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In 2018, Partyka et al. established several equivalent conditions for a sense-preserving locally injective harmonic mapping f �

h + g in the unit diskDwith convex holomorphic part h to be quasiconformal in terms of the relationships of two-point distortion
of h, g, and f. In this study, we frst generalize the above result to the case of pluriharmonic mappings fA � h + Ag, where h is a
convex mapping in the unit ball Bn and A ∈ L(Cn,Cn) with ‖A‖ � 1. Ten, we establish a relationship of two-point distortion
property between f and fA.

1. Introduction and Main Results

For n≥ 1, let Cn denote the n-dimensional complex Eu-
clidean space. Also, we identify each point
z � (z1, . . . , zn) ∈ Cn with a column vector. For two column
vectors z, w ∈ Cn, set 〈z, w〉 � 

n
j�1 zjwj and |z| � 〈z, z〉1/2.

We use Bn(z0, r) and Sn− 1(z0, r) to denote the open ball
z ∈ Cn: |z − z0|< r  and its boundary z ∈ Cn: |z − z0| � r 

, respectively. In particular, let Bn(0, 1) � Bn and
Sn− 1(0, 1) � Sn− 1. Also, we identify B1 with the unit disk D.

For an n × n complexmatrixA, the operator norm ofA is
defned by

‖A‖ � sup |Aξ|: ξ ∈ Sn− 1
 . (1)

We use L(Cn,Cm) to denote the space of continuous
linear operators from Cn intoCm with the standard operator
norm, and let In be the identity operator in L(Cn,Cn).

For two domains Ω1,Ω2 ⊂ Cn, let f � (f1, . . . , fn) be a
holomorphic mapping from Ω1 into Ω2. Ten, the complex
Jacobian matrix of f at z ∈ Ω1 is given by

Df(z) �

zf1(z)

zz1
· · ·

zf1(z)

zzn

⋮ ⋱ ⋮

zfn(z)

zz1
· · ·

zfn(z)

zzn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ∇f1(z), . . . ,∇fn(z)( 
T
, (2)

where T means the matrix transpose, and ∇fj are under-
stood as column vectors. Furthermore, let Df(z) be the
conjugate of Jacobian matrix Df(z)as follows:

Df(z) �

zf1(z)

zz1
· · ·

zf1(z)

zzn

⋮ ⋱ ⋮

zfn(z)

zz1
· · ·

zfn(z)

zzn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)
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If detDf(z) ≠ 0 for every z ∈ Ω1, then we say that f is
locally biholomorphic inΩ1 (cf. [1]). If f is one-to-one, onto
and locally biholomorphic, then f is said to be biholo-
morphic (cf. ([2], Page 55)).

A complex-valued function f of class C2 in Bn is said to
be pluriharmonic if its restriction to every complex line is
harmonic, which is equivalent to the fact that for all z ∈ Bn

and j, k ∈ 1, 2, . . . , n{ },

z
2

zzjzzk

f(z) ≡ 0. (4)

Every pluriharmonic mapping f: Bn⟶ Cn can be
written as f � h + g, where h, g are the holomorphic
mappings, and this representation is unique if g(0) � 0 (cf.
[1–5]).

If f � h + g: Bn⟶ Cn is pluriharmonic and h is locally
biholomorphic, we denote by

ωf(z) � Dg(z)[Dh(z)]
− 1

, ωf

�����

�����∞
� supz∈Bn ωf(z)

�����

����� ,

(5)

and we use Jf to denote the real Jacobian matrix of f (cf.
[4]). Ten, for any z ∈ Bn,

Jf(z) �
Dh(z) Dg(z)

Dg(z) Dh(z)

⎛⎝ ⎞⎠, (6)

and

det Jf(z) � |detDh(z)|
2det In − ωf(z)ωf(z) . (7)

Hence, f is sense-preserving, i.e., det Jf(z)> 0 in Bn, if
and only if h is locally biholomorphic, and
det(In − ωf(z)ωf(z))> 0.

If f � h + g is a sense-preserving harmonic mapping
from D into C, it is known that
det Jf(z) � |h′(z)|2 − |g′(z)|2 and the dilation
ωf(z) � g′(z)/h′(z) is analytic with the property that
|ωf(z)|< 1 (see [6, 7]). Especially, if f is a difeomorphism
with ‖ωf‖∞< 1, then f is called a quasiconformal mapping.

A domain Ω ⊂ Cn is said to be M-linearly connected if
there is a constant M> 0 such that any two points w1,
w2 ∈ Ω can be connected by a smooth curve c ⊂ Ω with
length

l(c)≤M w1 − w2


. (8)

It is clear that any convex domain is 1-linearly con-
nected. For extensive discussion on linearly connected do-
mains, see [4, 8–12]. For a biholomorphic mapping f, if f

maps Bn onto a convex domain, then we say that f is convex
in Bn (cf. [13]).

For sense-preserving harmonic mapping f � h + g de-
fned on D, Chuaqui and Hérnandez [10] showed that if
f(D) is M-linearly connected and |ωf|< 1/(1 + 2M), then
the deformation F � h + ag, |a| � 1, is univalent. Kalaj [14]
proved a more general result when f(D) is convex that for
every a with |a|≤ 1, F is an |a|-quasiconformal close-to-
convex harmonic mapping.

We say that a mapping f: Ω⟶ Cn is in Lipα if there
exist a constant c1 and an exponent α ∈ (0, 1] such that for
all z, w ∈ Ω,

|f(z) − f(w)|≤ c1|z − w|
α
. (9)

Such mappings are also called α-Hölder continuous. In
particular, if α � 1, then we say that f is Lipschitz contin-
uous. A mapping f: Ω⟶ Cn is said to be co-Lipschitz
continuous if there exists a constant c2 such that for all z,
w ∈ Ω,

|f(z) − f(w)|≥ c2|z − w|. (10)

If f is both Lipschitz continuous and co-Lipschitz
continuous in Ω, then f is called bi-Lipschitz.

In 2012, Partyka and Sakan established several equivalent
conditions for a sense-preserving harmonic mapping f �

h + g from D onto a bounded convex domain to be qua-
siconformal in terms of the relationships of two-point
distortion of h, g, and f (see [15], Teorem 3.8]). Later,
Partyka et al. [12] generalized the result to the case wheref is
a sense-preserving and locally injective harmonic mapping
and h is a convex holomorphic mapping.

Theorem 1 (see [12], Teorem 3.3). Let f � h + g be a
sense-preserving harmonic mapping in D such that h is
convex. Ten, f is injective, and the following fve conditions
are equivalent to each other:

(1) f is a quasiconformal mapping
(2) Tere exists a constant L1 such that L1 ∈ [1, 2) and

f z2(  − f z1( 


≤ L1 h z2(  − h z1( 


, z1, z2 ∈ D. (11)

(3) Tere exists a constant l1 such that l1 ∈ [0, 1) and

g z2(  − g z1( 


≤ l1 h z2(  − h z1( 


, z1, z2 ∈ D. (12)

(4) Tere exists a constant L2 ≥ 1 such that

h z2(  − h z1( 


≤L2 f z2(  − f z1( 


, z1, z2 ∈ D. (13)

(5) h°f− 1 and f°h− 1 are bi-Lipschitz mappings.

Let f � h + g be a pluriharmonic mapping in Bn. For
simplicity, here and hereafter, we always use fA to denote
the pluriharmonic mapping h + Ag, where A ∈ L(Cn,Cn)

with ‖A‖≤ 1. Obviously, ωfA
(z) � Aωf(z).

As the frst aim of this study, we establish the following
counterpart of ([12], Teorem 3.3) in the setting of pluri-
harmonic mappings.

Theorem 2. Let f � h + g: Bn⟶ Cn be a pluriharmonic
mapping, where h is convex in Bn and ‖ωf‖∞≤ 1. Ten, the
following fve statements are equivalent:

(i) Tere exists a constant N such that ‖ωf‖∞≤N< 1
(ii) Tere exists a constant L1 ∈ [1, 2) such that for any

z1, z2 ∈ Bn and A ∈ L(Cn,Cn) with ‖A‖ � 1,

fA z1(  − fA z2( 


≤ L1 h z1(  − h z2( 


. (14)
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(iii) Tere exists a constant l1 ∈ [0, 1) such that for any
z1, z2 ∈ Bn,

g z1(  − g z2( 


≤ l1 h z1(  − h z2( 


. (15)

(iv) Tere exists a constant L2 ≥ 1 such that for any
z1, z2 ∈ Bn and A ∈ L(Cn,Cn) with ‖A‖ � 1,

h z1(  − h z2( 


≤ L2 fA z1(  − fA z2( 


. (16)

(v) For any A ∈ L(Cn,Cn) with ‖A‖ � 1, h°f− 1
A and

fA°h− 1 are bi-Lipschitz mappings.

As the second aim of this study, we establish a rela-
tionship of two-point distortion property between f and fA.
Our result is as follows.

Theorem 3. Let f � h + g: Bn⟶ Cn be a pluriharmonic
mapping, where h is biholomorphic and h(Bn) is M-linearly
connected with constant M≥ 1. Suppose that there exists a
constant N ∈ [0, 1/M) such that ‖ωf‖∞≤N. Ten, for any
z1,z2 ∈ Bn and A ∈ L(Cn,Cn) with ‖A‖≤ 1, there exist two
positive constants c1 and c2 such that

c2 f z1(  − f z2( 


≤ fA z1(  − fA z2( 


≤ c1 f z1(  − f z2( 


,

(17)

where c1 � M(1 + N)2/(1 − N)(1 − MN) and
c2 � 1 − MN/1 + MN. In particular,

1 − MN

(1 + MN)
2 f z1(  − f z2( 


≤ h z1(  − h z2( 


≤

M(1 + N)

(1 − N)(1 − MN)
f z1(  − f z2( 


. (18)

Teproofs ofTeorems 2 and 3 will be given in Section 2.

2. Proofs of Main Results

Te aim of this section is to prove Teorems 2 and 3. Before
proving Teorem 2, we need some preparation, which
consists of three lemmas.

Lemma 1. Let f � h + g: Bn⟶ Cn be a pluriharmonic
mapping, where h is biholomorphic and h(Bn) is M-linearly
connected with constant M≥ 1. Suppose that there exists a
constant N ∈ [0, 1] such that ‖ωf‖∞≤N. Ten, for any z1,
z2 ∈ Bn,

g z1(  − g z2( 


≤MN h z1(  − h z2( 


, (19)

and for any A ∈ L(Cn,Cn) with ‖A‖≤ 1,

fA z1(  − fA z2( 


≤ (1 + MN) h z1(  − h z2( 


. (20)

Proof. Te proof of (19) is based upon the ideas from
Teorem 2.1 [4]. Te details are as follows.

For any distinct points z1, z2 ∈ Bn, let w1 � h(z1) and
w2 � h(z2). Ten, the M-linear connectivity of h(Bn) im-
plies that there exists a smooth curve c: [0, 1]⟶ h(Bn)

between w1 and w2 such that c(0) � w1, c(1) � w2, and
l(c)≤M|w1 − w2|. Since h is a biholomorphic mapping, we
see that σ � h− 1°c is a curve in Bn joining z1 and z2. Ten,
the assumption ‖ωf‖∞≤N implies

g z1(  − g z2( 


 � 
1

0
D g°σ( (s)ds




� 

1

0
Dg(σ(s))[Dh(σ(s))]

− 1
c′(s)ds





≤N 
1

0
|dc(s)| � Nl(c)

≤MN h z1(  − h z2( 


,

(21)

which yields (19). Moreover, for any A ∈ L(Cn,Cn) with
‖A‖≤ 1, we have that

fA z1(  − fA z2( 


≤ h z1(  − h z2( 


 +‖A‖ · g z1(  − g z2( 


≤ (1 + MN) h z1(  − h z2( 


, (22)
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and so the proof of this lemma is complete.
Te following result is a converse of Lemma 1. □

Lemma 2. Let f � h + g: Bn⟶ Cn be a pluriharmonic
mapping, where h is biholomorphic. Suppose that ‖ωf‖∞≤ 1
and there exists a constant N≥ 1 such that for any z1, z2 ∈ Bn

and A ∈ L(Cn,Cn) with ‖A‖ � 1,

h z1(  − h z2( 


≤N fA z1(  − fA z2( 


. (23)

Ten, ‖ωf‖∞≤ 1 − 1/N.

Proof. For any distinct points w1, w2 ∈ h(Bn), let
z1 � h− 1(w1) and z2 � h− 1(w2), where z1, z2 ∈ Bn and
z1 ≠ z2. Ten, for any w1 ∈ Bn(w2, dh(Bn)(w2)), we have

g h
− 1

w1(   − g h
− 1

w2(   � D g°h
− 1

  w2(  · w1 − w2(  + o w1 − w2


 

� Dg z2(  Dh z2(  
− 1

· w1 − w2(  + o w1 − w2


 ,
(24)

where dh(Bn)(w2) denotes the distance of w2 to the boundary
of h(Bn) and o(|w1 − w2|) denotes a vector in Cn with

limw1⟶ w2
|o(|w1 − w2|)|/|w1 − w2| � 0. It follows from (23)

and (24) that

w1 − w2


≤N w1 − w2 + A g h
− 1

(w)  − g h
− 1

w2(   





≤N w1 − w2 + ADg z2(  Dh z2(  
− 1

· w1 − w2(  + o w1 − w2


 


.

(25)

For fxed z2 ∈ Bn, we choose some
w1 ∈ Bn(w2, dh(Bn)(w2))\ w2  such that

Dg z2(  Dh z2(  
− 1

·
w1 − w2

w1 − w2







� Dg z2(  Dh z2(  

− 1
�����

�����.

(26)

Ten, there exists η ∈ Sn− 1 such that

Dg z2(  Dh z2(  
− 1

·
w1 − w2

w1 − w2



� η · Dg z2(  Dh z2(  

− 1
�����

�����.

(27)

Choose A ∈ L(Cn,Cn) satisfying ‖A‖ � 1 and

Aη � −
w1 − w2

w1 − w2



. (28)

Ten, it follows from (25), (27) and (28) that

1
N
≤ limw1⟶ w2

w1 − w2

w1 − w2



−

w1 − w2

w1 − w2



· Dg z2(  Dh z2(  

− 1
�����

����� +
o w1 − w2


 

w1 − w2








� 1 − Dg z2(  Dh z2(  
− 1

�����

�����,

(29)

which, together with the arbitrary of z2, shows that
‖ωf‖∞≤ 1 − 1/N, as needed. □

Lemma 3. Let f � h + g: Bn⟶ Cn be a pluriharmonic
mapping, where h is biholomorphic and h(Bn) is M-linearly
connected with constant M≥ 1. Suppose that there exists a
constant N ∈ [0, 1] such that for any z1, z2 ∈ Bn and
A ∈ L(Cn,Cn) with ‖A‖ � 1,

fA z1(  − fA z2( 


≤ (1 + N) h z1(  − h z2( 


. (30)

Ten,

g z1(  − g z2( 


≤MN h z1(  − h z2( 


. (31)

Proof. By Lemma 1, we know that to prove (31), it sufces to
prove

ωf

�����

�����∞
≤N. (32)

For any distinct points w1, w2 ∈ h(Bn), let z1 � h− 1(w1)

and z2 � h− 1(w2), where z1, z2 ∈ Bn and z1 ≠ z2. Ten, for
any w1 ∈ Bn(w2, dh(Bn)(w2))\ w2 , it follows from (24) and
(30) that
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w1 − w2

w1 − w2



+ ADg z2(  Dh z2(  

− 1
·

w1 − w2

w1 − w2



+

o w1 − w2


 

w1 − w2







≤ 1 + N. (33)

For fxed z2 ∈ Bn, similar to (27), we know that there
exist some η ∈ Sn− 1 and w1 ∈ Bn(w2, dh(Bn)(w2))\ w2  such
that

Dg z2(  Dh z2(  
− 1

·
w1 − w2

w1 − w2



� η · Dg z2(  Dh z2(  

− 1
�����

�����.

(34)

Choose A ∈ L(Cn,Cn) satisfying ‖A‖ � 1 and

Aη �
w1 − w2

w1 − w2



. (35)

Combining (33)–(35) and letting w1⟶ w2, we get
‖ωf‖∞≤N, as required. In addition, the inequality (31) can
be derived from the proof of ([4], Teorem 1.2).

Now, we are ready to prove Teorem 2. □

Proof of Teorem 2. Since every convex domain is a 1-
linearly connected domain, the implication from Statement
(i) to (ii) follows from Lemma 1, and the implication from
Statement (ii) to (iii) follows from Lemma 3. Furthermore,
the implication from Statement (iii) to (iv) follows from the
triangle inequality since the assumption that
|g(z1) − g(z2)|≤ l1|h(z1) − h(z2)| for any z1, z2 ∈ Bn

implies

fA z1(  − fA z2( 


≥ h z1(  − h z2( 


 − ‖A‖ · g z1(  − g z2( 


≥ 1 − l1(  h z1(  − h z2( 


, (36)

where l1 ∈ [0, 1) and A ∈ L(Cn,Cn) with ‖A‖ � 1. Te im-
plication from Statement (v) to (i) follows from Lemma 2.
Hence, to prove the theorem, it remains to prove the im-
plication from Statement (iv) to (v).

Assume that Statement (iv) holds true, which means that
there exists a constant L2 ≥ 1 such that for any z1, z2 ∈ Bn

and A ∈ L(Cn,Cn) with ‖A‖ � 1,

h z2(  − h z1( 


≤ L2 fA z2(  − fA z1( 


. (37)

Ten, we infer from Lemma 2 that ‖ωf‖∞≤ 1 − 1/L2.
Tis, together with Lemma 1, implies that

fA z1(  − fA z2( 


≤ 2 −
1
L2

  h z1(  − h z2( 


. (38)

Note that the assumption “h is convex inBn” implies that
h is a biholomorphic mapping. Tis, together with the above
two inequalities, yields that both h and fA are univalent in
Bn and

1
L2

h z1(  − h z2( 


≤ fA z1(  − fA z2( 


≤ 2 −
1
L2

  h z1(  − h z2( 


. (39)

Let w1 � fA(z1) and w2 � fA(z2). Obviously, we have
that

1
L2

h°f
− 1
A w1(  − h°f

− 1
A w2( 


≤ w1 − w2


≤ 2 −

1
L2

  h°f
− 1
A w1(  − h°f

− 1
A w2( 


, (40)

which means that h°f− 1
A is bi-Lipschitz continuous in

fA(Bn). Similarly, we see that fA°h− 1 is bi-Lipschitz con-
tinuous in h(Bn). Tese show that Statement (v) is true. Te
proof of the theorem is complete.

In order to prove Teorem 3, we also need some
preparation. First, let us recall a known result, which is useful
for the Proof of Teorem 3. □
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Theorem  (see [3], Lemma A). Let A be an n × n complex
matrix with ‖A‖< 1. Ten, In ± A are nonsingular matrices
and

In ± A( 
− 1

�����

�����≤
1

(1 − ‖A‖)
. (41)

Proof. For a complex matrix A, any kind of operator norm
has the property. Let x be any nonzero vector, then

In − A( x
����

���� � ‖x − Ax‖≥ ‖x‖ − ‖Ax‖≥ ‖x‖ − ‖A‖‖x‖ � (1 − ‖A‖)‖x‖ > 0. (42)

If x≠ 0, then (In − A)x≠ 0. So, for (In − A)x≠ 0, no
more than zero solution, then the matrix In − A is
nonsingular.

When In − A is nonsingular, we have

In − A(  In − A( 
− 1

� In,

In − A( 
− 1

� In − A(  + A  In − A( 
− 1

� In − A(  In − A( 
− 1

+ A In − A( 
− 1

� In + A In − A( 
− 1

.
(43)

Now,

In − A( 
− 1

�����

�����≤ In

����
���� +‖A‖ In − A( 

− 1
�����

����� � 1 +‖A‖ In − A( 
− 1

�����

�����,

In − A( 
− 1

�����

�����≤
1

1 − ‖A‖
.

(44)

□
Lemma  . Let f � h + g: Bn⟶ Cn be a univalent pluri-
harmonic mapping, where h is locally biholomorphic and
f(Bn) is M-linearly connected with constant M≥ 1. Suppose
that there exists a constant N ∈ [0, 1) such that ‖ωf‖∞≤N.
Ten, for any z1, z2 ∈ Bn,

g z1(  − g z2( 


≤
MN

1 − N
f z1(  − f z2( 


, (45)

h z1(  − h z2( 


≤
M

1 − N
f z1(  − f z2( 


. (46)

Proof. Te proof of the lemma is based upon the ideas from
([4], Teorem 2.3). Te details are as follows.

First, we prove inequality (45). For any distinct points
w1, w2 ∈ f(Bn), it follows from the M-linear connectivity of

f(Bn) that there exists a smooth curve c: [0, 1]⟶ f(Bn)

connecting w1 and w2 with c(0) � w1, c(1) � w2, and
l(c)≤M|w1 − w2|. Since f is univalent, we assume that z1 �

f− 1(w1) and z2 � f− 1(w2), and hence σ � f− 1°c is a curve
in Bn joining z1 and z2.

By the assumption ‖ωf‖∞≤N< 1, the inverse mapping
theorem and Teorem 4, we know that f− 1 is diferentiable
(cf. [3]). Moreover, by [3], (28), we have

Df
− 1

� [Dh]
− 1

In − Dg[Dh]
− 1

Dg [Dh]
− 1

 
− 1

, (47)

Df
− 1

� − [Dh]
− 1

In − Dg[Dh]
− 1

Dg [Dh]
− 1

 
− 1

Dg[Dh]
− 1

. (48)

For s ∈ [0, 1], let z � σ(s) � (f− 1°c)(s) ∈ Bn. Terefore,
it follows from (47) and (48) that
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g z1(  − g z2( 


 � 
σ
Dg(z)dz




� 

1

0
Dg(σ(s)) · σ′(s)ds





� 
1

0
Dg(σ(s)) · Df

− 1
(c(s)) · c′(s) + Df

− 1
(c(s)) · c′(s) ds





≤ 
1

0
ωf(σ(s)) In − ωf(σ(s)) · ωf(σ(s)) 

− 1
· c′(s)ds





+ 
1

0
ωf(σ(s)) In − ωf(σ(s)) · ωf(σ(s)) 

− 1
· ωf(σ(s)) · c′(s)ds




.

(49)

Furthermore, by Teorem 4, the assumption ‖ωf‖∞≤N

and the M-linear connectivity of f(Bn), we know that

g z1(  − g z2( 


≤ 
1

0

ωf(σ(s))
�����

�����

1 − ωf(σ(s))
�����

�����
2 +

ωf(σ(s))
�����

�����
2

1 − ωf(σ(s))
�����

�����
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ · |c′(s)|ds

� 
1

0

ωf(σ(s))
�����

�����

1 − ωf(σ(s))
�����

�����
|dc(s)|≤

N

1 − N
l(c)

≤
MN

1 − N
f z1(  − f z2( 


,

(50)

which yields the inequality (45). Similarly, by applying (47), (48), Teorem 4, the as-
sumption ‖ωf‖∞≤N and the M-linear connectivity of
f(Bn), we get

h z1(  − h z2( 


 � 
σ
Dh(z)dz




� 

1

0
Dh(σ(s)) · σ′(s)ds





� 
1

0
Dh(σ(s)) · Df

− 1
(c(s)) · c′(s) + Df

− 1
(c(s)) · c′(s) ds





≤ 
1

0
In − ωf(σ(s)) · ωf(σ(s)) 

− 1
· c′(s)ds





+ 
1

0
In − ωf(σ(s)) · ωf(σ(s)) 

− 1
· ωf(σ(s)) · c′(s)ds





≤ 
1

0

1

1 − ωf(σ(s))
�����

�����
2 +

ωf(σ(s))
�����

�����

1 − ωf(σ(s))
�����

�����
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ · |c′(s)|ds

� 
1

0

1
1 − ωf(σ(s))

�����

�����
|dc(s)|≤

1
1 − N

l(c)

≤
M

1 − N
f z1(  − f z2( 


,

(51)

which leads to (46), and thus, the proof of this lemma is
complete.

Based on Lemma 4, we have the following result. □

Lemma 5. Let f � h + g: Bn⟶ Cn be a pluriharmonic
mapping, where h is biholomorphic and h(Bn) is M-linearly
connected with constant M≥ 1. Suppose that there exists a
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constant N ∈ [0, 1/M) such that ‖ωf‖∞≤N. Ten, f is a
univalent and sense-preserving mapping, and for any z1,
z2 ∈ Bn,

g z1(  − g z2( 


≤
N(1 + N)M

(1 − N)(1 − MN)
f z1(  − f z2( 


,

h z1(  − h z2( 


≤
(1 + N)M

(1 − N)(1 − MN)
f z1(  − f z2( 


.

(52)

Proof. By the proof of Teorem 2.1 [4], we know that f is a
univalent and sense-preserving mapping and f(Bn) is a (1 +

N)M/1 − MN-linearly connected domain. Ten, the result
of this lemma follows from Lemma 4.

Based on Lemmas 1 and 5, we can give the Proof of
Teorem 3. □

Proof of Teorem 2. Te inequalities in (18) follows from
(17), (20), and (52). Hence, it remains to prove the in-
equalities in (17).

For any distinct points z1, z2 ∈ Bn and A ∈ L(Cn,Cn)

with ‖A‖≤ 1, we see from Lemma 5 that

fA z1(  − fA z2( 


≤ h z1(  − h z2( 


 + g z1(  − g z2( 




≤
(1 + N)

2
M

(1 − N)(1 − MN)
f z1(  − f z2( 


.

(53)

On the other hand, by Lemma 1 and the assumption
“MN< 1,” we get

fA z1(  − fA z2( 


≥ h z1(  − h z2( 


 − ‖A‖ · g z1(  − g z2( 




≥ h z1(  − h z2( 


 − g z1(  − g z2( 




≥ h z1(  − h z2( 


 − MN h z1(  − h z2( 




≥
1 − MN

1 + MN
f z1(  − f z2( 


.

(54)

Hence, (17) follows, and the proof of this theorem is
complete [16]. □
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