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Te Bayesian prediction of future failures from Lomax distribution is the subject of this research. Te observed data is censored
using a Type-I hybrid censoring scheme under a step-stress partially accelerated life test. Tere are two types of sampling schemes
considered: one-sample and two-sample. We create predictive intervals for failure observations in the future. Bayesian prediction
intervals are constructed usingMCMC algorithms. After all, two numerical examples, simulation study and a real-life example are
provided for both one-sample and two-sample methods for the purpose of illustration.

1. Introduction

In highly industrial products, it is difcult to obtain sufcient
information about the product to test its validity, so it is
appropriate to use an acceleration life test to obtain enough
information with saving time and high cost. Tere are two
types of accelerated life tests: the fully accelerated life test, in
which it is assumed that the acceleration factor is known and
there must be a mathematical model that determines the
relationship between the life span and stress. Another one is
the partially accelerated life test which is applied when the
relationship between the life span and stress is unknown and
is applied throughout step stress and constant stress. Many
authors have written on this topic, see for example, Saeed,
and Hanieh [1]; Lone et al. [2] and Mohammad and
Mohammad [3] and Nagy et al. [4].

It is important to use past data to predict future data in
many experiments of life tests for units or products to

improve product efciency. One of the fascinating subjects in
real-world reliability issues is prediction. Recently, there has
been a lot of discussion about various prediction techniques.

In multiple felds as healthcare, fnance, technology, and
education, Bayesian prediction of future data plays a critical
role.Te Bayesian approach, according to Geisser [5]; can be
used to tackle the problem of prediction. See also AL-
Hussaini et al. [6, 7], Ahmadi et al. [8], Ahmad [9], Ahmad
et al. [10], Ateya [11], Balakrishnan and Shafay [12], Kundu
and Howlader [13], and Singh et al. [14], Ahmad et al. [15]
and Corcuera and Giummole [16].

Te most common type of prediction is predictive in-
tervals. Tey are not the same as the commonly used
confdence intervals and tolerance regions, which are
intended to deal with unknown population parameters. A
predictive interval is a range of values that uses the results of
a previous sample to predict the outcomes of a future sample
with a given probability.
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Prediction concerns can be divided into two categories:

(1) One-sample prediction
Let X1:n, X2:n, . . . , Xr:n and Xr+1:n, Xr+2: n, . . . , Xn:n

represent the known sample and a future sample,
respectively. A one-sample prediction scheme entails
predicting the future sample X(s) for r< s≤ n.

(2) Two-sample prediction
Let X1:n, X2:n, . . . , Xn:n and Y1:m, Y2:m, . . . , Ym:m

denote the informative sample of size n and a future
sample of size m, respectively. Te two samples are
believed to be unrelated and drawn from the same
distribution. Te prediction of the future sample
Y1: m, Y2: m, . . . , Ym: m is part of a two-sample pre-
diction issue.

For more details about one and two sample methods, one
can refer to Prakash [17]; Wu and Gui [18]; and Mohie El-Din
et al. [19].

1.1. Te Model Description and Censoring Scheme. Te
Lomax distribution was introduced by Lomax [20] to analyse
business failure data. Several authors have used Lomax
distribution, for example, Howlader and Hossain [21], Abd-
Ellah [22], Abd-Elfattah et al. [23], Hassan and Al-Ghamdi
[24], among others. Te cumulative distribution function
(CDF) and the probability density function (PDF) of Lomax
distribution are written, respectively, in the forms

F(x; α, θ) � 1 − (1 + αx)
− θ

, x> 0, (α, θ> 0),

f(x; α, θ) � αθ(1 + αx)
− (θ+1)

, x> 0, (α, θ> 0),
(1)

where, θ and α are the shape and scale parameters,
respectively.

By mixing Type-I and Type-II censoring schemes, we
obtain hybrid censoring scheme (HCS) in which the test is
ended after obtaining a fxed number r of failures from n

items or after reaching a pre-determined time T. So, we can
observe the following types of HCSs.

(i) Type-I HCS: Epstein [25] considered a HCS in which
the life-testing experiment is terminated at a random
time T∗ � min Xr: n, T􏼈 􏼉, where 1≤ r≤ n and T> 0
are known before.

(ii) Type-II HCS: In this type the experiment is fnished
at a random time T∗ � max Xr: n, T􏼈 􏼉, this ensures at
least r of failures are obtained.

In this paper, we consider Type-I HCS which includes
the following types of censored data:

Case 1: X1:n <X2:n < · · · <Xr:n, if Xr:n <T, and pre-
specifed r number of failures occur before the cen-
soring time T.
Case 2: X1:n <X2:n < · · · <Xm:n, if Xm:n ≤T<Xr:n, and
only m number of failures occur before the pre-spec-
ifed censoring time T.

Te rest of this paper is organized as follows: Section 2
gives the test method and procedure. In Section 3, the

likelihood function and the posterior PDF are stated. Section
4 is devoted for Bayesian one-sample prediction scheme and
MCMC method. Bayesian two-sample prediction and
MCMC technique are presented in Section 5. Section 6
presents numerical computations involving numerical ex-
amples and simulation study, as well as real-life example.
Te fndings are displayed in four tables then concluding the
results and methodology in Section 7.

2. The Test Method

In this section, we explain the fundamental assumptions and test
procedures for the step-stress partially accelerated life test
(SSPALT) model based on the Type-I hybrid censoring method.

2.1. Fundamental Presumptions

(1) Tere are two stress levels: s1 and s2 (design and
high).

(2) Te life distribution of the test unit is Lomax dis-
tribution for any level of stress.

(3) An item’s entire lifetime Y is calculated as follows:

Y �
T, T≤ τ,

τ + β− 1
(T − τ), T> τ,

􏼨 (2)

where, T is an item lifetime at normal use condition
and β> 1, is the accelerating factor. Tis model
discussed by Degroot and Goel [26] and referred to
as tampered random variable (TRV).

(4) Te lifetimes Y1, . . . , Yn of the n test items are inde-
pendent and identically distributed random variables.

2.2. Test Procedure

(1) All n test items are put through a normal
environment.

(2) If r number failures does not fail by a predetermined
time τ in normal use, it is switched to accelerated
mode and run until it fails or the censorship time is
reached.

Based on the above assumptions, theCDF andPDFof a total
lifetime Y of test item take the following forms, respectively,

F(y) �
1 − (1 + αy)

− θ
, 0≤y≤ τ,

1 − (1 + αδ(y))
− θ

, y> τ,

⎧⎨

⎩ (3)

where, δ(y) � τ + β(y − τ) and

f(y) �
αθ(1 + αy)

− (θ+1)
, 0≤y≤ τ,

αθβ(1 + αδ(y))
− (θ+1)

, y> τ.

⎧⎨

⎩ (4)

In Type-I HCS, the life-testing experiment is stopped
according to the rule T2 � min yr: n, T1􏼈 􏼉, that is the test is
terminated at a predetermined time T1 if the rth failure
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obtained after T1, or as soon as the rth failure occurs, where
1≤ r≤ n. Tus,

Wemay obtain a random number of failuresN∗ given by

N
∗

�

Case1: r, if yr: n ≤ τ ≤T1,

Case2: r − N1, if τ <yr: n ≤T1,

Case3: N2, if yr: n >T1.

⎧⎪⎪⎨

⎪⎪⎩
(5)

3. The Likelihood Function and Posterior PDF

Te likelihood function under Type-I HCS according to the
previous assumptions can be written as:

For Case 1

L(α, θ |y) �
n!

(n − r)!
1 − F yr: n( 􏼁􏼈 􏼉

n− r
􏽙

r

i�1
f yi: n( 􏼁

�
n!(αθ)

r

(n − r)!
1 + αyr: n􏼈 􏼉

θ(r− n)
􏽙

r

i�1
1 + αyi: n( 􏼁

− (θ+1)
,

(6)

y1: n < · · · <yr: n < τ <T1, in this case the prefxed number r

out of n items is obtained at a normal use condition, so, this
case will be discarded.

And for Cases 2 and 3, the likelihood function under
Type-I HCS can be combined and written as:

L(α, θ, β|y) �
n!

n − r
∗

( 􏼁!
􏽙

N1

i�1
f yi: n( 􏼁

⎧⎨

⎩

⎫⎬

⎭ 􏽙

r∗

i�N1+1
f yi: n( 􏼁

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
1 − F T2( 􏼁􏼈 􏼉

n− r∗

�
n!

n − r
∗

( 􏼁!
(αθ)

r∗βr∗− N1 1 + αδ T2( 􏼁􏼈 􏼉
θ r∗− n( )

× 􏽙

N1

i�1
1 + αyi: n( 􏼁

− (θ+1)
􏽙

r∗

i�N1+1
1 + αδ yi: n( 􏼁􏼈 􏼉

− (θ+1)
,

(7)

where, 0<y1: n < · · · <yN1: n≤ τ <yN1+1: n< · · · <yr∗: n ≤T1,
and r∗ � N1 + N∗.

We consider the likelihood function in Cases 2 and 3
only, as it runs at accelerated use condition.

We suggest the prior PDF for the parameters α and θ to
be Γ(a, b) and Γ(c, d), respectively; because the gamma prior
is wealthy enough to cover the prior belief of the experi-
menter, so, many authors used it, see Pak and Mohammad
[27]; Okasha [28]; Abd-Elfattah et al. [23]; which expressed
as follows:

π1(α)∝ αa− 1 exp(− bα), a, b> 0, (8)

π2(θ)∝ θc− 1 exp(− dθ), c, d> 0. (9)

It should be pointed out that, the empirical Bayes
method can be used to estimate the hyper parameters if
they are unknown using previous samples, see, for ex-
ample, Maritz and Lwin [29]. As an alternative, the hi-
erarchical Bayes approach, which employs a suitable prior
for the hyper parameters, could be utilized, see Bernardo
and Smith [30].

Te prior PDF for the acceleration factor β is a non-
informative prior given by:

π3(β)∝ β− 1
, (β> 1). (10)

Te joint prior PDF of α, θ and β, can be written as
follows:

π(α, θ, β) � π1(α)π2(θ)π3(β)

∝
1
β
αa− 1θc− 1

e
− (bα+dθ)

, β> 1, a, b, c, d, α, θ> 0.

(11)

Te majority of published papers consider that the
choice of prior distribution is the researcher’s belief and the
assumption of independence between parameters is the best
in terms of ease of calculations and good results, and there is
no way to know independence or dependence between them.
Also, they are specifed as independent when you do not
want to assume that they are prior informative about each
other. Tat is, knowing the value of one would not change
your mind about any of the others, before seeing any data,
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this assumption was chosen when we determined the prior
distribution and this is more understandable. In addition,
choosing another prior distribution or dependent parame-
ters will increase the complexity and difculty of mathe-
matical equations. Furthermore, the independent gamma
priors are relatively simple and concise, which may not yield
much complex inferential and computational issues. Also, in
many practical situations, although the dependent prior
models seem more attractive, yet the dependent property

between parameters cannot be justifed from a statistical
perspective due to historical information and expert expe-
rience where such prior data/information may be very rare.
Terefore, independent priors are more popular in statistics
under the Bayesian procedure for the sake of simplicity, see
EL-Sagheer et al. [31]; and Nassar et al. [32].

Te joint posterior PDF of α, θ and β, given y, can be
written from (7) and (11), as

π∗(α, θ, β|y) � K
− 1αr∗+a− 1θr∗+c− 1βr∗ − N1− 1 1 + αδ T2( 􏼁􏼈 􏼉

θ r∗− n( )

× e
− (bα+dθ)

􏽙

N1

i�1
1 + αyi: n( 􏼁

− (θ+1)
􏽙

r∗

i�N1+1
1 + αδ yi: n( 􏼁􏼈 􏼉

− (θ+1)
,

(12)

where, a normalizing constant K is

K � 􏽚
∞

1
􏽚
∞

0
􏽚
∞

0
π∗(α, θ, β|y)dαdθdβ. (13)

Te conditional posterior PDF of α, θ and β, are, re-
spectively, given by

π∗(α|θ, β; y) � αr∗+a− 1 1 + αδ T2( 􏼁􏼈 􏼉
θ r∗ − n( )

e
− bα

× 􏽙

N1

i�1
1 + αyi: n( 􏼁

− (θ+1)
􏽙

r∗

i�N1+1
1 + αδ yi: n( 􏼁􏼈 􏼉

− (θ+1)
,

(14)

π∗(θ|α, β; y) � θr∗+c− 1 1 + αδ T2( 􏼁􏼈 􏼉
θ r∗ − n( )

e
− dθ

× 􏽙

N1

i�1
1 + αyi: n( 􏼁

− (θ+1)
􏽙

r∗

i�N1+1
1 + αδ yi: n( 􏼁􏼈 􏼉

− (θ+1)
,

(15)

π∗(β|α, θ; y) � βr∗− N1− 1 1 + αδ T2( 􏼁􏼈 􏼉
θ r∗− n( )

× 􏽙
r∗

i�N1+1
1 + αδ yi: n( 􏼁􏼈 􏼉

− (θ+1)
.

(16)

4. Bayesian One-Sample Prediction

Let the frst r∗th order statistics, Y1:n, . . . , Yr∗:n, 1≤ r∗ < n,
have been observed and we want to predict the future order
statistics, Ys:n, s � r∗ + 1, r∗ + 2, . . . , n. Te conditional PDF
of the sth future order statistics given informative order
statistics y � (y1:n, y2:n, . . . , yr∗:n), can be written as:

f
∗

ys: n|y( 􏼁 �
n − r
∗

( 􏼁!

(n − s)! s − r
∗

− 1( 􏼁!
F ys: n( 􏼁 − F T2( 􏼁􏼂 􏼃

s− r∗ − 1

× 1 − F ys: n( 􏼁􏼂 􏼃
n− s 1 − F T2( 􏼁􏼂 􏼃

− n− r∗( )
f ys: n( 􏼁,

(17)

substituting (3) and (4) in (17), we get

f
∗

ys: n|α, θ, β; y( 􏼁 � Iαθβ 1 + αδ T2( 􏼁􏼈 􏼉
θ n− r∗( ) 1 + αδ T2( 􏼁δ ys: n( 􏼁􏼈 􏼉

θ(s− n− 1)− 1

× 1 + αδ T2( 􏼁􏼈 􏼉
θ

− 1 + αδ ys: n( 􏼁􏼈 􏼉
θ

􏽮 􏽯
s− r∗− 1( )

,
(18)

where, I � (n − r∗)!/(n − s)!(s − r∗ − 1)!.
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By multiplying (12) by (18) and then integrating with
respect to (α, θ, β), the predictive PDF of Ys: n,

s � r∗ + 1, r∗ + 2, . . . , n given the informative order statistics
y � (y1:n, y2:n, . . . , yr∗:n), is given by

h ys: n|α, θ, β; y( 􏼁 � 􏽚
∞

1
􏽚
∞

0
􏽚
∞

0
π∗(α, θ, β|y)f

∗
ys: n|α, θ, β; y( 􏼁dαdθdβ, ys: n >yr∗: n. (19)

By substituting (12) and (18) in (19), we obtain

h ys: n|α, θ, β; y( 􏼁 � K
− 1
I􏽚
∞

1
􏽚
∞

0
􏽚
∞

0
αr∗+aθr∗+cβr∗− N1 1 + αδ T2( 􏼁􏼈 􏼉

θ n− r∗( )

× 1 + αδ T2( 􏼁􏼈 􏼉
θ

− 1 + αδ ys: n( 􏼁􏼈 􏼉
θ

􏽮 􏽯
s− r∗− 1( )

× 1 + αδ ys: n( 􏼁􏼈 􏼉
θ(s− n− 1)− 1

e
− (bα+dθ)

􏽙

N1

i�1
1 + αyi: n( 􏼁

− (θ+1)

× 􏽙
r∗

i�N1+1
1 + αδ yi: n( 􏼁􏼈 􏼉

− (θ+1)dαdθdβ.

(20)

A (1 − c)100%, two-sided Bayesian predictive interval
for Ys: n, is given by

P L<Ys: n <U􏼂 􏼃 � 1 − c, (21)

where L and U are lower and upper bounds of Bayesian
prediction for Ys, are obtained by solving the following two
equations numerically

P Ys > L|y( 􏼁 � 1 −
c

2
,

P Ys >U|y( 􏼁 �
c

2
.

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (22)

4.1. Bayesian Prediction: One-Sample Scheme via MCMC.
Te predictive PDF (20), is approximated by using the
MCMC method as follows:

h ys: n|α, θ, β; y( 􏼁 ≈
􏽐

N
j�1 f
∗

ys: n|αj, θj, βj; y􏼐 􏼑

􏽐
N
j�1 􏽒
∞
yr∗ : n

f
∗

ys: n|αj, θj, βj; y􏼐 􏼑dys: n

,

(23)

where, αj, θj, βj, j � 1, 2, 3, . . . , N, are generated from the
posterior PDF (12).

A (1 − c)100%, two-sided Bayesian predictive interval,
(L, U), of observations Ys: n can be calculated from solving
the following nonlinear equations for a given c

􏽐
N
j�1 􏽒
∞
L

f
∗

ys: n|αj, θj, βj; y􏼐 􏼑dys: n

􏽐
N
j�1 􏽒
∞
yr∗ : n

f
∗

ys: n|αj, θj, βj; y􏼐 􏼑dys: n

� 1 −
c

2
,

􏽐
N
j�1 􏽒
∞
U

f
∗

ys: n|αj, θj, βj; y􏼐 􏼑dys: n

􏽐
N
j�1 􏽒
∞
yr∗ : n

f
∗

ys: n|αj, θj, βj; y􏼐 􏼑dys: n

�
c

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (24)

5. Bayesian Two-Sample Prediction

Let X1:m ≤X2:m ≤ · · · ≤Xm:m be the order statistics from a
future random sample of size m and independent of the
informative sample Y1:n, Y2:n, . . . , Yr∗:n, 1≤ r∗ < n. Te fu-
ture sample and the informative sample are following the
Lomax SSPALT model under Type-I HCS. We wish to
predict the frst kth future order statistics of the future sample
Xm: m, 1≤ k<m.

Te marginal PDF of the kth order statistics from Xk: m is
expressed as:

h
∗

xk: m|α, θ, β( 􏼁 �
m!

(k − 1)!(m − k)!
F xk: m( 􏼁􏼂 􏼃

k− 1 1 − F xk: m( 􏼁􏼂 􏼃
m− k

f xk: m( 􏼁, xk: m > 0

� Ωαθβ 1 − 1 + αδ xk: m( 􏼁( 􏼁
− θ

􏽮 􏽯
k− 1

× 1 + αδ xk: m( 􏼁􏼈 􏼉
θ(k− m− 1)− 1

,

(25)

where, Ω � m!/(k − 1)!(m − k)!.
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Te predictive PDF of Xk: m, 1≤ k<m say
g(xk: m|α, θ, β) is given as:

g xk: m|α, θ, β( 􏼁 � 􏽚
∞

1
􏽚
∞

0
􏽚
∞

0
π∗(α, θ, β|y)h

∗

xk: m|α, θ, β( 􏼁dαdθdβ,

(26)

where, π∗(α, θ, β|y) is the joint posterior PDF of (α, θ, β) as
given in (12). By substituting from (12) and (25) in (26), we
get

g xk: m|θ, β( 􏼁 � K
− 1Ω􏽚

∞

1
􏽚
∞

0
􏽚
∞

0
αr∗+aθr∗+cβr∗ − N1 1 + αδ T2( 􏼁􏼈 􏼉

θ r∗ − n( )

× 1 − 1 + αδ xk: m( 􏼁( 􏼁
− θ

􏽮 􏽯
k− 1

1 + αδ xk: m( 􏼁􏼈 􏼉
θ(k− m− 1)− 1

× e
− (bα+dθ)

􏽙

N1

i�1
1 + αyi: n( 􏼁

− (θ+1)
􏽙

r∗

i�N1+1
1 + αδ yi: n( 􏼁􏼈 􏼉

− (θ+1)dαdθdβ.

(27)

A (1 − c)100%, two-sided Bayesian predictive interval
for Xk: m, is written as:

P L<Xk: m <U( 􏼁 � 1 − c, (28)

where, bounds (L, U) of Xk: m, are computed by numerical
solution of the two equations for a given c

P Xk: m >L( 􏼁 � 1 −
c

2
,

P Xk: m >U( 􏼁 �
c

2
.

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (29)

5.1. Bayesian Two-Sample Prediction under MCMC. Te
predictive PDF (26), is approximated by applying the
MCMC as follows:

g xk: m|α, θ, β( 􏼁 ≈
􏽐

N
j�1 h
∗

xk: m|αj, θj, βj􏼐 􏼑

􏽐
N
j�1 􏽒
∞
0 h
∗

xk: m|αj, θj, βj􏼐 􏼑dxk: m

. (30)

A (1 − c)100%, two-sided Bayesian predictive interval,
(L, U), of the future Xk: m observations are obtained by
solving the following nonlinear equations

Table 1: 95% Bayesian predictive intervals of future order statistics when θ � 2.5, α � 1.8, β � 3.5, a � 0.8, b � 0.6, c � 0.6, and d � 0.7
(one-sample scheme).

n r (τ, T1) Ys L U Length

20

15 (0.3, 0.8)
Y16 0.394992 0.669922 0.274931
Y17 0.394926 0.61621 0.221284
Y18 0.394931 0.650672 0.255741

(0.5, 1.6)
Y16 0.524027 0.681595 0.157568
Y17 0.524205 0.713818 0.189612
Y18 0.524462 0.757883 0.233422

40

30 (0.3, 0.8)
Y31 0.37462 0.545655 0.171035
Y32 0.374593 0.534925 0.160332
Y33 0.37457 0.527326 0.152756

(0.5, 1.6)
Y31 0.502775 0.634217 0.131442
Y32 0.502839 0.643297 0.140458
Y33 0.502912 0.653577 0.150665

60

45 (0.3, 0.8)
Y46 0.371894 0.437151 0.0652573
Y47 0.371905 0.438426 0.0665217
Y48 0.371916 0.439731 0.0678151

(0.5, 1.6)
Y46 0.43803 0.453787 0.0157567
Y47 0.438037 0.454864 0.0168265
Y48 0.438046 0.456098 0.018052

80

60 (0.3, 0.8)
Y61 0.385421 0.429208 0.0437874
Y62 0.385427 0.430039 0.0446117
Y63 0.385434 0.430895 0.0454615

(0.5, 1.6)
Y61 0.440823 0.479438 0.038615
Y62 0.440833 0.481241 0.0404073
Y63 0.440845 0.483209 0.0423641
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. (31)

6. Numerical Computations

Here, we present two examples to illustrate one-sample and
two-sample techniques, as well as a simulation study and
real-life data for the discussed methodology, is stated.

6.1. Numerical Examples

6.1.1. One-Sample Scheme

(1) For known values of of hyper parameters (a � 0.8; b �

0.6; c � 0.6; d � 0.7), generate (α � 1.8; θ � 2.5 and
β � 3.5) from equations (8), (9) and (10), respectively.

(2) By using generated values of α; θ and β, a random
sample of size 30 is simulated from (4). Te frst
informative ordered failures r � 20 are obtained and
listed as follows:
0.0113981, 0.0188695, 0.0638502, 0.06688, 0.0716792,
0.217725, 0.22276, 0.224412, 0.224614, 0.227522,
0.228146, 0.233232, 0.237106, 0.240437, 0.246286,
0.25205, 0.259451, 0.260386, 0.270926, 0.278369.

(3) Using these informative data in (25) with 0.95 CI, the
lower and upper bounds of the next predicted failure
Y21 are (0.27903, 0.400507) and for the last predicted
failure Y30 are (0.279084, 0.402948).

6.1.2. Two-Sample Scheme

(1) For given values of of hyper parameters (a � 1.4; b �

0.8; c � 1.2; d � 0.7), generate (α � 1.8; θ � 1.4 and
β � 2.5) from equations (8), (9) and (10),
respectively.

(2) By using generated values of α; θ and β, a random
sample of size 20 is simulated from (3). Te frst

Table 2: 95% Bayesian predictive intervals of future order statistics when θ � 1.4, α � 1.8, and β � 2.5 a � 1.4, b � 0.8, c � 1.2, and d � 0.7
(two-sample scheme).

n r (τ, T1) Xk L U Length

20

15 (0.3, 0.8)

X1 0.00129258 0.191083 0.189791
X2 0.00136062 0.201295 0.199935
X3 0.00143622 0.21266 0.211224
X4 0.00152071 0.225385 0.223864

(0.5, 1.6)

X1 0.001189 0.178083 0.176894
X2 0.00125159 0.187731 0.186479
X3 0.00132113 0.198484 0.197163
X4 0.00139887 0.210543 0.209145

40

30 (0.3, 0.8)

X1 0.000878721 0.132237 0.131358
X2 0.000924981 0.139437 0.138512
X3 0.000976381 0.147465 0.146489
X4 0.00103383 0.156475 0.155441

(0.5, 1.6)

X1 0.000739947 0.109018 0.108278
X2 0.000778894 0.114824 0.114045
X3 0.00082217 0.121282 0.12046
X4 0.000870537 0.128511 0.12764

60

45 (0.3, 0.8)

X1 0.000798553 0.118093 0.117294
X2 0.000840586 0.124406 0.123566
X3 0.000887291 0.131433 0.130546
X4 0.000939491 0.139301 0.138361

(0.5, 1.6)

X1 0.000621153 0.091571 0.0909499
X2 0.000653848 0.0964506 0.0957967
X3 0.000690176 0.101879 0.101189
X4 0.000730778 0.107956 0.107225

80

60 (0.3, 0.8)

X1 0.000753343 0.111106 0.110352
X2 0.000792996 0.117029 0.116236
X3 0.000837055 0.123619 0.122782
X4 0.000886298 0.130995 0.130109

(0.5, 1.6)

X1 0.000577907 0.0854699 0.084892
X2 0.000608326 0.0900398 0.0894315
X3 0.000642126 0.0951259 0.0944837
X4 0.000679902 0.100821 0.100141
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informative ordered failures r � 15 are obtained and
listed as follows:
0.00167013, 0.157792, 0.193577, 0.19366, 0.207637,
0.219493, 0.226598, 0.242315, 0.271873, 0.294316,
0.334488, 0.603327, 0.651955, 0.70614, 0.743701.

(3) Using these informative data in (31) with 0.95 CI, the
lower and upper bounds of the frst four observations
of a non-informative sample X1, X2, X3, X4 are
(0.00129258, 0.191083), (0.00136062, 0.201295),
(0.00143622, 0.21266) and (0.00152071, 0.225385),
respectively.

6.2. Simulation Study. In this part of the paper, we explain
the MCMC algorithm that used for computing Bayesian
bounds for future samples in the case of one-sample and
two-sample approaches. We determine values of n, r and
choose τ, T1. Using values of prior parameters (a, b, c, d) we
generate initial values of the parameters α, θ and β from their
prior PDF. Based on the generated α, θ and β, we generate a
Lomax Type-I HC sample using SSPALT model with dif-
ferent sizes n � 20; 40; 60; 80 and censoring values
r � 15; 30; 45; 60 based on the inverse function technique
given by

X �
1
β

1
α

(1 − U)
− 1/θ

− 1􏽮 􏽯 − τ􏼚 􏼛 + τ, (32)

where, U denotes a number obtained from U(0, 1) ran-
domly. From Metropolis algorithm, α(j) is generated from
(14), θ(j) from (15) and β(j) from (16) using normal dis-
tribution as a proposal distribution. Because the predictive
PDF (21) cannot be produced in a closed form for one-

sample prediction, it is approximated using the MCMC
approach as described in (22). A 95% Bayesian predictive
intervals for Ys::n, s�r∗ + 1, r∗ + 2, . . ., n are obtained by
solving the two nonlinear Eqs.(23). For two-sample pre-
diction, the predictive PDF (26), which cannot be produced
in a closed form, is estimated using the MCMC approach as
described in (28). A 95% Bayesian predictive intervals for
Xk:m, k � 1, 2, . . . m are obtained by solving the two non-
linear equation (29).

All results are derived by Mathematica 8 programming
language software. Te results of one-sample scheme with
diferent values of n, r, τ and T1 are listed in Table 1. Te
results of two-sample case with the same values of n, r, τ and
T1 are obtained and displayed in Table 2. Te numerical
results are computed by MATHEMATICA 8 codes, such as:
(FindRoot, NMaximize, NIntegrate and RandomReal).

6.3. IllustrativeExample. In this section, we present a real life
example, the dataset was initially considered by Chhikara
and Folks [33]. It represents 46 repair times (in hours) for an
airborne communication transceiver. Te Lomax distribu-
tion has been ftted on this data set by Singh et al. [34]; and
they stated that the Lomax distribution can be used for
analyzing this data set. Te data set is ordered and listed as
follows:

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0,
1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0,
3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0,
10.3, 22.0, 24.5.

By applying SSPALTon this data set, by considering this
data represents lifetimes of units put on life testing, we can
conclude the following:

(1) At n � 46, r � 32, τ � 1 and T1 � 3.8, we have 13
items are failed at τ � 1 throughout normal usage.
After changing mode to acceleration case, the test is
terminated at
T∗ � min X32: 46, T1􏼈 􏼉 � min 3.3, 3.8{ } � 3.3, that is,
32 items are failed at T∗ � 3.3.

(2) At n � 46, r � 35, τ � 1.5 and T1 � 4.6, there have
been 20 items are failed at τ � 1.5 throughout normal
usage. After switching to acceleration case, the test is
terminated at
T∗ � min X35: 46, T1􏼈 􏼉 � min 4.5, 4.6{ } � 4.5, that is,
35 items are failed at T∗ � 4.5.

Based on SSPALT model with Type-I HCS, 95% one-
sample Bayesian predictive intervals for order statistic Ys: n,
s � r + 1, r + 2, . . . , n are reported in Table 3 and from the
same sample 95% two-sample Bayesian predictive intervals
for order statisticXk: m,m � 1; 2; 3; 4, are reported in Table 4.

7. Conclusion

Based on SSPALTunder Type-I HCS of order statistics data
from Lomax distribution, Bayesian prediction bounds for
future observations are obtained by using one-sample and
two-sample prediction techniques. Te MCMC method is
used to get Bayesian predictive intervals. We can state that

Table 3: 95% Bayesian predictive intervals of future order statistics
when β � 3, a � 0.7, b � 0.9, c � 0.9, and d � 0.6 (one-sample
scheme).

n r (τ, T1) Ys L U Length

46

32 (1, 3.8)
Y33 3.33496 8.77466 5.4397
Y34 4.57799 13.8905 9.31248
Y35 4.84621 19.4557 14.6095

35 (1.5, 4.6)
Y36 4.51441 6.85874 2.34433
Y37 4.80035 9.17545 4.3751
Y38 5.08174 12.4674 7.38569

Table 4: 95% Bayesian predictive intervals of future order statistics
when β � 3, a � 0.7, b � 0.9, c � 0.9, and d � 0.6 (two-sample
scheme).

n r (τ, T1) Xk L U Length

46

32 (1, 3.8)

X1 0.00478418 0.717001 0.712217
X2 0.00494396 0.738654 0.73371
X3 0.00510012 0.761739 0.756639
X4 0.00521913 0.786164 0.780945

35 (1.5, 4.6)

X1 0.00336333 0.496913 0.493549
X2 0.0034289 0.511913 0.508484
X3 0.00350722 0.527847 0.524339
X4 0.00366162 0.544767 0.541106
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using SSPALTwith Type-I HCS, which has the advantage of
having pre-determined experiment time, maximizes this
advantage and speed up obtaining more information.
Furthermore, one can see that SSPALT improves the dis-
advantage of this scheme, which is represented in the lack of
failures in the specifed time for the experiment. Finally,
some numerical examples and simulation study are given to
illustrate the results, and we observe the following remarks:

From Tables 1 and 2 (one-sample and two-sample cases),
we noted that the Bayesian predictive intervals were afected
by changing the values of n, r, τ and T1 as follows:

(1) When increasing τ and T1 with the same n, r, the
length of Bayesian predictive intervals decreases.

(2) Te length of Bayesian predictive intervals, for fxed
values of τ and T1, tends to be shorter when n and r

increase, except for a few cases. Tis may be due to
fuctuations in data.
From Tables 3 and 4 (one-sample and two-sample
cases), we observed that:

(3) When values of τ and T1 get larger the length of
Bayesian predictive intervals becomes smaller.

Notation

T1: A specifc maximum time of the experiment
T2: A random termination time of experiment
Y: A total lifetime of an item in a step-stress model
y
r:n:

A time in which rth item fail

τ: A specifed time at which the stress is changed from s1
to s2

N1: A number of units are failed before time τ at stress level
s1

N2: Units number that fail before time T1 at stress level s2
N∗: A number of units that fail before time T2 at the stress

level where T2 is.
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