ) +[|A%d]dr
o t (56)
<1+ [vau(ro)f}, +[d(r)ll + | coemas M@
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Therefore, employing Gronwall’s inequality leads to

11

t
ey + [ (1ol + a2, Jar

T,

= <1 +”VA”(T0)"12 +[a%d (TO)H;>€XP{CC0C(T) (T - To)},

which indicates the truth of equality (25). Thus the Proof of
Theorem 1 is completed. O

(57)

Proof of Theorem 2. For the proof of Theorem 2, we only
need reestimate I, again. By the Lemma 1, we have

I< CJRJthh“Vulzdxs IVt IVl

< C|Vyu, H;alozm IV

H

1/2

< C|[ Va5 (N7

< Vi,

< C(||thh||§2j

T

< C| IVul}, +

1/2 5/4 3/4
i IVullzz [Aulz

12
o NAul IVul

3/4
> Aull

B,

7-2rl4 3+2r/4 4/5-2r 4/5-2 2 1 2
o [IVul Aull;3" < c||vhuh||.,m Vel 72 IV ullz +Z||Au||Lz

1
2 2 2
HIVUE IVl + Auls

\/1 +log(1 +1Vul,p

1
X [Vull?s + Z||Au||iz.

Going the same process to (39)-(57), the desired result
will be obtained. Thus the Proof of Theorem 2 is
completed. O
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