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In this paper, a kind of node_face frictional contact FM-BEMpenalty functionmethod is presented for 3D elastic frictional contact
nonlinear problems. According to the principle of minimum potential energy, nonpenetrating constraints are introduced into the
elastic frictional contact system as a penalty term. By using the least square method and penalty function method, an optimization
mathematical model and a mathematical programming model with a penalty factor are established for the node_face frictional
contact nonlinear system. For the two models, a penalty optimization IGMRES (m) algorithm is proposed, and the influences of
different penalty factors on the solution of the whole system are analyzed. Finally, a numerical simulation is carried out for two
elastic frictional contact objects, and some important results including displacements, pressures, friction forces, and friction slips
in the contact area are presented. *eoretical analysis and numerical experiment show that the newly presented FM-BEM penalty
function method not only is efficient and practical but also has much superiority. It is easy to implement, and it is fast convergent
with good stability.

1. Introduction

Elastic frictional contact is a multiple nonlinear problem
[1, 2], and it is necessary to accurately track the motion of the
object before contact and the interaction between objects
after contact, which includes the correct simulation of
friction and deformation behavior between contact surfaces
and the analysis of the possible energy conversion problem.
For the contact problems, only very few of them can be
solved by analytical methods, and most of them need to be
simulated by numerical methods such as the Finite Element
Method (FEM) [3, 4] and the Boundary Element Method
(BEM) [5, 6]. *e FEM is relatively mature and widely used
[7–10]. However, the BEM has the advantages of dimension
reduction, singularity adaptation, high precision, and so on
[11–14].

*e penalty function method [15, 16] is a common
method to solve optimization problems, and it is also one of
the effective methods to solve an elastic contact problem
[17–19]. Without increasing the system’s Degree of Freedom
(DOF), this method can be used to directly apply constraints

to the two contact objects. Many scholars have used it to
solve the frictional contact problems in different fields
[20–23]. In engineering, gradient-based optimization algo-
rithms, for example, the existing FEM such as the Lagrange
multiplier method and penalty function method, are often
used to solve the contact problems. For the case of non-
frictional contact, sufficiently stable results can be obtained.
For the case of frictional contact, severe numerical oscilla-
tion may occur with the change of loads or meshes, and it
will be very difficult to obtain a stable result unless special
treatments are made. In addition, the procedures of existing
numerical algorithms are usually complicated and much
memory space and computing time are required, so repeated
checking and revision are needed to obtain suitable results.
At present, various kinds of commercial computing software
often fail to give accurate and reliable results for the analysis
of frictional contact. *erefore, it is very urgent to develop
some stable and efficient numerical algorithms [24–27].

In recent years, the Fast Multipole Boundary Element
Method (FM-BEM) [28, 29] has attracted much attention as
a kind of new and efficient numerical method [30–34]. Our
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research group studied the mathematical and mechanical
theories of the FM-BEM from the perspective of funda-
mental solution. By using the superiorities of FM-BEM such
as high precision, high computational efficiency and being
suitable for large-scale computing, we have successfully
applied it to the numerical analysis of elastic frictional
contact problems and have completed some simulations
[35–38], for example, the interference fit between taper
sleeve and roll neck of an oil film bearing and a surface force
field of screw pair in a rolling mill.

For the study of elastic frictional contact problems, the
penalty function method in the existing literature was used
to solve some optimization problems with a node_node
contact mode. *e BEM and FM-BEM focused on the
modeling and numerical analysis for the nonpenetrating
contact mode and often failed to give numerical results for
the penetrating contact mode. According to the above-
mentioned analysis, we will present a kind of FM-BEM
penalty function method to solve the elastic node_face
frictional contact problems. As the same time, we will es-
tablish a mathematical programming model with a penalty
factor and propose a penalty optimization algorithm. In this
method, some important factors will be synthetically con-
sidered, which include the deformation and stress condition
in a contact process, the nonlinearity of boundary condition
for the contact surface, the size and mutual position of the
contact area, the change of contact state, and so on. *e
research work will involve some mathematical, mechanical,
and physical problems that are closely related to the fric-
tional contact. *e purpose is to provide new ideas and
numerical methods for the solution of elastic frictional
contact problems.

*is paper is organized as follows. In Section 1, basic
thought of the Penalty Function Method is introduced. In
Section 2, fundamental formulas and frictional contact
condition for the 3D elastic frictional contact FM-BEM are
presented. In Section 3, interpolation constraints are ana-
lyzed for the node_face frictional contact nonlinear system.
*en, an optimization mathematical model and a mathe-
matical programming model with a penalty factor are
established by using the least square method and penalty
function method. In Section 4, a penalty optimization
IGMRES (m) algorithm is proposed. In Section 5, a

simulation of two elastic objects’ frictional contact process is
provided and numerical analysis is completed. At last, the
concluding remarks are presented.

2. Basic Idea of the Penalty Function Method

For the optimization problem

min f(x)

s.t. hi(x) � 0, i � 1, 2, . . . , l,
􏼨 (1)

we introduce a parameter λ and define an augmented ob-
jective function as follows:

F(x, λ) � f(x) + λ􏽘
l

i�1
hi(x)􏼂 􏼃

2
, (2)

where F(x, λ) is called a penalty function and the parameter
λ is called a penalty factor that is a very large positive
number. When hi(x) � 0, (i � 1, 2, . . . l), the penalty
function F(x, λ) is just equal to the objective function f(x)

in equation (1); otherwise, its value will be very large and
equation (1) will be transformed into the following un-
constrained problem:

minF(x, λ) � min f(x) + λ􏽘

l

i�1
hi(x)􏼂 􏼃

2⎧⎨

⎩

⎫⎬

⎭. (3)

3. 3D Elastic Frictional Contact FM-BEM

3.1. Fundamental Formulas. For 3D elastic frictional contact
problems, the boundary integral equation without consid-
eration of body force is expressed as follows [6]:

cijuj(x) + 􏽚
Γ
Tij(x, y)uj(y)dΓ � 􏽚

Γ
Uij(x, y)tj(y)dΓ,

(4)

where x indicates a source node, y indicates an arbitrary
node in boundary Γ, cij indicates a boundary shape coef-
ficient, and Uij(x, y) and Tij(x, y) indicate the kernel
functions of displacement and surface force fundamental
solutions, respectively. By the FM-BEM, equation (4) can be
discretized as follows [29]:

cijuj x
q

( 􏼁 + Rijm x
q

( 􏼁 􏽘
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j ϕ
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(5)
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where xq indicates a source node, yc indicates a multiple
central node, s indicates an element integral node, ωs in-
dicates the integral weight function of ξs, and J [y(ξs

)]

indicates a Jacobian determinant.
With the given boundary conditions, equation (5) can be

transformed into the following system of equation:

Ax � b, (6)

where x indicates an unknown column vector for dis-
placements and surface force.

3.2. Frictional Contact Condition. When two objects contact
each other, in order to ensure the balance and stability, the
contact system must be satisfied with nonpenetrating con-
straints, as is shown in Figure 1.

Namely, the following expression is satisfied:

ΔuA · n≤ τ, (7)

where Δ uA indicates the displacement vector increment of
the node A, n indicates the unit normal vector, and τ in-
dicates the tolerance of contact distance. Otherwise, once
penetration occurs in the contact area, the system solution
will not be carried out normally.

4. Modeling and Optimization for the
Node_Face Frictional Contact System Using
the FM-BEM Penalty Function Method

4.1. Analysis of Node_Face Frictional Contact. We consider
two objects A and B in contact with each other. We suppose
that object A (with fixed displacement constraints) is passive
and object B is active. *e numbers of discrete nodes are
represented as NA and NB, respectively. Also, the numbers
of contact nodes are represented as Nc

A and Nc
B, respectively.

For the traditional BEM, the DOF of the final system of
equations is 3 (NA + NB) and the displacements and surface
force for each contact node are unknown. As a result, for
each contact node, three supplement equations must be
established.

For each contact node of object B, it contacts with some
element of object A, and its displacement can be obtained by
the interpolation of its contact element nodes’ displace-
ments. *en, displacement constraints are established.
According to Coulomb’s Law of Friction, if relative slip
occurs between the contact node and its contact surface,
tangential displacement constraints can be replaced by
tangential friction ones. *e node_face frictional contact
constraints are shown in the following expressions:

Stick state:

U
B
k � 􏽘

M

l�1
φl ξ1, ξ2( 􏼁U

A
kl, (k � 1, 2, 3). (8)

Slip state:

T
B
1 � −Tt cos θ,

T
B
2 � −Tt sin θ,

U
B
3 � 􏽘

M

l�1
φl ξ1, ξ2( 􏼁U

A
3l.

(9)

For each contact node of object A, it contacts with some
element of object B, and its surface force can be obtained by
the interpolation of its contact element nodes’ force. *en,
surface force constraints are established. Similarly, if relative
slip occurs between the contact node and its contact surface,
tangential surface force constraints can be replaced by
tangential friction ones. *e node_face frictional contact
constraints are shown in the following expressions:

Stick state:

T
A
k � − 􏽘

M

l�1
φl ξ1, ξ2( 􏼁T

B
kl, (k � 1, 2, 3). (10)

Slip state:

T
A
1 � Tt cos θ,

T
A
2 � Tt sin θ,

T
A
3 � − 􏽘

M

l�1
φl ξ1, ξ2( 􏼁T

B
3l.

(11)

In equations (8)–(11), UB
k indicates k-direction dis-

placement of each node in object B, UA
k l indicates k-direction

displacement of node l in object A, TA
k indicates k-direction

surface force of each node in object A, M indicates the node
number of a contact element, φl indicates the interpolation
function, Tt indicates the friction at t moment, (ξ1, ξ2)
indicates the local coordinate, and θ indicates a slip angle.
Here, ξ1, ξ2, θ can be predetermined by the least square
method. According to equations (8)–(11), three supplement
equations can be established for each contact node.*en, the
total DOF of the contact system becomes
3(NA + NB + Nc

A + Nc
B). For convenience, it can be written

as NF.

4.2. Optimization Mathematical Model for Node_Face Fric-
tional Contact. Node_face frictional contact constraints
show high nonlinearity, which results in a very difficult and
time-consuming solution procedure. To accelerate the it-
erative convergence, nonlinear contact constraints will be
linearized. At first, the least square method is applied to
equations (8)–(11) to obtain ξ1, ξ2, θ while the contact be-
havior is precisely simulated. *en, mathematical pro-
gramming is conducted on the frictional contact system and
an optimization mathematical model is established. *e
detailed process is as follows:

For the object B, the system of equations formed by the
traditional BEM can be expressed as A′x � b′, where
A′ � (aij

′), b′ � (bi
′). Let
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f
B
i xj􏼐 􏼑 � bi

′ − 􏽘
NF

j�1
aij
′xj, i � 1, 2, . . . , 3NB; j � 1, 2, . . . ,NF( 􏼁. (12)

After equations (8) and (9) have been linearized,
according to equation (12), they can be rewritten as

f
B
ik xj􏼐 􏼑 � U

B
ik − 􏽘

M

l�1
φl ξ1, ξ2( 􏼁U

A
ikl, i � 1, 2, . . . , 3N

c
B; j � 1, 2, . . . ,NF; k � 1, 2, 3( 􏼁, (13)

f
B
i1 xj􏼐 􏼑 � T

B
i1 + Tit cos θ, f

B
i2 xj􏼐 􏼑 � T

B
i2 + Tit sin θ, f

B
i3 xj􏼐 􏼑 � U

B
i3 − 􏽘

M

l�1
φl ξ1, ξ2( 􏼁U

A
i3l, i � 1, 2, . . . , 3N

c
B; j � 1, 2, . . . ,NF( 􏼁.

(14)

For the object A, the system of equations formed by the
traditional BEM can be expressed as A〞x � b〞, where
A〞 � (a〞ij ), b〞 � (b〞i ). Let

f
A
i xj􏼐 􏼑 � b

〞
i − 􏽘

NF

j�1
a
〞
ij xj, i � 1, 2, . . . , 3NA; j � 1, 2, . . . ,NF( 􏼁. (15)

After equations (10) and (11) have been linearized,
according to equation (15), they can be rewritten as

f
A
ik xj􏼐 􏼑 � T

A
ik + 􏽘

M

l�1
φl ξ1, ξ2( 􏼁T

B
ikl, i � 1, 2, . . . , 3N

c
A; j � 1, 2, . . . , NF; k � 1, 2, 3( 􏼁, (16)

f
A
i1 xj􏼐 􏼑 � T

A
i1 − Tit cos θ,

f
A
i2 xj􏼐 􏼑 � T

A
i2 − Tit sin θ,

f
A
i3 xj􏼐 􏼑 � T

A
i3 + 􏽘

M

l�1
φl ξ1, ξ2( 􏼁T

B
i3l, i � 1, 2, . . . , 3N

c
A; j � 1, 2, . . . , NF( 􏼁.

(17)

According to equations (12)–(17), let
x � (xj) (j � 1, 2, . . . ,NF), and we define an objective

function for the nonlinear analysis of node_face frictional
contact as follows:

Object 2

Object 1

n
A

ΔuA

τ τ

Figure 1: A sketch of nonpenetrating constraints.
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‖f(x)‖ �

������������������

􏽘
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i�1
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2
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􏽶
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f
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2
+ 􏽘
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A

i�1
􏽘

3

k�1
f

A
ik(x)􏽨 􏽩

2
. (18)

According to equations (12)–(18), an optimization
mathematical model for the node_face frictional contact
system can be established as follows:

min ‖f(x)‖,

f
B
i (x) � 0, i � 1, 2, . . . , 3NB( 􏼁,

f
B
i (x) � 0, i � 1, 2, . . . , 3N

c
B( 􏼁,

f
A
i (x) � 0, i � 1, 2, . . . , 3NA( 􏼁,

f
A
i (x) � 0, i � 1, 2, . . . , 3N

c
A( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

4.3. Penalty Factor Programming Model for Node_Face
Frictional Contact. From the abovementioned analysis,
when the contact system is stable, the involved objects satisfy
nonpenetrating constraints shown in equation (7); other-
wise, the penalty function method can be used to apply

contact constraints. We suppose that there is a “spring”
between a possible contact node and its contact surface and
its compressive stiffness is very large while the tensile
stiffness is zero. *e stiffness is taken as a penalty factor and
written as α. According to the principle of minimum po-
tential energy, when two objects contact each other, if
equation (7) is satisfied, the work performed by the spring
will be zero, namely, the penalty factor α � 0, and the contact
system will be stable with minimum potential energy
(written as E0). Otherwise, the spring will prevent the objects
from contacting and do work, so the potential energy
(written as Ec) will sharply increase. For the node_face
frictional contact system, let

f(x) � b − Ax, x � xj􏼐 􏼑, (j � 1, 2, . . . , NF). (20)

We construct an energy objective function as follows:

E � E0 + Ec, (21)

where

E0 � ‖f(x)‖
2
2 � 􏽘

3NB

i�1
f

B
i (x)􏽨 􏽩

2
+ 􏽘

3Nc
B

i�1
f

B
i (x)􏽨 􏽩

2
+ 􏽘

3NA

i�1
f

A
i (x)􏽨 􏽩

2
+ 􏽘

3Nc
A

i�1
f

A
i (x)􏽨 􏽩

2
,

Ec �
1
2
α􏽘

NF

i�1
δi di − π( 􏼁

2
, δi �

1, di − τ > 0,

0, di − τ ≤ 0,

⎧⎪⎨

⎪⎩

(22)

where di indicates the distance between a contact node and
its contact surface.

For the node_face frictional contact system, we suppose
the contact surface is smooth and the deformation is very
small. According to equations (3) and (19)–(21), a penalty
factor programming model can be established as follows:

minE � min E0 + Ec( 􏼁. (23)

So, the solution of node_face frictional contact is
transformed into an unconstrained optimization problem.

4.4. Selection of Penalty Factor. From equations (3) and (23),
we know the optimization of penalty factor α is very im-
portant. For each factor α, a corresponding objective
function value can be obtained, and it will increase with the
increase of α. When α � 0, equation (23) has the same
solution as equation (6). While α⟶∞, the solution of
equation (23) will converge to the analytical solution, and

abnormalities may occur for a too large factor α. So, the
penalty factor α should not be taken as a too large value.
From energetics point of view, the penalty factor α is
equivalent to spring stiffness. When an object is subjected to
fixed loads, the factor α will be inversely proportional to the
deformation increments within the elastic range. For ex-
ample, if two elastic objects contact each other, the rela-
tionship of the factor α and the objective function value can
be as shown in Figure 2.

According to Figure 2, when the penalty factor α varies
within the range between 10 and 108, the objective function
value will be close to zero, namely, the nonpenetrating
constraints expressed in equation (7) can be satisfied and the
system will be stable. So, the penalty factor α can be taken as
108. While penalty factor α is larger than 108, the objective
function value will increase sharply, namely, equation (7)
cannot be satisfied, and the “spring” will carry out pun-
ishments on the contact. *en, the system cannot be solved
properly.
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5. Penalty Optimization IGMRES
(m) Algorithm

To solve equation (23), a penalty optimization IGMRES (m)
algorithm is presented. *e detailed process is as follows:

(1) Initialization: for a fixed parameter m, we set an
appropriate precision ε and a parameter q

(2≤ q≤m). We take an initial value x(0) and
compute

r
(0)

� b − Ax
(0)

, β � r
(0)

�����

�����, v1 �
r

(0)

β
, V1 � v1􏼈 􏼉, E

(0)
� E( x

(0)
)

�����

�����. (24)

(2) Iteration: for j � 1, 2, . . . , m, we have (1) Incomplete orthogonalization:

hij � Avj, vi􏼐 􏼑 i � j0, . . . , j( 􏼁, 􏽢vj+1 � Avj − 􏽘

j

i�j0

hijvi, j0 � max 1, j − q − 1􏼈 􏼉. (25)

(2) Standardization:

hj+1,j � 􏽢vj+1

�����

�����, vj+1 �
􏽢vj+1

hj+1,j

. (26)

(3) Updation of Vj+1 and Hj:

Vj+1 � Vj, vj+1􏼐 􏼑,

Hj �
Hj−1 hij

0 hj+1,j

⎛⎝ ⎞⎠

(j+1)×j

,
(27)

where Hj indicates an upper Hessenberg matrix.
*en, we have

AVm � Vm+1Hm. (28)

When j � 1, the first column will be omitted.
(3) We solve the following least square problem to

obtain ym:

r
(m)

�����

����� � min
ym∈Cm

βe1 − Hmym

����
����. (29)

(4) We construct the approximate solution:

x
(m)

� x
(0)

+ Vmym. (30)

(5) *e modules of residual vectors and the value of
energy objective function are computed.

r
(m)

�����

����� � f − Ax
(m)

�����

�����, E
(m)

� E x
(m)

􏼐 􏼑
�����

�����. (31)

(6) Restart judgment: if ‖r(m)‖≤ ε and E(m) <E(0), then
let x � x(m) and stop. Otherwise, reset x(0) � x(m)

and return to the initialization step.

6. Numerical Example

We consider two elastic objects A and B in contact with each
other. A is a support with a width W� 50mm, a height
H� 30mm, and a length L1� 50mm. B is a half cylinder
with a radius R� 15mm and a length L2� 60mm. *e two
objects are isotropic with Young’s modulus E� 210Gpa,
Poisson’s ratio ]� 0.3, and a frictional coefficient f� 0.1. *e
object B is subjected to a uniform load. *e total load is
divided into six steps, and the contact distance tolerance is
τ � 0.0001mm. *e computation model and discrete mesh
are shown in Figure 3, and the discrete data are shown in
Table 1.

When the object B is subjected to a uniform load P that
is not more than 1 GPa, the penalty factor is taken as a
value that ranges from 10 to 108, and the obtained results
agree well with the theoretical analysis. *e solution
process is very stable. When P � 100MPa, the distribu-
tions of contact displacement, pressure and friction force,
and the friction slip field are presented, as is shown in
Figures 4–7.*ese results agree well with the experimental
analysis. In addition, the contact displacements and
pressures under different loads are compared, as is shown
in Figures 8, and 9, which shows that the edge effect is
becoming more and more obvious with the load increase.

When P � 1GPa and the penalty factor α is taken as 109,
the solution procedure is abnormal and the friction directions
of some contact nodes change, as is shown in Figure 10(a).
When P � 10GPa and the penalty factor α is taken as 1010, the
solution procedure is more abnormal, as is shown in
Figure 10(b). When P≥ 100GPa and the penalty factor α is
taken as a value ranging from 1.0 × 1011 to 2.1 × 1011, the
solution will be impossible. *e reason why the solution is
impossible or abnormal is that penetration occurs when two
objects contact each other, namely, equation (7) is not satisfied.
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Figure 3: Computation model and discrete mesh.

Table 1: Discrete data.

Objects Totality Contact area DOFNode number Element number Node number Element number
A 1650 1648 567 520 6651
B 1198 1196 459 468 4971
Total 2848 2844 1026 988 11622
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Figure 4: Displacement distributions in the contact area.
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Figure 5: Pressure distributions in the contact area.
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Figure 6: Friction distributions in the contact area.
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Figure 9: Comparison of contact pressures under different loads.
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Figure 10: Friction slip field in the contact area. (a) Friction slip (P �1GPa). (b) Friction slip (P �10GPa).
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In addition, numerical experiments show that when the loads
increase gradually, if the penalty factor α is taken as an in-
appropriate value, the computation time will sharply increase,
as is shown in Figure 11.

7. Conclusions

Based on the FM-BEM, a node_face frictional contact mode
was analyzed and nonpenetrating constraints were presented
for 3D elastic frictional contact problems. For the case of
frictional contact without penetration, nonlinear contact
constraints were linearized by use of the least square method
and an optimization mathematical model with node_face
frictional contact mode was established. For the case of fric-
tional contact with penetration, according to the principle of
minimum potential energy, a penalty function method was
used to apply the contact constraints and an energy objective
function was constructed; then, a node_face frictional contact
analysis was transformed into an unconstrained optimization
problem. For the elastic frictional contact FM-BEM problem,
nonpenetrating constraints were introduced into the system as
a penalty term. Without increasing the system variables, a
penalty factor mathematical programming model was estab-
lished by the penalty functionmethod.*e influence of penalty
factor on the solution process was analyzed, and a penalty
optimization IGMRES (m) algorithm was presented. *e
frictional contact of two elastic objects under different loads
was numerically simulated, and the results of displacements,
pressures, friction forces and friction slips in the contact area
were obtained. *eoretical analysis and numerical experiment
showed that the new method had much superiority in effi-
ciency, applicability, easy numerical implementation, fast
convergence, stability, etc. *e proposed FM-BEM penalty
functional method could provide new ideas and methods for
the solution of frictional contact problems and related math-
ematical, mechanical, and physical problems.
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