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In this work, by using some orthogonally fxed point theorem, we prove the stability and hyperstability of orthogonally C∗-ternary
Jordan homomorphisms between C∗-ternary Banach algebras and orthogonally C∗-ternary Jordan derivations of some functional
equation on C∗-ternary Banach algebras.

1. Introduction and Preliminaries

A classical question in the sense of a functional equation says
that “when is it true that a function which approximately
satisfes a functional equation must be close to an exact
solution of the equation?” Ulam [1] raised the question of
stability of functional equations andHyers [2] was the frst to
give an afrmative answer to the question of Ulam for
additive mapping between Banach spaces. In 1987, Rassias
[3] proved a generalized version of the Hyers’ theorem for
approximately additive maps. Te study of stability problem
of functional equations have been done by several authors on
diferent spaces such as Banach, C∗-Banach algebras and
modular spaces (for example see [4–13]). One of the
stimulating aspects is to examine the stability of those
functional equations whose general solutions exist and are
useful in characterizing entropies [14].

Recently, Eshaghi Gordji et al. [15] introduced the no-
tion of the orthogonal set, which contains the notion of
orthogonality in normed space.Te study on orthogonal sets
has been done by several authors (for example, see [16–18])

Defnition 1 (see [15]). Let X≠∅ and ⊥⊆X × X be a binary
relation. If there exists x0 ∈ X such that for all y ∈ X,

y⊥x0 or x0⊥y. (1)

Ten ⊥ is called an orthogonally set (briefy O-set). We
denote this O-set by (X,⊥).

Let (X,⊥) be an O-set and (X, d) be a generalized metric
space, then (X,⊥, d) is called orthogonally generalized
metric space.

Let (X,⊥, d) be an orthogonally metric space.

(i) A sequence xn􏼈 􏼉n∈N is called orthogonally sequence
(briefy O-sequence) if for any n ∈ N,

xn⊥xn+1 or xn+1⊥xn. (2)

(ii) Mapping f: X⟶ X is called ⊥− continuous in
x ∈ X if for each O-sequence xn􏼈 􏼉n∈N in X with
xn⟶ x, then f(xn)⟶ f(x). Clearly, every
continuous map is ⊥− continuous at any x ∈ X.
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(iii) (X,⊥, d) is called orthogonally complete (briefy
O-complete) if every Cauchy O-sequence is con-
vergent to a point in X.

(iv) Mapping f: X⟶ X is called ⊥-preserving if for
all x, y ∈ X with x⊥y, then f(x)⊥f(y).

(v) A mapping f: X⟶ X is said to be orthogonally
contraction (or ⊥ − λ-contraction) with Lipschitz
constant 0< λ< 1 if

d(f(x), f(y))≤ λ d(x, y)if x⊥y. (3)

By using the concept of orthogonally sets, Bahraini et al.
[19], proved the generalization of the Diaz andMargolis [20]
fxed point theorem on these sets.

Theorem 1 (see [19]). Let (X, d,⊥) be an O-complete
generalized metric space. Let T: X⟶ X be a ⊥-preserving,
⊥-continuous, and ⊥-λ-contraction. Let x0 ∈ X be such that
for all y ∈ X, x0⊥y or for all y ∈ X, y⊥x0, and consider the
“O-sequence of successive approximations with initial element
x0 ”: x0, T(x0), T2(x0), . . ., Tn(x0), . . .. Ten, either
d(Tn(x0), Tn+1(x0)) �∞ for all n≥ 0, or there exists a
positive integer n0 such that d(Tn(x0), Tn+1(x0))<∞ for all
n> n0. If the second alternative holds, then

(i) the O-sequence of Tn(x0)􏼈 􏼉 is convergent to a fxed
point x∗ of T.

(ii) x∗ is the unique fxed point of T in
X∗ � y ∈ X: d(Tn(x0), y)<∞􏼈 􏼉.

(iii) If y ∈ X, then

d y, x
∗

( 􏼁≤
1

1 − λ
d(y, T(y)). (4)

A C∗-ternary Banach algebra A, endowed with a ternary
product (x, y, z)⟶ [x, y, z] of A3 into A, is a complex
Banach space in which the product is C-linear in the outer
variables, conjugate C-linear in the middle variable, and as-
sociative in the sense that [[\[x, y, z], u, w] � [x, [y, z, u]w] �

[x, y, [z, u, w]], for all x, y, z, u, w in A and satisfes
‖[x, y, z]‖≤ ‖x‖.‖y‖.‖z‖, ‖[x, x, x]‖ � ‖x‖3 (see [21]). If (A, ·)

is a usual C∗-algebra, then an induced ternary multiplication
can defned by [u, v, w]: � u · v∗ · w. If a C∗-ternary Banach
algebra A has a unital “e” such that u � [u, e, e] � [e, e, u] for
all u ∈ A, then A with binary product u · v: � [u, e, v] and
u∗: � [e, u, e], is a unital C∗-algebra (see [22]).

Defnition 2. A C-linear mapping between C∗-ternary
Banach algebras A,B; i.e. H: A⟶ B, is called

(1) C∗-ternary homomorphism if

H([x, y, z]) � [H(x), H(y), H(z)], H x
∗

( 􏼁 � H(x)
∗
.

(5)

(2) C∗-ternary Jordan homomorphism if

H([x, x, x]) � [H(x), H(x), H(x)], H x
∗

( 􏼁 � H(x)
∗
. (6)

For all x, y, z ∈ A.

Defnition 3. A C-linear mapping D: A⟶ A is called

(1) C∗-ternary derivation if

D([x, y, z]) � [D(x), y, z] +[x, D(y), z] +[x, y, D(z)], D x
∗

( 􏼁 � D(x)
∗
. (7)

(2) C∗-ternary Jordan derivation if

D([x, x, x]) � [D(x), x, x] +[x, D(x), x] +[x, x, D(x)], D x
∗

( 􏼁 � D(x)
∗
. (8)

For all x, y, z ∈ A.

To prove main results we use the following equivalent
assertions.

Lemma 1 (see [23]). Let f: A⟶ B be a mapping such
that

f
y − x

3
􏼒 􏼓 + f

x − 3z

3
􏼒 􏼓 + f

3x + 3z − y

3
􏼒 􏼓

�������

�������
≤ ‖f(x)‖, (9)

for all x, y, z ∈ A. Ten f is additive.

Lemma 2 (see [24]). Let A and B be two ternary Banach
algebras. Let f: A⟶ B be an additive mapping. Ten the
following assertions are equivalent:

(a) f[a, a, a]) � [f(a), f(a), f(a)], for all a ∈ A.
(b) f([a, b, c] + [b, c, a]

+[c, a, b]) � [f(a), f(b), f(c)] +

[f(b), f(c), f(a)] +

[f(c), f(a), f(b)], ∀a, b, c ∈ A.
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Lemma 3 (see[25]). LetA be a ternary Banach algebras. Let
f be an additive mapping from A into A. Ten the following
assertions are equivalent:

(a) f([a, a, a]) � [f(a), a, a] + [a, f(a), a] +

[a, a, f(a)], for all a ∈ A
(b) f([a, b, c] + [b, c, a]

+[c, a, b]) � [f(a), b, c] + [a, f(b), c] +

[a, b, f(c)] + [f(b), c, a] + [b, f(c), a] +

[b, c, f(a)] + [f(c), a, b] + [c, f(a), b] +

[c, a, f(b)], for all a, b, c ∈ A.

In this paper, motivated by the works of [15, 23, 26], we
prove the stability of orthogonally C∗-ternary Jordan ho-
momorphism and orthogonally C∗-ternary Jordan deriva-
tion of the functional equation

f
ty − x

3
􏼒 􏼓 + f

x − 3tz

3
􏼒 􏼓 + tf

3x + 3z − y

3
􏼒 􏼓 � tf(x).

(10)

On orthogonally C∗-ternary Banach algebras, where t

belongs to the set of all complex numbers eiθ with
0≤ θ ≤ (2π/n0) for some fxed positive integer number n0.

2. Main Results

Troughout the paper, let T1
1/n0

be the set of all complex
numbers eiθ, where 0≤ θ ≤ (2π/n0) and n0 is a fxed positive
integer number and let A,B be two C∗-ternary Banach
algebras.

For simplicity, denote

Φf(x, y, z, t) � f
ty − x

3
􏼒 􏼓 + f

x − 3tz

3
􏼒 􏼓 + tf

3x + 3z − y

3
􏼒 􏼓 − tf(x), (11)

Ψf(x, y, z) � f([x, y, z] +[y, z, x] +[z, x, y]) − [f(x), f(y), f(z)] − [f(y), f(z), f(x)]

− [f(z), f(x), f(y)],
(12)

where x, y, z ∈ A and t ∈ T1
(1/n0).

Suppose that φ and ψ are two mappings from A3 into
[0,∞) such that for all x, y, z ∈ A with x⊥y, x⊥z, y⊥z

φ(x, y, z)≤
L

3
φ(3x, 3y, 3z), (13)

ψ(x, y, z)≤
L

33
ψ(3x, 3y, 3z), (14)

for some constant 0<L< 1.
Now, we are ready to prove the stability of orthogonally

C∗-ternary Jordan homomorphism in C∗-ternary Banach
algebras.

Theorem 2. Let f: A⟶ B be a mapping for which

Φf(x, y, z, t)
�����

�����≤φ(x, y, z), (15)

and

Ψf(x, y, z)
�����

�����≤ψ(x, y, z), (16)

and

f x
∗

( 􏼁 − f(x)
∗����
����≤φ(x, x, x). (17)

For all t ∈ T1
(1/n0), and x, y, z ∈ A with x⊥y, x⊥z, y⊥z,

whose φ and ψ are defned as (13) and (14). Ten there exists
a unique orthogonally C∗-ternary Jordan homomorphism
H: A⟶ B such that

‖H(x) − f(x)‖≤
L

1 − L
φ(x, 2x, 0), (18)

for all x ∈ A.

Proof. Let Δ be the set of all mappings g: A⟶ B such that
g(x)⊥3g((1/3)x) or 3g((1/3)x)⊥g(x), for all x ∈ A. Defne
dφ on Δ by

dφ(g, h) � inf α ∈ (0,∞): ‖g(x) − h(x)‖≤ αφ(x, 2x, 0) ∀x ∈ A􏼈 􏼉, (19)

and suppose that, for all g, h ∈ Δ, h⊥g if and only if

h(x)⊥g(x) or g(x)⊥h(x). (20)

For all x ∈ A.

Clearly (X,Δ,⊥) is an O-complete generalized metric
space. Defne Λ: Δ⟶ Δ by Λg(x) � 3g((1/3)x), x ∈ A.
Ten

‖Λg(x) − Λh(x)‖ � 3g
1
3

x􏼒 􏼓 − 3h
1
3

x􏼒 􏼓

�������

�������
≤ 3αφ

x

3
,
2x

3
, 0􏼒 􏼓≤ Lαφ(x, 2x, 0). (21)
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So, by defnition of dφ on Δ, for every g, h ∈ Δ with g⊥h
or h⊥g and dφ(g, h)< αwe have ‖Λg − Λh‖≤ αL.Tis shows
that dφ(Λg,Λh)≤Ldφ(g, h), i.e. Λ is ⊥ − λ-contraction. Te
function Λ is ⊥-continuous. In fact, if gn􏼈 􏼉 is an O-sequence
in Δ which converges to g ∈ Δ, then for given ε> 0, there
exists α> 0 with α< ε and n ∈ N such that

gn(x) − g(x)
����

����≤ αφ(x, 2x, 0). (22)

For all x ∈ A and n ∈ N. Terefore by the similar ar-
gument, for all x ∈ A and n≥N, we have

dφ Λ gn( 􏼁,Λ(g)( 􏼁≤ Lα< Lε. (23)

Clearly, Λ is ⊥-preserving.
We show that for any f ∈ Δ, we have

dφ Λ
n+1

f,Λn
f􏼐 􏼑≤∞. (24)

In (11), put t � 1, y � (2x/3n− 1), z � 0 and
x: � (x/3n− 1). By induction we have

3f
x

3n􏼒 􏼓 − f
x

3n􏼒 􏼓

������

������≤
L

n− 1

3n− 1 φ(x, 2x, 0). (25)

Ten for L ∈ (0, 1),

Λn+1
f − Λn

f
����

���� � 3n 3f
x

3n+1􏼠 􏼡 − f
x

3n􏼒 􏼓

��������

��������
≤ L

nφ(x, 2x, 0)⟶ 0 as n⟶ +∞, (26)

and then, all conditions of Teorem 1 hold.
So, the O-sequence Λnf􏼈 􏼉 converges to the unique fxed

point H in the set of g ∈ Δ: dφ(Λnf, g)<∞􏽮 􏽯, i.e.,

H(x) � lim
n⟶∞
Λn

f � lim
n⟶∞

3n
f

x

3n􏼒 􏼓. (27)

Also, for f ∈ Δ,

dφ(f, H)≤
1

1 − L
dφ(f,Λf), (28)

and by (26), d(f, H)≤Lφ(x, 2x, 0). Terefore, H satisfes in
(18), i.e.,

‖H(x) − f(x)‖≤
L

1 − L
φ(x, 2x, 0). (29)

We claim that H is the unique desired orthogonally C∗

-ternary Jordan homomorphism which satisfes in (18).
First of all, H is a additive. In fact, for all t ∈ T1

(1/n0),
x, y, z ∈ A with x⊥y, x⊥z, y⊥z and using (13), we have

ΦH(x, y, z, t)
����

���� � H
ty − x

3
􏼒 􏼓 + H

x − 3tz

3
􏼒 􏼓 + tH

3x + 3z − y

3
􏼒 􏼓 − tH(x)

�������

�������
� lim

n⟶∞
3n

f
ty − x

3n+1􏼠 􏼡 + f
x − 3tz

3n+1􏼠 􏼡 + tf
3x + 3z − y

3n+1􏼠 􏼡 − tf
x

3n􏼒 􏼓

��������

��������
≤ lim

n⟶∞
3nφ

x

3n,
y

3n,
z

3n􏼒 􏼓 � 0.

(30)

So by Lemma 1, H is additive. By the same proof of
Teorem 3 of [27], the mapping H is C-linear. We show that

H is unique. Let H′ be another additive mapping satisfying
(18). Ten, we have

H(x) − H′(x)
����

���� � 3n
H

x

3n􏼒 􏼓 − H′
x

3n􏼒 􏼓

������

������≤ 3
n

H
x

3n􏼒 􏼓 − f
x

3n􏼒 􏼓

������

������ + 3n
H′

x

3n􏼒 􏼓 − f
x

3n􏼒 􏼓

������

������

≤ 2 · 3nφ
x

3n,
2x

3n , 0􏼒 􏼓≤ 2Łnφ(x, 2x, 0).

(31)
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For all x ∈ A. Letting n⟶∞ shows that H is unique. Now, by using (16)

ΨH(x, y, z)
����

���� � ‖H([x, y, z] + [y, z, x] + [z, x, y]) − [H(x), H(y), H(z)] − [H(y), H(z), H(x)] − [H(z), H(x), H(y)]‖

� lim
n⟶∞

33n
f

x

3n,
y

3n,
z

3n􏼔 􏼕 +
y

3n,
z

3n,
x

3n􏼔 􏼕 +
z

3n,
x

3n,
y

3n􏼔 􏼕􏼒 􏼓 − f
x

3n􏼒 􏼓, f
y

3n􏼒 􏼓, f
z

3n􏼒 􏼓􏼔 􏼕 − f
y

3n􏼒 􏼓, f
z

3n􏼒 􏼓, f
x

3n􏼒 􏼓􏼔 􏼕 − f
z

3n􏼒 􏼓, f
x

3n􏼒 􏼓, f
y

3n􏼒 􏼓􏼔 􏼕

������

������

≤ lim
n⟶∞

33nψ
x

3n,
y

3n,
z

3n􏼒 􏼓 � 0,

(32)

and then (14) implies that ΨH(x, y, z) � 0 for all x, y, z ∈ A
with x⊥y, x⊥z, y⊥z. On the other hand, by (13) and (17)
we have

H x
∗

( 􏼁 − H(x)
∗����
���� � lim

n⟶∞
3n

f
x
∗

3n􏼠 􏼡 − f
x

3n
􏼒 􏼓
∗

��������

��������

≤ lim
n⟶∞

3nφ
x

3n,
x

3n,
x

3n􏼒 􏼓 � 0.

(33)

For all x ∈ A. Terefore H is an orthogonally C∗-ternary
Jordan homomorphism satisfying (18). □

In the next theorem, we prove that the self-mapping f

with the same appropriate conditions which satisfed in the
functional (11), can be approximated by an orthogonally C∗

-ternary Jordan derivation.
Denote

Wf(x, y, z) � f([x, y, z] +[y, z, x] +[z, x, y]) − [f(x), y, z] − [x, f(y), z] − [x, y, f(z)] − [f(y), z, x]

− [y, f(z), x] − [y, z, f(x)] − [f(z), x, y] − [z, f(x), y] − [z, x, f(y)].
(34)

Theorem 3. Let f: A⟶ A be a mapping satisfying (17)
such that

Φf(x, y, z, t)
�����

�����≤φ(x, y, z), (35)

and

Wf(x, y, z)
�����

�����≤ψ(x, y, z). (36)

For all t ∈ T1
(1/n0) and x, y, z ∈ A with x⊥y, x⊥z, y⊥z

where mappings φ and ψ are satisfed in (13) and (14). Ten,

there exists a unique orthogonally C∗-ternary Jordan deri-
vation D: A⟶ A such that

‖D(x) − f(x)‖≤
L

1 − L
φ(x, 2x, 0), (37)

for all x ∈ A.

Proof. Similar to proof of Teorem 2, there exists a self-
mapping D on A defned by D(x): � limn⟶∞3nf(x/3n)

satisfes (37). By using Lemma 3 and defnition of D(x) we
have

WD(x, y, z)
����

���� � ‖D([x, y, z] +[y, z, x] +[z, x, y]) − [D(x), y, z] − [x, D(y), z] − [x, y, D(z)]

− [D(y), z, x] − [y, D(z), x] − [y, z, D(x)] − [D(z), x, y] − [z, D(x), y] − [z, x, D(y)]‖

� lim
n⟶∞

33n
f

x

3n,
y

3n,
z

3n􏼔 􏼕 +
y

3n,
z

3n,
x

3n􏼔 􏼕 +
z

3n,
x

3n,
y

3n􏼔 􏼕􏼒 􏼓 − f
x

3n􏼒 􏼓,
y

3n,
z

3n􏼔 􏼕

������

−
x

3n, f
y

3n􏼒 􏼓,
z

3n􏼔 􏼕 −
x

3n,
y

3n, f
z

3n􏼒 􏼓􏼔 􏼕

− f
y

3n􏼒 􏼓,
z

3n,
x

3n􏼔 􏼕 −
y

3n, f
z

3n􏼒 􏼓,
x

3n􏼔 􏼕 −
y

3n,
z

3n, f
x

3n􏼒 􏼓􏼔 􏼕− f
z

3n􏼒 􏼓,
x

3n,
y

3n􏼔 􏼕 −
z

3n, f
x

3n􏼒 􏼓,
y

3n􏼔 􏼕 −
z

3n,
x

3n, f
y

3n􏼒 􏼓􏼔 􏼕

������

≤ lim
n⟶∞

33nψ
x

3n,
y

3n,
z

3n􏼒 􏼓 � 0,

(38)
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for all x, y, z ∈ A with x⊥y, x⊥z, y⊥z. So WD(x, y, z) � 0
for all x, y, z ∈ A with x⊥y, x⊥z, y⊥z. Tus, the mapping
D: A⟶ A is a unique orthogonally C∗-ternary Jordan
derivation satisfes (37). Also, by the same argument in the
proof of Teorem 2,

D x
∗

( 􏼁 � D(x)
∗
. (39)

□

Teorems 1 and 2 generalized the result of Rassias [3],
whenever we defne

φ(x, y, z) � θ ‖x‖
p

+‖y‖
p

+‖z‖
p

( 􏼁,

ψ(x, y, z) � θ ‖x‖
3p

+‖y‖
3p

+‖z‖
3p

􏼐 􏼑.
(40)

For all θ ∈ R+ and p≠ 1, in the sense of orthogonal sets.
As a consequence of Teorem 1, we have hyperstability

of orthogonally C∗-ternary Jordan homomorphism between
C∗-ternary Banach algebras.

Theorem  . Let p≠ 1 and θ be nonnegative real numbers,
and let f: A⟶ B be a mapping such that

f
ty − x

3
􏼒 􏼓 + f

x − 3tz

3
􏼒 􏼓 + tf

3x + 3z − y

3
􏼒 􏼓

�������

�������
≤ ‖tf(x)‖, (41)

Ψf(x, y, z)
�����

�����≤ θ ‖x‖
p

+‖y‖
p

+‖z‖
p

( 􏼁. (42)

For all t ∈ T1
1/n0 and all x, y, z ∈ Awith x⊥y, x⊥z, y⊥z.

Ten, themapping f: A⟶ B is a orthogonally C∗-ternary
Jordan homomorphism.

From Teorem 3, we obtain hyperstability of orthogo-
nally C∗-ternary Jordan derivation.

Theorem 5. Let p≠ 1 and θ be nonnegative real numbers. Let
f: A⟶ A be a mapping satisfes (41) such that

Wf(x, y, z)
�����

�����≤ θ ‖x‖
p

+‖y‖
p

+‖z‖
p

( 􏼁. (43)

For all x, y, z ∈ A with x⊥y, x⊥z, y⊥z. Ten the
mapping f: A⟶ A is an orthogonally C∗-ternary Jordan
derivation.

3. Conclusions

In this paper, we introduced orthogonally C∗-ternary Jordan
homomorphism and C∗-ternary Jordan derivation. Using an
orthogonally fxed point theorem, we proved that orthog-
onally C∗-ternary Jordan homomorphism and orthogonally
C∗-ternary Jordan derivation of the functional (11) can be
stable and hyperstable in the orthogonally C∗-ternary
Banach algebras. Te Hyers–Ulam stability theory has many
attractions and applications in the feld of fractional calculus.
For farther research in this feld we suggest to see the paper
[28, 29].
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