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The regular dodecahedron is the only simple polytope among the platonic solids which is not rational. Therefore, it corresponds
neither to a symplectic toric manifold nor to a symplectic toric orbifold. In this paper, we associate to the regular dodecahedron a
highly singular space called symplectic toric quasifold.

1. Introduction

According to a well-known theorem by Delzant [1], there
exists a one-to-one correspondence between symplectic toric
manifolds and simple rational convex polytopes satisfying a
special integrality condition. One of the important features
of Delzant’s theorem is that it provides an explicit procedure
for computing the symplectic manifold that corresponds to
each given polytope. As it turns out, there are many import-
ant examples of simple convex polytopes that do not fall into
this class, either because they do not satisfyDelzant’s integral-
ity condition, or, even worse, because they are not rational.
The regular dodecahedron is one of the most remarkable
examples of a simple polytope that is not rational. In this
paper, we apply a generalization of Delzant’s construction [2]
to simple nonrational convex polytopes and we associate to
the regular dodecahedron a symplectic toric quasifold. Quasi-
folds are a natural generalization of manifolds and orbifolds
introduced by the author in [2]; they are not necessarily
Hausdorff spaces and they are locally modeled by quotients
of manifolds by the action of discrete groups.

This paper is structured as follows. In Section 2, we
recall the generalized Delzant construction. In Section 3, we
apply this construction to the regular dodecahedron and we
describe the corresponding symplectic toric quasifold.

2. The Generalized Delzant Construction

We begin by recalling a few useful definitions.

Definition 1 (simple polytope). A dimension 𝑛 convex poly-
tope Δ ⊂ (R𝑛)

∗ is said to be simple if each of its vertices is
contained in exactly 𝑛 facets.

Definition 2 (quasilattice). A quasilattice in R𝑛 is the Z-span
of a set of R-spanning vectors, 𝑌

1
, . . . , 𝑌

𝑑
, of R𝑛.

Notice that SpanZ{𝑌1, . . . , 𝑌𝑑} is an ordinary lattice if and
only if it admits a set of generators which is a basis of R𝑛.

Consider now a dimension 𝑛 convex polytope Δ ⊂ (R𝑛)
∗

having 𝑑 facets. Then, there exist elements 𝑋
1
, . . . , 𝑋

𝑑
in R𝑛

and 𝜆
1
, . . . , 𝜆

𝑑
in R such that

Δ =

𝑑

⋂

𝑗=1

{𝜇 ∈ (R
𝑛

)
∗

| ⟨𝜇,𝑋
𝑗
⟩ ≥ 𝜆
𝑗
} . (1)

Definition 3 (quasirational polytope). Let 𝑄 be a quasilattice
inR𝑛. A convex polytopeΔ ⊂ (R𝑛)

∗ is said to be quasirational
with respect to𝑄 if the vectors𝑋

1
, . . . , 𝑋

𝑑
in (1) can be chosen

in 𝑄.

We remark that each polytope in (R𝑛)
∗ is quasirational

with respect to some quasilattice 𝑄: just take the quasilattice
that is generated by the elements𝑋

1
, . . . , 𝑋

𝑑
in (1). Notice that

if 𝑋
1
, . . . , 𝑋

𝑑
can be chosen inside an ordinary lattice, then

the polytope is rational in the usual sense.

Definition 4 (quasitorus). Let 𝑄 ⊂ R𝑛 be a quasilattice.
We call quasitorus of dimension 𝑛 the group and quasifold
𝐷
𝑛

= R𝑛/𝑄.
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For the definition and main properties of symplectic
quasifolds and of Hamiltonian actions of quasitori on sym-
plectic quasifolds, we refer the reader to [2, 3]. On the other
hand, the basic facts on polytopes that are needed can be
found in Ziegler’s book [4]. We are now ready to recall from
[2] the generalized Delzant construction. For the purposes of
this paper, we will restrict our attention to the special case
𝑛 = 3.

Theorem 5. Let 𝑄 be a quasilattice in R3 and let Δ ⊂ (R3)
∗

be a simple convex polytope that is quasirational with respect
to 𝑄. Then, there exists a 6-dimensional compact connected
symplectic quasifold𝑀 and an effective Hamiltonian action of
the quasitorus 𝐷3 = R3/𝑄 on 𝑀 such that the image of the
corresponding moment mapping is Δ.

Proof. Let us consider the space C𝑑 endowed with the
standard symplectic form 𝜔

0
= 1/(2𝜋𝑖)∑

𝑑

𝑗=1
𝑑𝑧
𝑗
∧ 𝑑𝑧
𝑗
and

the action of the torus 𝑇𝑑 = R𝑑/Z𝑑 given by

𝜏: 𝑇
𝑑

× C𝑑 󳨀→ C𝑑

((𝑒
2𝜋𝑖𝜃
1
, . . . , 𝑒

2𝜋𝑖𝜃
𝑑
) , 𝑧) 󳨃󳨀→ (𝑒

2𝜋𝑖𝜃
1
𝑧
1
, . . . , 𝑒

2𝜋𝑖𝜃
𝑑
𝑧
𝑑
) .

(2)

This is an effective Hamiltonian action with moment map-
ping given by

𝐽: C𝑑 󳨀→ (R𝑑)
∗

𝑧 󳨃󳨀→

𝑑

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑒
∗

𝑗
+ 𝜆, 𝜆 ∈ (R

𝑑

)

∗

constant.
(3)

The mapping 𝐽 is proper and its image is given by the cone
C
𝜆

= 𝜆 + C, where C denotes the positive orthant of
(R𝑑)
∗. Take now vectors 𝑋

1
, . . . , 𝑋

𝑑
∈ 𝑄 and real numbers

𝜆
1
, . . . , 𝜆

𝑑
as in (1). Consider the surjective linear mapping

𝜋: R𝑑 󳨀→ R3,

𝑒
𝑗
󳨃󳨀→ 𝑋

𝑗
.

(4)

Consider the dimension 3 quasitorus 𝐷
3

= R3/𝑄. Then,
the linear mapping 𝜋 induces a quasitorus epimorphism
Π: 𝑇𝑑 → 𝐷

3. Define now𝑁 to be the kernel of the mapping
Π and choose 𝜆 = ∑

𝑑

𝑗=1
𝜆
𝑗
𝑒
∗

𝑗
. Denote by 𝑖 the Lie algebra

inclusion Lie(𝑁) → R𝑑 and notice that Ψ = 𝑖
∗

∘ 𝐽 is a
moment mapping for the induced action of 𝑁 on C𝑑. Then,
according to [2, Theorem 3.1], the quotient 𝑀 = Ψ

−1

(0)/𝑁

is a symplectic quasifold which is endowed with the Hamil-
tonian action of the quasitorus 𝑇

𝑑

/𝑁. Since 𝜋
∗ is injective

and 𝐽 is proper, the quasifold 𝑀 is compact. If we identify
the quasitori 𝐷3 and 𝑇

𝑑

/𝑁 via the epimorphism Π, we get
a Hamiltonian action of the quasitorus 𝐷

3 whose moment
mapping Φ has image equal to (𝜋

∗

)
−1

(C
𝜆

∩ ker 𝑖∗) =

(𝜋
∗

)
−1

(C
𝜆
∩ im𝜋

∗

) = (𝜋
∗

)
−1

(𝜋
∗

(Δ)) which is exactly Δ. This
action is effective since the level setΨ−1(0) contains points of
the form 𝑧 ∈ C𝑑, 𝑧

𝑗
̸= 0, 𝑗 = 1, . . . , 𝑑, where the 𝑇𝑑-action is

free. Notice finally that dim𝑀 = 2𝑑 − 2dim𝑁 = 2𝑑 − 2(𝑑 −

3) = 6.

Figure 1: The regular dodecahedron.

Remark 6. We will say that 𝑀 is a symplectic toric quasifold
associated to the polytopeΔ.The quasifold𝑀 depends on our
choice of quasilattice 𝑄 with respect to which the polytope is
quasirational and on our choice of vectors 𝑋

1
, . . . , 𝑋

𝑑
. Note

that the case where the polytope is simple and rational, but
does not necessarily satisfy Delzant’s integrality condition,
was treated by Lerman and Tolman in [5]. They allowed
orbifold singularities and introduced the notion of symplectic
toric orbifold.

3. The Regular Dodecahedron from
a Symplectic Viewpoint

Let Δ be the regular dodecahedron centered at the origin and
having vertices

(±1, ±1, ±1)

(0, ±𝜙, ±

1

𝜙

)

(±

1

𝜙

, 0, ±𝜙)

(±𝜙, ±

1

𝜙

, 0) ,

(5)

where 𝜙 = (1 + √5)/2 is the golden ratio and satisfies
𝜙 = 1 + 1/𝜙 (see Figure 1). It is a well-known fact that the
polytope Δ is simple but not rational. However, consider the
quasilattice 𝑃 that is generated by the following vectors inR3:

𝑌
1
= (

1

𝜙

, 1, 0)

𝑌
2
= (0,

1

𝜙

, 1)
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𝑌
3
= (1, 0,

1

𝜙

)

𝑌
4
= (−

1

𝜙

, 1, 0)

𝑌
5
= (0, −

1

𝜙

, 1)

𝑌
6
= (1, 0, −

1

𝜙

) .

(6)

We remark that these six vectors and their opposites point to
the twelve vertices of a regular icosahedron that is inscribed
in the sphere of radius √3 − 𝜙 (see Figures 2 and 3). The
quasilattice 𝑃 is known in physics as the simple icosahedral
lattice [6]. Now, an easy computation shows that

Δ =

12

⋂

𝑗=1

{𝜇 ∈ (R
3

)

∗

| ⟨𝜇,𝑋
𝑗
⟩ ≥ −𝜙} , (7)

where 𝑋
𝑖
= 𝑌
𝑖
and 𝑋

6+𝑖
= −𝑌
𝑖
, for 𝑖 = 1, . . . , 6. Therefore,

Δ is quasirational with respect to 𝑃. Let us perform the
generalized Delzant construction with respect to 𝑃 and the
vectors 𝑋

1
, . . . , 𝑋

12
. Following the proof of Theorem 5, we

consider the surjective linear mapping

𝜋: R12 󳨀→ R3

𝑒
𝑖
󳨃󳨀→ 𝑋

𝑖
.

(8)

It is easy to see that the following relations

(

𝑌
4

𝑌
5

𝑌
6

) = (

1

𝜙

1

𝜙

−1

−1

1

𝜙

1

𝜙

1

𝜙

−1

1

𝜙

)(

𝑌
1

𝑌
2

𝑌
3

) (9)

imply that the kernel of 𝜋, n, is the 9-dimensional subspace
of R12 that is spanned by the vectors

𝑒
1
+ 𝑒
7

𝑒
2
+ 𝑒
8

𝑒
3
+ 𝑒
9

𝑒
4
+ 𝑒
10

𝑒
5
+ 𝑒
11

𝑒
6
+ 𝑒
12

𝑒
1
+ 𝑒
2
− 𝜙 (𝑒

3
+ 𝑒
4
)

𝑒
2
+ 𝑒
3
− 𝜙 (𝑒

1
+ 𝑒
5
)

𝑒
1
+ 𝑒
3
− 𝜙 (𝑒

2
+ 𝑒
6
) .

(10)

Since the vectors 𝑋
𝑖
, 𝑖 = 1, . . . , 12, generate the quasilattice

𝑄, the group 𝑁 is connected and given by the group exp(n).

Figure 2: The vectors ±𝑌
1
, . . . , ±𝑌

6
.

Moreover, the moment mapping for the induced 𝑁-action
Ψ: C12 → (n)

∗ has the 9 components below:

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
7

󵄨
󵄨
󵄨
󵄨

2

− 2𝜙

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
8

󵄨
󵄨
󵄨
󵄨

2

− 2𝜙

󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
9

󵄨
󵄨
󵄨
󵄨

2

− 2𝜙

󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
10

󵄨
󵄨
󵄨
󵄨

2

− 2𝜙

󵄨
󵄨
󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
11

󵄨
󵄨
󵄨
󵄨

2

− 2𝜙

󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
12

󵄨
󵄨
󵄨
󵄨

2

− 2𝜙

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

− 𝜙 (
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨

2

) + 2

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

− 𝜙 (
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨

2

) + 2

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

− 𝜙 (
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨

2

) + 2.

(11)

The level set Ψ
−1

(0) is described by the 9 equations that
are obtained by setting these components to 0. Finally, the
symplectic toric quasifold 𝑀 is given by the compact 6-
dimensional quasifold Ψ

−1

(0)/𝑁. The quasitorus𝐷3 = R3/𝑃

acts on 𝑀 in a Hamiltonian fashion, with image of the
corresponding moment mapping given exactly by the dodec-
ahedron Δ. The action of 𝐷3 has 20 fixed points, and the
moment mapping sends each of them to a different vertex
of the dodecahedron. The quasifold 𝑀 has an atlas made of
20 charts, each of which is centered around a different fixed
point. To give an idea of the local behavior of 𝑀, we will
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Figure 3: The regular icosahedron.

describe the chart around the fixed point that maps to the
vertex (−1, −1, −1). Consider the open neighborhood 𝑈̃ of 0
in C3 defined by the inequalities below:

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

< 2𝜙

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

< 2𝜙

󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

< 2𝜙

−2 <
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

− 𝜙
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

< 2𝜙

−2 <
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

− 𝜙
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

< 2𝜙

−2 <
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

− 𝜙
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

< 2𝜙

(12)

and consider the following slice of Ψ−1(0) that is transversal
to the𝑁-orbits

𝑈̃

𝜏

󳨀→ {𝑤 ∈ Ψ
−1

(0) | 𝑤
𝑖

̸= 0, 𝑖 = 4, . . . , 12}

(𝑧
1
, 𝑧
2
, 𝑧
3
) 󳨃󳨀→ (𝑧

1
, 𝑧
2
, 𝑧
3
, 𝜏
4
(𝑧) , 𝜏

5
(𝑧) , 𝜏

6
(𝑧) , 𝜏

7
(𝑧) ,

𝜏
8
(𝑧) , 𝜏

9
(𝑧) , 𝜏

10
(𝑧) , 𝜏

11
(𝑧) , 𝜏

12
(𝑧)) ,

(13)

where 𝑧 = (𝑧
1
, 𝑧
2
, 𝑧
3
) ∈ C3, 𝑤 = (𝑤

1
, 𝑤
2
, 𝑤
3
, 𝑤
4
, 𝑤
5
, 𝑤
6
,

𝑤
7
, 𝑤
8
, 𝑤
9
, 𝑤
10
, 𝑤
11
, 𝑤
12
) ∈ C12, and

𝜏
4
(𝑧) = √

1

𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

− 𝜙
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

+ 2)

𝜏
5
(𝑧) = √

1

𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

− 𝜙
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+ 2)

𝜏
6
(𝑧) = √

1

𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

− 𝜙
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

+ 2)

𝜏
7
(𝑧) = √2𝜙 −

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

𝜏
8
(𝑧) = √2𝜙 −

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

𝜏
9
(𝑧) = √2𝜙 −

󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

𝜏
10

(𝑧) = √
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

−

1

𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

) + 2

𝜏
11

(𝑧) = √
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

−

1

𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

) + 2

𝜏
12

(𝑧) = √
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

2

−

1

𝜙

(
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

2

) + 2.

(14)

The mapping 𝜏 induces a homeomorphism

𝑈̃

Γ

𝜏

󳨀→ 𝑈

[(𝑧
1
, 𝑧
2
, 𝑧
3
)] 󳨃󳨀→ [𝜏 (𝑧

1
, 𝑧
2
, 𝑧
3
)] ,

(15)

where the open subset 𝑈 of𝑀 is the quotient

{𝑤 ∈ Ψ
−1

(0) | 𝑤
𝑖

̸= 0, 𝑖 = 4, . . . , 12}

𝑁

(16)

and the discrete group Γ is given by

{(𝑒
2𝜋𝑖𝜙(ℎ+𝑙)

, 𝑒
2𝜋𝑖𝜙(ℎ+𝑘)

, 𝑒
2𝜋𝑖𝜙(𝑘+𝑙)

) ∈ 𝑇
3

| ℎ, 𝑘, 𝑙 ∈ Z} . (17)

The triple (𝑈, 𝜏, 𝑈̃/Γ) defines a chart around the fixed point
corresponding to the vertex (−1, −1, −1).The other charts can
be described in a similar way.

Remark 7. According to joint work with Battaglia [7], to
any nonrational simple polytope one can also associate a
complex toric quasifold. If we apply the explicit construction
given in [7] to the regular dodecahedron, similarly to the
symplectic case, we get a complex 3-quasifold 𝑀C endowed
with an action of the complex quasitorus 𝐷3C = C3/𝑃. This
action is holomorphic and has a dense open orbit. Moreover,
by [7, Theorem 3.2], the quasifold 𝑀C is 𝐷

3-equivariantly
diffeomorphic to𝑀 and the induced symplectic form on𝑀C

is Kähler.

Remark 8. The only other platonic solids that are simple are
the cube and the regular tetrahedron. They both satisfy the
hypotheses of the Delzant theorem. By applying the Delzant
procedure to the cube, with respect to the standard lattice
Z3, we get the symplectic toric manifold 𝑆

2

× 𝑆
2

× 𝑆
2; by

applying it to the tetrahedron, with respect to the sublattice
of Z3 that is generated by the 8 vectors (±1, ±1, ±1), we
get the symplectic toric manifold CP3. On the other hand,
the remaining platonic solids, the regular octahedron and
the regular icosahedron, are not simple. In these cases, the



Journal of Mathematics 5

Delzant procedure and our generalization will not work. The
octahedron is rational, thus, the standard toric geometry
applies: the toric variety associated to the octahedron is
described, for example, in [8, Section 1.5]. The icosahedron,
on the other hand, is not rational. However, by work of
Battaglia on arbitrary convex polytopes [9, 10], one can asso-
ciate to the icosahedron, both in the symplectic and complex
category, a space that is stratified by quasifolds. Incidentally,
Battaglia’s approach can also be applied to the octahedron,
yielding, in this case, a space that is stratified by manifolds.
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