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The paper is devoted to the study of the function 𝑊
𝛾,𝛿

𝛼,𝛽
(𝑧), which is an extension of the classical Wright function and Kummer

confluent hypergeometric function.The properties of𝑊𝛾,𝛿

𝛼,𝛽
(𝑧) including its auxiliary functions and the integral representations are

proven.

1. Introduction

The special functions ofmathematical physics are found to be
very useful for finding solutions of initial and/or boundary-
value problems governed by partial differential equations
and fractional differential equations. Special functions have
widespread applications in other areas of mathematics and
often new perspectives in special functions are motivated by
such connections. Several special functions, called recently
special functions of fractional calculus, play a very important
and interesting role as solutions of fractional order differ-
ential equations, such as the Mittag-Leffler function, Wright
function with its auxiliary functions, and Fox’s𝐻-function.

TheWright function is one of the special functions which
plays an important role in the solution of linear partial
fractional differential equations. It was introduced for the
first time in [1, 2] in connection with a problem in the
number theory regarding the asymptotic of the number of
some special partitions of the natural numbers. Recently this
function has appeared in papers related to partial differential
equations of fractional order. Considering the boundary-
value problems for the fractional diffusion-wave equation,
that is, the linear partial integrodifferential equation obtained
from the classical diffusion or wave equation by replacing
the first- or second-order time derivative by a fractional
derivative of order 𝛼 with 0 < 𝛼 < 2, it was found that the
corresponding Green functions can be represented in terms

of theWright function. Furthermore, extending the methods
of Lie groups in partial differential equations to the partial
differential equations of fractional order, it was shown that
some of the group-invariant solutions of these equations can
be given in terms of the Wright and the generalized Wright
functions [3]. A list of formulas concerning this function can
be found in the handbook of Bateman Project, Erdélyi et al.
1953 [4]; see also [3, 5–11].

The Wright function is defined by the series representa-
tion, valid in the whole complex plane

𝑊𝛼,𝛽 (𝑧) =

∞

∑

𝑛=0

𝑧
𝑛

𝑛!Γ (𝛼𝑛 + 𝛽)
, 𝛼 > −1, 𝛽 ∈ 𝐶. (1)

It is an entire function of order 1/(1 + 𝛼), which has
been known also as generalized Bessel (or Bessel Maitland)
function [12, 13]. There are two auxiliary functions of Wright
function defined as

𝑀𝛼 (𝑧) = 𝑊−𝛼,1−𝛼 (−𝑧) =

∞

∑

𝑛=0

(−1)
𝑛
𝑧
𝑛

𝑛!Γ (1 − 𝛼 (𝑛 + 1))

0 < 𝛼 < 1,

𝐹𝛼 (𝑧) = 𝑊−𝛼,0 (−𝑧) =

∞

∑

𝑛=1

(−1)
𝑛
𝑧
𝑛

𝑛!Γ (−𝛼𝑛)
0 < 𝛼 < 1,

(2)
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where the function𝑀𝛼(𝑧) is recently known as the Mainardi
function [12, 13]. In a continuation of this study, we investigate
the generalizedWright function𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧) which is defined for

real 𝛼 and 𝛽, 𝛾, 𝛿 ∈ 𝐶; 𝛼 > −1, 𝛿 ̸= 0, −1, −2, . . . with 𝑧 ∈ 𝐶

and |𝑧| < 1 with 𝛼 = −1 as

𝑊
𝛾,𝛿

𝛼,𝛽
(𝑧) =

∞

∑

𝑛=0

(𝛾)
𝑛

(𝛿)𝑛 Γ (𝛼𝑛 + 𝛽)

𝑧
𝑛

𝑛!
, (3)

where (𝛾)𝑛 = Γ(𝛾 + 𝑛)/Γ(𝛾) = 𝛾(𝛾 + 1)(𝛾 + 2) ⋅ ⋅ ⋅ (𝛾 + 𝑛 − 1)

is a Pochhammer symbol and Γ(⋅) is a gamma function. The
function𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧) is an entire function of order 1/(1 + 𝛼) and

generalized Wright function (1).
By analogy with (2), one can also introduce the two

(generalized Wright type) auxiliary functions for any order
𝛼 ∈ (0, 1) and for all complex variable 𝑧 ̸= 0 by

𝑀
𝛾,𝛿

𝛼
(𝑧) fl 𝑊

𝛾,𝛿

−𝛼,1−𝛼
(−𝑧)

=

∞

∑

𝑛=0

(𝛾)
𝑛

(𝛿)𝑛 Γ (1 − 𝛼 (𝑛 + 1))

(−1)
𝑛
𝑧
𝑛

𝑛!
,

(4)

𝐹
𝛾,𝛿

𝛼
(𝑧) fl 𝑊

𝛾,𝛿

−𝛼,0
(−𝑧) =

∞

∑

𝑛=1

(𝛾)
𝑛

(𝛿)𝑛 Γ (−𝛼𝑛)

(−1)
𝑛
𝑧
𝑛

𝑛!
. (5)

2. Basic Definitions

In this section, the definitions of some special functions
and their properties necessary for our studies on generalized
Wright function (3) and its auxiliary functions (4) and (5) will
be presented to provide convenient references.

2.1. Wright Function. The Wright function which is defined
by (1) has the Hankel contour integral representation and
special case

𝑊𝛼,𝛽 (𝑧) =
1

2𝜋𝑖
∫
Ha

𝑡
−𝛽

𝑒
𝑡+𝑧𝑡
𝛼

𝑑𝑡, (6)

𝑊−1/2,1 (−𝑧) = erfc(𝑧

2
) , (7)

where Ha is the Hankel contour and erfc(𝑧) is the comple-
mentary error function which is defined as

erfc (𝑧) = 2

√𝜋
∫

∞

𝑧

𝑒
−𝑡
2

𝑑𝑡 = 1 − erf (𝑧) . (8)

The important relation between two auxiliary functions (2) of
Wright function (1) and some special cases are

𝐹𝛼 (𝑧) = 𝛼𝑧𝑀𝛼 (𝑧) , (9)

𝑀1/2 (𝑧) =
1

√𝜋
𝑒
−𝑧
2

/4
, (10)

𝑀1/3 (𝑧) = 3
2/3Ai( 𝑧

31/3
) , (11)

where Ai(𝑧) is Airy’s function which is the one of the linearly
independent solutions of the ordinary differential equation
𝑦

− 𝑧𝑦 = 0 and has the following properties [14, 15]:

Ai (𝑥) = 1

3
√𝑥 [𝐼−1/3 (

2

3
𝑥
3/2

) − 𝐼1/3 (
2

3
𝑥
3/2

)] (12)

=
1

32/3Γ (2/3)
0𝐹1

(
2

3
;
𝑥
3

9
)

−
𝑥

31/3Γ (1/3)
0𝐹1

(
4

3
;
𝑥
3

9
) ,

(13)

Ai (0) = 1

32/3Γ (2/3)
,

Ai (0) = −1

31/3Γ (1/3)
.

(14)

Airy’s function has, from its differential equation, the follow-
ing indefinite integrals:

∫𝑥Ai (𝑥) 𝑑𝑥 = Ai (𝑥) ,

∫ 𝑥
2Ai (𝑥) 𝑑𝑥 = 𝑥Ai (𝑥) − Ai (𝑥) ,

∫ 𝑥
𝑛+3Ai (𝑥) 𝑑𝑥 = 𝑥

𝑛+2Ai (𝑥) − (𝑛 + 2) 𝑥
𝑛+1Ai (𝑥)

+ (𝑛 + 1) (𝑛 + 2) ∫ 𝑥
𝑛Ai (𝑥) 𝑑𝑥,

𝑛 = 0, 1, 2, . . . .

(15)

2.2.Mittag-Leffler Function. A two-parameter function of the
Mittag-Leffler type is defined by the series expansion [12, 13]

𝐸𝛼,𝛽 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
(𝛼 > 0, 𝛽 ∈ 𝐶) . (16)

It follows from the definition that

𝐸1,𝑚 (𝑧) =
1

𝑧𝑚−1
[𝑒

𝑧
−

𝑚−2

∑

𝑘=0

𝑧
𝑘

𝑘!
] . (17)

Let 𝑚 > 1 be an integer, let 𝜌1, 𝜌2, . . . , 𝜌𝑚 > 0, and let
𝜇1, . . . , 𝜇𝑚 be arbitrary real numbers. By means of “multi-
index” (𝜌𝑖), (𝜇𝑖), we introduce the so-called multi-index
Mittag-Leffler functions [16, 17]:

𝐸(1/𝜌
𝑖
),(𝜇
𝑖
) (𝑧) =

∞

∑

𝑘=0

𝜙𝑘𝑧
𝑘

=

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝜇1 + 𝑘/𝜌1) ⋅ ⋅ ⋅ Γ (𝜇𝑚 + 𝑘/𝜌𝑚)
.

(18)
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2.3. Fox-Wright Function. The Fox-Wright
𝑝Ψ𝑞

(𝑧) function
has series representation [5, 12, 18–20]:

𝑝Ψ𝑞
[
(𝑎1 ,𝛼1),...,(𝑎𝑝 ,𝛼𝑝);

(𝑏1 ,𝛽1),...,(𝑏𝑞 ,𝛽𝑞);
𝑧] =

∞

∑

𝑛=0

∏
𝑝

𝑖=1
Γ (𝑎𝑖 + 𝛼𝑖𝑛)

∏
𝑞

𝑗=1
Γ (𝑏𝑗 + 𝛽𝑗𝑛)

𝑧
𝑛

𝑛!
. (19)

The Fox-Wright Ψ-function is special case of Fox’s 𝐻-
function:

𝑝Ψ𝑞
[
(𝑎1 ,𝛼1),...,(𝑎𝑝 ,𝛼𝑝);

(𝑏1 ,𝛽1),...,(𝑏𝑞 ,𝛽𝑞);
𝑧]

= 𝐻
1 𝑝

𝑝 𝑞+1
[−𝑧|

(1−𝑎
1
,𝛼
1
)⋅⋅⋅(1−𝑎

𝑝
,𝛼
𝑝
)

(0,1),(1−𝑏
1
,𝛽
1
),...,(1−𝑏

𝑞
,𝛽
𝑞
)
] ,

(20)

where𝐻𝑚𝑛

𝑝𝑞
[𝑧|

(𝑎
𝑘
,𝐴
𝑘
)
𝑝

1

(𝑏
𝑘
,𝐵
𝑘
)
𝑞

1

] denotes the Fox𝐻-function [21] which
can be expressed asMellin-Barnes contour integral represen-
tation in the form

𝐻
𝑚𝑛

𝑝𝑞
(𝑧) = 𝐻

𝑚𝑛

𝑝𝑞
[𝑧|

(𝑎
𝑘
,𝐴
𝑘
)
𝑝

1

(𝑏
𝑘
,𝐵
𝑘
)
𝑞

1

] =
1

2𝜋𝑖

⋅ ∫
𝐿

∏
𝑚

𝑘=1
Γ (𝑏𝑘 − 𝐵𝑘𝑠)∏

𝑛

𝑗=1
Γ (1 − 𝑎𝑗 + 𝑠𝐴𝑗)

∏
𝑞

𝑘=𝑚+1
Γ (1 − 𝑏𝑘 + 𝑠𝐵𝑘)∏

𝑝

𝑗=𝑛+1
Γ (𝑎𝑗 − 𝑠𝐴𝑗)

𝑧
𝑠
𝑑𝑠,

(21)

where 𝐿 is a suitable contour in the complex 𝑠-plane, the
orders (𝑚, 𝑛, 𝑝, 𝑞) are integers 1 ≤ 𝑚 ≤ 𝑞, 0 ≤ 𝑛 ≤ 𝑝, and the
parameters 𝑎𝑗 ∈ 𝑅,𝐴𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑝, and 𝑏𝑘 ∈ 𝑅, 𝐵𝑘 > 0,
𝑘 = 1, 2, . . . , 𝑞, are such that 𝐴𝑗(𝑏𝑘 + 𝑖) ̸= 𝐵𝑘(𝑎𝑗 − 𝑖 − 1), 𝑖 =

0, 1, 2, . . ..

2.4. Meijer 𝐺-Function. In 1936, C. S. Meijer introduced the
𝐺-function as [14]

𝐺
𝑚𝑛

𝑝 𝑞
(𝑥|

𝑎
𝑝

𝑐
𝑞

) = 𝐺
𝑚𝑛

𝑝 𝑞
(𝑥|

𝑎
1
,𝑎
2
,...,𝑎
𝑝

𝑐
1
,𝑐
2
,...,𝑐
𝑞

) = 𝐻
𝑚𝑛

𝑝 𝑞
[𝑥|

(𝑎
𝑘
,1)
𝑝

1

(𝑏
𝑘
,1)
𝑞

1

]

=

𝑚

∑

𝑘=1

∏
𝑚

𝑗=1
Γ (𝑐𝑗 − 𝑐𝑘)∏

𝑛

𝑗=1
Γ (1 + 𝑐𝑘 − 𝑎𝑗) 𝑥

𝑐
𝑘

∏
𝑞

𝑗=𝑚+1
Γ (1 + 𝑐𝑘 − 𝑐𝑗)∏

𝑝

𝑗=𝑛+1
Γ (𝑎𝑗 − 𝑐𝑘)

⋅
𝑝𝐹𝑞−1

(1

+ 𝑐𝑘 − 𝑎1, . . . , 1 + 𝑐𝑘 − 𝑎𝑝; 1 + 𝑐𝑘 − 𝑐1, . . . , 1 + 𝑐𝑘

− 𝑐𝑞; (−1)
𝑝−𝑚−𝑛

𝑥) ,

(22)

where 1 ≤ 𝑚 ≤ 𝑞, 0 ≤ 𝑛 ≤ 𝑝 ≤ 𝑞 − 1, and
𝑝𝐹𝑞

(𝑎1, . . . , 𝑎𝑝; 𝑐1, . . . , 𝑐𝑞; 𝑥) is the generalized hypergeomet-
ric function which is defined as

𝑝𝐹𝑞
(𝑎1, . . . , 𝑎𝑝; 𝑐1, . . . , 𝑐𝑞; 𝑥) =

∞

∑

𝑛=0

∏
𝑝

𝑟=1
(𝑎𝑟)𝑛

∏
𝑞

𝑟=1
(𝑏𝑟)𝑛

𝑥
𝑛

𝑛!
. (23)

If 𝑝 = 𝑞 = 1, we have the confluent hypergeometric function
which has the integral representation with the property

1𝐹1 (𝑎; 𝑏; 𝑥)

=
Γ (𝑏)

Γ (𝑎) Γ (𝑏 − 𝑎)
∫

1

0

𝑢
𝑎−1

(1 − 𝑢)
𝑏−𝑎−1

𝑒
𝑥𝑢
𝑑𝑢

= 𝑒
𝑥

1𝐹1 (𝑏 − 𝑎; 𝑏; −𝑥) .

(24)

2.5. Gamma Function and Incomplete Gamma Function. The
contour integral representation for the reciprocal gamma
function, multiplication formula, and important property
[22] are

1

Γ (𝛼)
=

1

2𝜋𝑖
∫
Ha

𝑒
𝑡
𝑡
−𝛼

𝑑𝑡, (25)

Γ (𝑥) = 𝑚
𝑥−1/2

(2𝜋)
(1−𝑚)/2

𝑚

∏

𝑟=1

Γ (
𝑥 + 𝑟 − 1

𝑚
) , (26)

Γ (𝑎 − 𝑛) =
(−1)

𝑛
Γ (𝑎)

(1 − 𝑎)𝑛

, 𝑛 = 0, 1, 2, . . . . (27)

The upper and lower incomplete gamma function, respec-
tively, are

Γ (𝑠, 𝑥) = ∫

∞

𝑥

𝑡
𝑠−1

𝑒
−𝑡
𝑑𝑡, R (𝑠) > 0, (28)

𝛾 (𝑠, 𝑥) = ∫

𝑥

0

𝑡
𝑠−1

𝑒
−𝑡
𝑑𝑡, R (𝑠) > 0. (29)

The two types of incomplete gamma function have the
properties

Γ (𝑠, 𝑥) + 𝛾 (𝑠, 𝑥) = Γ (𝑠) ,

𝛾 (
1

2
, 𝑧

2
) = √𝜋 erf (𝑧) ,

𝛾 (𝑛, 𝑧) = (𝑛 − 1)! [1 − 𝑒
−𝑧

𝑛−1

∑

𝑘=0

𝑧
𝑘

𝑘!
] , 𝑛 = 1, 2, . . . ,

𝛾 (𝑛 +
1

2
, 𝑧

2
)

= (
1

2
)
𝑛

[√𝜋 erf (𝑧) − 𝑒
−𝑧
2

𝑛

∑

𝑘=1

𝑧
2𝑘−1

(1/2)𝑘

] ,

𝑛 = 1, 2, . . . .

(30)

3. Integral Representations of the Generalized
Wright Function

Here, we introduce theMellin-Barnes contour integral repre-
sentation and definite integral representation of function (3).

Theorem 1 (Mellin-Barnes contour integral representation).
Let 𝛼 > −1; 𝛾, 𝛿, 𝛽 ∈ 𝐶, and 𝛿 ̸= 0, −1, −2, . . . . Then function
(3) can be represented by the Mellin-Barnes contour integral as

𝑊
𝛾,𝛿

𝛼,𝛽
(𝑧)

=
Γ (𝛿)

Γ (𝛾)

1

2𝜋𝑖
∫
𝐿

Γ (𝛾 + 𝑠)

Γ (𝛿 + 𝑠) Γ (𝛽 + 𝛼𝑠)
Γ (−𝑠) (−𝑧)

𝑠
𝑑𝑠,

(31)
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where 𝑧 is not equal to zero and

(−𝑧)
𝑠
= exp [𝑠 (log |𝑧| + 𝑖 arg (−𝑧))] , (32)

in which log denotes the natural logarithm and |arg(−𝑧)| is not
necessarily the principal value, and 𝐿 is a suitable path in the
complex 𝑠-plane which runs from 𝑠 = −𝑖∞ to 𝑠 = 𝑖∞, so the
points 𝑠 = 𝑛, 𝑛 = 0, 1, 2, . . ., lie to the right of a contour 𝐿 and
the points 𝑠 = −𝛾 − 𝑛, 𝑛 = 0, 1, 2, . . ., lie to its left.

Proof. Consider the integral in (31) with the contour 𝐿

replaced by the contour 𝐶𝑅 consisting of a large clockwise-
oriented semicircle of radius 𝑅 and the center of the origin
which lies to the right of the contour 𝐿 and is bounded away
from the poles. We can apply Cauchy’s theorem (Residues
Theorem) to the closed contour which is consisting of the
contour 𝐶𝑅 and that part of 𝐿 terminated above and below
by 𝐶𝑅 as 𝑅 → ∞; we obtain

1

2𝜋𝑖
∫
𝐿

Γ (𝛾 + 𝑠)

Γ (𝛿 + 𝑠) Γ (𝛽 + 𝛼𝑠)
Γ (−𝑠) (−𝑧)

𝑠
𝑑𝑠

=

∞

∑

𝑛=0

Res𝑠=𝑛 [
Γ (𝛾 + 𝑠)

Γ (𝛿 + 𝑠) Γ (𝛽 + 𝛼𝑠)
Γ (−𝑠) (−𝑧)

𝑠
]

=

∞

∑

𝑛=0

lim
𝑠→𝑛

[
Γ (𝛾 + 𝑠)

Γ (𝛿 + 𝑠) Γ (𝛽 + 𝛼𝑠)
(𝑠 − 𝑛) Γ (−𝑠) (−𝑧)

𝑠
]

=

∞

∑

𝑛=0

Γ (𝛾 + 𝑛)

Γ (𝛿 + 𝑛) Γ (𝛽 + 𝛼𝑛)

𝑧
𝑛

𝑛!
=

Γ (𝛾)

Γ (𝛿)
𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧) .

(33)

Theorem 2. Let 𝛼 > −1; 𝛾, 𝛿, 𝛽 ∈ 𝐶, andR(𝛿) > R(𝛾) > 0.
Then function (3) can be represented as

𝑊
𝛾,𝛿

𝛼,𝛽
(𝑧)

=
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

𝑊𝛼,𝛽 (𝑧𝑢) 𝑑𝑢,

(34)

and consequently one can get

𝑀
𝛾,𝛿

𝛼
(𝑧)

=
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

𝑀𝛼 (𝑧𝑢) 𝑑𝑢,

(35)

𝐹
𝛾,𝛿

𝛼
(𝑧)

=
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

𝐹𝛼 (𝑧𝑢) 𝑑𝑢.

(36)

Proof. Using the contour integral representation for recip-
rocal gamma function (25), the integral representation of

confluent hypergeometric function (23), and the Hankel
contour integral representation of Wright function (6), then

𝑊
𝛾,𝛿

𝛼,𝛽
(𝑧) =

∞

∑

𝑛=0

(𝛾)
𝑛

(𝛿)𝑛 Γ (𝛼𝑛 + 𝛽)

𝑧
𝑛

𝑛!
=

1

2𝜋𝑖

∞

∑

𝑛=0

(𝛾)
𝑛

(𝛿)𝑛

𝑧
𝑛

𝑛!

⋅ ∫
Ha

𝑡
−𝛼𝑛−𝛽

𝑒
𝑡
𝑑𝑡 =

1

2𝜋𝑖
∫
Ha

𝑡
−𝛽

𝑒
𝑡

∞

∑

𝑛=0

(𝛾)
𝑛

(𝛿)𝑛

𝑡
−𝛼𝑛

𝑧
𝑛

𝑛!
𝑑𝑡

=
1

2𝜋𝑖
∫
Ha

𝑡
−𝛽

𝑒
𝑡

1𝐹1 (𝛾; 𝛿; 𝑧𝑡
−𝛼

) 𝑑𝑡 =
1

2𝜋𝑖
∫
Ha

𝑡
−𝛽

𝑒
𝑡

⋅
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

𝑒
𝑧𝑢𝑡
−𝛼

𝑑𝑢 𝑑𝑡

=
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

⋅
1

2𝜋𝑖
∫
Ha

𝑡
−𝛽

𝑒
𝑡+𝑧𝑢𝑡

−𝛼

𝑑𝑡 𝑑𝑢 =
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)

⋅ ∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

𝑊𝛼,𝛽 (𝑧𝑢) 𝑑𝑢.

(37)

4. Relationship with Some Known
Special Functions

We devote this section to studying the relationship between
generalized Wright function (3) and some known special
functions like Fox 𝐻-function, Fox-Wright function, Meijer
𝐺-function, Mittag-Leffler function, and generalized hyper-
geometric function.

4.1. Relation with Fox𝐻-Function. Using (31) and the defini-
tion of Fox𝐻-function, we obtain

𝑊
𝛾,𝛿

𝛼,𝛽
(−𝑧) =

Γ (𝛿)

Γ (𝛾)
𝐻

1 1

1 3
[𝑧|

(1−𝛾,1)

(0,1),(1−𝛽,𝛼),(1−𝛿,1)
] . (38)

4.2. Relation with Fox Wright Function. Generalized Wright
function (3) can be represented by Fox Wright function (19)
as

𝑊
𝛾,𝛿

𝛼,𝛽
(𝑧) =

Γ (𝛿)

Γ (𝛾)
1Ψ2

[
(𝛾,1);

(𝛿,1),(𝛽,𝛼);
𝑧] . (39)

4.3. Relation withMeijer𝐺-Function. From the definitions of
generalized Wright function (3) and Meijer 𝐺-function (22)
with 𝛼 = 1, we obtain

𝑊
𝛾,𝛿

1,𝛽
(−𝑧) =

Γ (𝛿)

Γ (𝛾)
𝐺
1 1

1 3
[𝑧|

1−𝛾

0,1−𝛽,1−𝛿
] . (40)

Theorem 3. Let 𝛼 = 𝑝/𝑞 be a rational number with 𝑝, 𝑞 ∈

𝑁 ∪ {0}, 𝑞 ̸= 0; 𝛾, 𝛿, 𝛽 ∈ 𝐶 and 𝛿 ̸= 0, −1, −2, . . .; then one
has
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𝑊
𝛾,𝛿

𝑝/𝑞,𝛽
(−𝑧)

= 𝑝
1/2−𝛽

𝑞
𝛾−𝛿+1/2

(2𝜋)
(𝑝−𝑞)/2 Γ (𝛿)

Γ (𝛾)
𝐺
𝑞 𝑞

𝑞 2𝑞+𝑝
[

𝑧
𝑞

𝑞𝑞𝑝𝑝



1−𝛾/𝑞,1−(𝛾+1)/𝑞,...,1−(𝛾+𝑞−1)/𝑞

0,1/𝑞,...,(𝑞−1)/𝑞;1−𝛿/𝑞,1−(𝛿+1)/𝑞,...,1−(𝛿+𝑞−1)/𝑞;1−𝛽/𝑝,1−(𝛽+1)/𝑝,...,1−(𝛽+𝑝−1)/𝑝

] .

(41)

In particular, if 𝛾 = 𝛿,

𝑊𝑝/𝑞,𝛽 (−𝑧) = (2𝜋)
(𝑝−𝑞)/2

𝑝
1/2−𝛽

𝑞
1/2

𝐺
𝑞 0

0 𝑝+𝑞
[

𝑧
𝑞

𝑞𝑞𝑝𝑝



−−−−−−−−−−

0,1/𝑞,...,(𝑞−1)/𝑞;1−𝛽/𝑝,1−(𝛽+1)/𝑝,...,1−(𝛽+𝑝−1)/𝑝

] . (42)

Proof. Using the contour integral representation of
generalized Wright function (31) with change of the

variable from 𝑠 to 𝑞𝑠 and multiplication formula (26), we
get

𝑊
𝛾,𝛿

𝑝/𝑞,𝛽
(−𝑧) =

Γ (𝛿)

Γ (𝛾)

𝑞

2𝜋𝑖
∫
𝐿

Γ (𝛾 + 𝑞𝑠)

Γ (𝛿 + 𝑞𝑠) Γ (𝛽 + 𝑝𝑠)
Γ (−𝑞𝑠) 𝑧

𝑞𝑠
𝑑𝑠

= 𝑝
1/2−𝛽

𝑞
𝛾−𝛿+1/2

(2𝜋)
(𝑝−𝑞)/2 Γ (𝛿)

Γ (𝛾)

1

2𝜋𝑖
∫
𝐿

∏
𝑞

𝑟=1
Γ ((𝑟 − 1) /𝑞 − 𝑠)∏

𝑞

𝑟=1
Γ ((𝛾 + 𝑟 − 1) /𝑞 + 𝑠)

∏
𝑞

𝑟=1
Γ ((𝛿 + 𝑟 − 1) /𝑞 + 𝑠)∏

𝑝

𝑟=1
Γ ((𝛽 + 𝑟 − 1) /𝑝 + 𝑠)

(
𝑧
𝑞

𝑞𝑞𝑝𝑝
)

𝑠

𝑑𝑠

= 𝑝
1/2−𝛽

𝑞
𝛾−𝛿+1/2

(2𝜋)
(𝑝−𝑞)/2 Γ (𝛿)

Γ (𝛾)
𝐺
𝑞 𝑞

𝑞 2𝑞+𝑝
[

𝑧
𝑞

𝑞𝑞𝑝𝑝



1−𝛾/𝑞,1−(𝛾+1)/𝑞,...,1−(𝛾+𝑞−1)/𝑞

0,1/𝑞,...,(𝑞−1)/𝑞;1−𝛿/𝑞,1−(𝛿+1)/𝑞,...,1−(𝛿+𝑞−1)/𝑞;1−𝛽/𝑝,1−(𝛽+1)/𝑝,...,1−(𝛽+𝑝−1)/𝑝

] .

(43)

4.4. Relation with Mittag-Leffler Function. Let 𝛼 = 0, 𝛾 =

1, 𝛽, 𝛿 ∈ 𝐶, R(𝛿) > 0; from definition (3), we have

𝑊
1,𝛿

0,𝛽
(𝑧) =

Γ (𝛿)

Γ (𝛽)
𝐸1,𝛿 (𝑧) , (44)

where 𝐸𝛼,𝛽(𝑧) is Mittag-Leffler function (16). If we put 𝛿 =

𝑚 ∈ 𝑁 with using formula (17), then we obtain

𝑊
1,𝑚

0,𝛽
(𝑧) =

Γ (𝑚)

Γ (𝛽)
𝐸1,𝑚 (𝑧)

=
Γ (𝑚)

Γ (𝛽) 𝑧𝑚−1
[𝑒

𝑧
−

𝑚−2

∑

𝑘=0

𝑧
𝑘

𝑘!
] .

(45)

In the same way, if we put 𝛾 = 1 and 𝛼 > 0, then

𝑊
1,𝛿

𝛼,𝛽
(𝑧) = Γ (𝛿) 𝐸(𝛼,1),(𝛽,𝛿) (𝑧) , (46)

where 𝐸(𝛼
𝑖
),(𝛽
𝑖
)(𝑧) is the multiple Mittag-Leffler function

which is defined by formula (18).

4.5. Relation with
𝑝𝐹𝑞

(𝑧)

Theorem 4. Let 𝛼 = 0, 𝛽 ̸= 0, −1, −2, . . . , 𝛿 ̸= 0, −1, −2, . . .,
where 𝛽, 𝛾, 𝛿 ∈ 𝐶; then one has

𝑊
𝛾,𝛿

0,𝛽
(𝑧) =

𝑒
𝑧

Γ (𝛽)
1𝐹1 (𝛿 − 𝛾; 𝛿; − 𝑧) ,

R (𝛿) > R (𝛾) > 0.

(47)

Proof. From the definitions of generalized Wright function
(3) and confluent hypergeometric function ((23); (24)), we
have

𝑊
𝛾,𝛿

0,𝛽
(𝑧) =

1

Γ (𝛽)

∞

∑

𝑛=0

(𝛾)
𝑛
𝑧
𝑛

(𝛿)𝑛 𝑛!
=

1

Γ (𝛽)
1𝐹1 (𝛾; 𝛿; 𝑧)

=
𝑒
𝑧

Γ (𝛽)
1𝐹1 (𝛿 − 𝛾; 𝛿; −𝑧) .

(48)
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Theorem 5. Let 𝛼 = 1, 𝛽 ̸= 0, −1, −2, . . . , 𝛿 ̸= 0, −1, −2, . . .,
where 𝛽, 𝛾, 𝛿 ∈ 𝐶; then one has

𝑊
𝛾,𝛿

1,𝛽
(𝑧) =

1

Γ (𝛽)
1𝐹2 (𝛾; 𝛿, 𝛽; 𝑧) ,

R (𝛿) > R (𝛾) > 0.

(49)

Proof. From the definitions of generalized Wright function
(3) and generalized hypergeometric function, we have

𝑊
𝛾,𝛿

1,𝛽
(𝑧) =

1

Γ (𝛽)

∞

∑

𝑛=0

(𝛾)
𝑛
𝑧
𝑛

(𝛿)𝑛 (𝛽)𝑛
𝑛!

=
1

Γ (𝛽)
1𝐹2 (𝛾; 𝛿, 𝛽; 𝑧) .

(50)

Theorem 6. Let 𝛼 = −1with |𝑧| < 1; 𝛾, 𝛽 ∈ 𝐶, and 𝛿 = 1−𝛽,
where 𝛽 is not integer number; then

𝑊
𝛾,1−𝛽

−1,𝛽
(𝑧) =

1

Γ (𝛽)
(1 + 𝑧)

−𝛾
, (51a)

and, in particular, if 𝛾 = 1 − 𝛽,

𝑊−1,𝛽 (𝑧) =
1

Γ (𝛽)
(1 + 𝑧)

𝛽−1
. (51b)

Proof. From the definitions of generalized Wright function
(3) and formula (27), we have

𝑊
𝛾,1−𝛽

−1,𝛽
(𝑧) =

∞

∑

𝑛=0

(𝛾)
𝑛

(1 − 𝛽)
𝑛
Γ (𝛽 − 𝑛)

𝑧
𝑛

𝑛!

=

∞

∑

𝑛=0

(𝛾)
𝑛
(1 − 𝛽)

𝑛

(1 − 𝛽)
𝑛
Γ (𝛽)

(−1)
𝑛
𝑧
𝑛

𝑛!

=
1

Γ (𝛽)

∞

∑

𝑛=0

(𝛾)
𝑛
(−1)

𝑛
𝑧
𝑛

𝑛!

=
1

Γ (𝛽)
1𝐹0 (𝛾; −; −𝑧) =

1

Γ (𝛽)
(1 + 𝑧)

−𝛾
.

(52)

Theorem 7. Let 𝛼 = −1/2, 𝛽 = 1; 𝛾, 𝛿 ∈ 𝐶; R(𝛾) >

0, R(𝛿) > R(𝛾), andR(𝑧) > 0; then one can deduce that

𝑊
𝛾,𝛿

−1/2,1
(−𝑧) = 1 −

𝛾𝑧

𝛿√𝜋

⋅
3𝐹3

(
1

2
,
1 + 𝛾

2
,
2 + 𝛾

2
;
3

2
,
1 + 𝛿

2
,
2 + 𝛿

2
; −

𝑧
2

4
) .

(53)

Proof. From the integral representation of generalizedWright
function (34) and formula (7), we can deduce that

𝑊
𝛾,𝛿

−1/2,1
(−𝑧) =

Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

⋅ erfc(𝑧𝑢

2
) 𝑑𝑢 =

Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)

⋅ ∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

⋅ [1 −
2

√𝜋

∞

∑

𝑛=0

(−1)
𝑛
(𝑧𝑢/2)

2𝑛+1

𝑛! (2𝑛 + 1)
] 𝑑𝑢 = 1 −

2𝛾

𝛿√𝜋

⋅

∞

∑

𝑛=0

(−1)
𝑛
(1/2)𝑛 (𝑧/2)

2𝑛+1

𝑛! (3/2)𝑛

((1 + 𝛾) /2)
𝑛
((2 + 𝛾) /2)

𝑛

((1 + 𝛿) /2)𝑛 ((2 + 𝛿) /2)𝑛

= 1 −
𝛾𝑧

𝛿√𝜋
3𝐹3

(
1

2
,
1 + 𝛾

2
,
2 + 𝛾

2
;
3

2
,
1 + 𝛿

2
,
2 + 𝛿

2
;

−
𝑧
2

4
) .

(54)

Theorem 8. Let 𝛼 = 1/2; 𝛾, 𝛿 ∈ 𝐶; R(𝛾) > 0, R(𝛿) >

R(𝛾), andR(𝑧) > 0; then one can deduce that

𝑀
𝛾,𝛿

1/2
(𝑧) =

1

√𝜋
2𝐹2 (

𝛾

2
,
1 + 𝛾

2
;
𝛿

2
,
1 + 𝛿

2
; −

𝑧
2

4
) . (55)

Proof. From the integral representation of the auxiliary func-
tions of generalized Wright function (35) and formula (10),
we can deduce that

𝑀
𝛾,𝛿

1/2
(𝑧) =

Γ (𝛿)

√𝜋Γ (𝛾) Γ (𝛿 − 𝛾)

⋅ ∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

𝑒
−𝑧
2

𝑢
2

/4
𝑑𝑢

=
Γ (𝛿)

√𝜋Γ (𝛾) Γ (𝛿 − 𝛾)

⋅ ∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

∞

∑

𝑛=0

(−1)
𝑛
(𝑧𝑢/2)

2𝑛

𝑛!
𝑑𝑢 =

1

√𝜋

⋅

∞

∑

𝑛=0

(−1)
𝑛
(𝑧/2)

2𝑛

𝑛!

(𝛾)
2𝑛

(𝛿)2𝑛

=
1

√𝜋

⋅

∞

∑

𝑛=0

(−1)
𝑛
(𝑧/2)

2𝑛

𝑛!

(𝛾/2)
𝑛
((1 + 𝛾) /2)

𝑛

(𝛿/2)𝑛 ((1 + 𝛿) /2)𝑛

=
1

√𝜋

⋅
2𝐹2 (

𝛾

2
,
1 + 𝛾

2
;
𝛿

2
,
1 + 𝛿

2
; −

𝑧
2

4
) .

(56)



Journal of Mathematics 7

Theorem 9. Let 𝛼 = 1/3; 𝛾, 𝛿 ∈ 𝐶; R(𝛾) > 0, R(𝛿) >

R(𝛾), andR(𝑧) > 0; then one can deduce that

𝑀
𝛾,𝛿

1/3
(𝑧) =

1

Γ (2/3)
3𝐹4

(
𝛾

3
,
1 + 𝛾

3
,
2 + 𝛾

3
;
2

3
,
𝛿

3
,
1 + 𝛿

3
,

2 + 𝛿

3
;
𝑧
3

27
) −

𝛾𝑧

𝛿Γ (1/3)
3𝐹4

(
1 + 𝛾

3
,
2 + 𝛾

3
,
3 + 𝛾

3
;

4

3
,
1 + 𝛿

3
,
2 + 𝛿

3
,
3 + 𝛿

3
;
𝑧
3

27
) .

(57a)

In particular, if 𝛿 = 𝛾 + 1,

𝑀
𝛾,𝛾+1

1/3
(𝑧)

=
1

Γ (2/3)
1𝐹2 (

𝛾

3
;
2

3
,
3 + 𝛾

3
;
𝑧
3

27
)

−
𝛾𝑧

(𝛾 + 1) Γ (1/3)
1𝐹2 (

1 + 𝛾

3
;
4

3
,
4 + 𝛾

3
;
𝑧
3

27
) .

(57b)

Finally, if 𝛾 = 1,

𝑀
1,2

1/3
(𝑧) =

1

Γ (2/3)
1𝐹2 (

1

3
;
2

3
,
4

3
;
𝑧
3

27
)

−
𝑧

2Γ (1/3)
1𝐹2 (

2

3
;
4

3
,
5

3
;
𝑧
3

27
) .

(57c)

Proof. From the integral representation of the auxiliary func-
tions of generalized Wright function (35) and formula (10),
we can deduce that

𝑀
𝛾,𝛿

1/3
(𝑧) =

3
2/3

Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1 Ai( 𝑧𝑢

32/3
)𝑑𝑢

=
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

⋅ [
1

Γ (2/3)
0𝐹1

(
2

3
;
𝑧
3

27
𝑢
3
)

−
𝑧𝑢

Γ (1/3)
0𝐹1

(
4

3
;
𝑧
3

27
𝑢
3
)]𝑑𝑢 =

1

Γ (2/3)

⋅

∞

∑

𝑛=0

(𝛾/3)
𝑛
((1 + 𝛾) /3)

𝑛
((2 + 𝛾) /3)

𝑛

(2/3)𝑛 (𝛿/3)𝑛 ((1 + 𝛿) /3)𝑛 ((2 + 𝛿) /3)𝑛

(𝑧/3)
3𝑛

𝑛!

−
𝛾𝑧

𝛿Γ (1/3)

⋅

∞

∑

𝑛=0

((1 + 𝛾) /3)
𝑛
((2 + 𝛾) /3)

𝑛
((3 + 𝛾) /3)

𝑛

(4/3)𝑛 ((1 + 𝛿) /3)𝑛 ((2 + 𝛿) /3)𝑛 ((3 + 𝛿) /3)𝑛

(𝑧/3)
3𝑛

𝑛!

=
1

Γ (2/3)
3𝐹4

(
𝛾

3
,
1 + 𝛾

3
,
2 + 𝛾

3
;
2

3
,
𝛿

3
,
1 + 𝛿

3
,
2 + 𝛿

3
;
𝑧
3

27
)

−
𝛾𝑧

𝛿Γ (1/3)
3𝐹4

(
1 + 𝛾

3
,
2 + 𝛾

3
,
3 + 𝛾

3
;
4

3
,
1 + 𝛿

3
,
2 + 𝛿

3
,
3 + 𝛿

3
;

𝑧
3

27
) .

(58)

5. Basic Properties of the Generalized
Wright Function

Theorem 10. The important relation between the two auxil-
iary functions ((4); (5)) of generalized Wright function (3) is

𝐹
𝛾,𝛿

𝛼
(𝑧) =

𝛼𝛾𝑧

𝛿
𝑀

𝛾+1,𝛿+1

𝛼
(𝑧) . (59)

Proof. By using the integral representations of two auxiliary
functions ((35); (36)) and formula (9), we have

𝐹
𝛾,𝛿

𝛼
(𝑧)

=
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

𝐹𝛼 (𝑧𝑢) 𝑑𝑢

=
𝛼Γ (𝛿) 𝑧

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾
(1 − 𝑢)

𝛿−𝛾−1
𝑀𝛼 (𝑧𝑢) 𝑑𝑢

=
𝛼Γ (𝛿) 𝑧

Γ (𝛾) Γ (𝛿 − 𝛾)

Γ (𝛾 + 1) Γ (𝛿 − 𝛾)

Γ (𝛿 + 1)
𝑀

𝛾+1,𝛿+1

𝛼
(𝑧)

=
𝛼𝛾𝑧

𝛿
𝑀

𝛾+1,𝛿+1

𝛼
(𝑧) .

(60)

Theorem 11. Let 𝛼 = −1/2, 𝛽 = 1, and 𝛾 ∈ 𝐶; R(𝛾) > 0 and
R(𝑧) > 0; then one can arrive at

𝑊
𝛾,𝛾+1

−1/2,1
(−𝑧) = erfc(𝑧

2
) +

2
𝛾

√𝜋𝑧𝛾
𝛾(

1 + 𝛾

2
,
𝑧
2

4
) , (61)

where 𝛾(𝑎, 𝑥) is incomplete gamma function (29) and erf(𝑥) is
error function (8).

Proof. From the integral representation of generalizedWright
function (34) and formula (7), we have

𝑊
𝛾,𝛾+1

−1/2,1
(−𝑧) = 𝛾∫

1

0

𝑢
𝛾−1

𝑊−1/2,1 (−𝑧𝑢) 𝑑𝑢

= 𝛾∫

1

0

𝑢
𝛾−1 erfc(𝑧𝑢

2
) 𝑑𝑢

=
2𝛾

√𝜋
∫

1

0

𝑢
𝛾−1

𝑑𝑢∫

∞

𝑧𝑢/2

𝑒
−𝑡
2

𝑑𝑡

=
𝑧𝛾

√𝜋
∫

1

0

𝑢
𝛾
𝑑𝑢∫

∞

1

𝑒
−𝑧
2

𝑢
2

𝑡
2

/4
𝑑𝑡

=
𝛾2

𝛾

𝑧𝛾√𝜋
∫

∞

1

𝑡
−𝛾−1

𝛾(
1 + 𝛾

2
,
𝑡
2
𝑧
2

4
)𝑑𝑡

= erfc(𝑧

2
) +

2
𝛾

√𝜋𝑧𝛾
𝛾(

1 + 𝛾

2
,
𝑧
2

4
) .

(62)
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Remark 12. In the case 𝛾 = 2𝑛 + 1, 𝑛 = 0, 1, 2, . . ., we have

𝑊
2𝑛+1,2𝑛+2

−1/2,1
(−𝑧)

= erfc(𝑧

2
) +

2
2𝑛+1

√𝜋𝑧2𝑛+1
𝑛! [1 − 𝑒

−𝑧
2

/4

𝑛

∑

𝑘=0

𝑧
2𝑘

𝑘!22𝑘
] ,

(63)

and in the case 𝛾 = 2𝑛, 𝑛 = 1, 2, . . ., we have

𝑊
2𝑛,2𝑛+1

−1/2,1
(−𝑧) = erfc(𝑧

2
) +

2
2𝑛

√𝜋𝑧2𝑛
(
1

2
)
𝑛

⋅ [√𝜋 erf (𝑧

2
) − 𝑒

−𝑧
2

/4

𝑛

∑

𝑘=1

𝑧
2𝑘−1

(1/2)𝑘 2
2𝑘−1

] .

(64)

Theorem 13. Let 𝛼 = 1/2, 𝛾 ∈ 𝐶; R(𝛾) > 0 and R(𝑧) > 0;
then one has

𝑀
𝛾,𝛾+1

1/2
(𝑧) =

𝛾2
𝛾−1

√𝜋𝑧𝛾
𝛾(

𝛾

2
,
𝑧
2

4
) , (65)

where 𝛾(𝑎, 𝑥) is the incomplete gamma function which is
defined by (29).

Proof. From integral representation (35) of the auxiliary
function 𝑀

𝛾,𝛿

𝛼
(𝑧) with using relation (10) and changing the

variable 𝑧2𝑢2/4 = 𝑡, we have

𝑀
𝛾,𝛾+1

1/2
(𝑧) = 𝛾∫

1

0

𝑢
𝛾−1

𝑀1/2 (𝑧𝑢) 𝑑𝑢

=
𝛾

√𝜋
∫

1

0

𝑢
𝛾−1

𝑒
−𝑧
2

𝑢
2

/4
𝑑𝑢

=
𝛾2

𝛾−1

𝑧𝛾√𝜋
∫

𝑧
2

/4

0

𝑡
𝛾/2−1

𝑒
−𝑡
𝑑𝑡

=
𝛾2

𝛾−1

√𝜋𝑧𝛾
𝛾(

𝛾

2
,
𝑧
2

4
) .

(66)

Corollary 14. Let 𝛾 = 2𝑛+1, 𝑛 = 0, 1, 2, . . ., be an odd integer;
one has

𝑀
2𝑛+1,2𝑛+2

1/2
(𝑧) = (

2

𝑧
)

2𝑛+1

(
1

2
)
𝑛+1

⋅ [erf (𝑧

2
) −

𝑒
−𝑧
2

/4

√𝜋

𝑛

∑

𝑘=1

(𝑧/2)
2𝑘−1

(1/2)𝑘

] ,

(67)

and if 𝛾 = 2𝑛, 𝑛 = 1, 2, . . ., is an even integer, one has

𝑀
2𝑛,2𝑛+1

1/2
(𝑧) =

2
2𝑛
𝑛!

√𝜋𝑧2𝑛
[1 − 𝑒

−𝑧
2

/4

𝑛−1

∑

𝑘=0

𝑧
2𝑘

𝑘!22𝑘
] . (68)

Theorem 15. Let 𝛼 = 1/3 and R(𝑧) > 0; then first auxiliary
function (4) of the generalized Wright function has the forms

𝑀
2,3

1/3
(𝑧) =

6

𝑧2
[3

1/3Ai ( 𝑧

31/3
) +

1

Γ (1/3)
] ,

𝑀
3,4

1/3
(𝑧)

=
9

𝑧3
[3

1/3
𝑧Ai ( 𝑧

31/3
) − 3

2/3Ai( 𝑧

31/3
) +

1

Γ (2/3)
] ,

𝑀
𝑛+4,𝑛+5

1/3
(𝑧)

=
3
2/3

(𝑛 + 4)

𝑧2
Ai ( 𝑧

31/3
)

−
3 (𝑛 + 2) (𝑛 + 3)

𝑧3
Ai( 𝑧

31/3
)

+
3 (𝑛 + 1) (𝑛 + 2) (𝑛 + 4)

𝑧3
∫

1

0

𝑡
𝑛Ai( 𝑧

31/3
𝑡) 𝑑𝑡,

𝑛 = 0, 1, 2, . . . .

(69)

Proof. From the integral representation of 𝑀𝛾,𝛿

1/3
(𝑧) (35) and

relation (11), we can deduce that

𝑀
𝛾,𝛾+1

1/3
(𝑧) = 𝛾∫

1

0

𝑢
𝛾−1

𝑀1/3 (𝑧𝑢) 𝑑𝑢

= 𝛾3
2/3

∫

1

0

𝑢
𝛾−1Ai( 𝑧𝑢

31/3
)𝑑𝑢.

(70)

In the above relation if we change the variable 𝑧𝑢/31/3 = V and
using the relations ((14)-(15)) and integral of Airy’s function
with putting 𝛾 = 2, 𝛾 = 3, and 𝛾 = 𝑛 + 4, 𝑛 = 0, 1, 2, . . ., then
the proof is completed.

6. Recurrence Relations

Theorem 16. Let 𝛼 > −1; 𝑧, 𝛽, 𝛾, 𝛿 ∈ 𝐶; R(𝛾) > 0, R(𝛿) >

R(𝛾); R(𝑧) > 0 and 𝑛 = 0, 1, 2, . . ., then one can deduce the
following recurrence relation:

𝑊
𝛾,𝛾+𝑛+1

𝛼,𝛽
(𝑧)

= (𝛾)
𝑛+1

𝑛

∑

𝑘=0

(−1)
𝑘

𝑘! (𝑛 − 𝑘)! (𝛾 + 𝑘)
𝑊

𝛾+𝑘,𝛾+𝑘+1

𝛼,𝛽
(𝑧) ,

(71)

and, in particular, if 𝑛 = 1,

𝑊
𝛾,𝛾+2

𝛼,𝛽
(𝑧) + 𝛾𝑊

𝛾+1,𝛾+2

𝛼,𝛽
(𝑧) = (𝛾 + 1)𝑊

𝛾,𝛾+1

𝛼,𝛽
(𝑧) . (72)
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Proof. Consider

𝑊
𝛾,𝛾+𝑛+1

𝛼,𝛽
(𝑧) =

Γ (𝛾 + 𝑛 + 1)

Γ (𝛾) Γ (𝑛 + 1)

⋅ ∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝑛
𝑊𝛼,𝛽 (𝑧𝑢) 𝑑𝑢 =

Γ (𝛾 + 𝑛 + 1)

Γ (𝛾) Γ (𝑛 + 1)

⋅

𝑛

∑

𝑘=0

(

𝑛

𝑘
) (−1)

𝑘
∫

1

0

𝑢
𝛾+𝑘−1

𝑊𝛼,𝛽 (𝑧𝑢) 𝑑𝑢 = (𝛾)
𝑛+1

⋅

𝑛

∑

𝑘=0

(−1)
𝑘

𝑘! (𝑛 − 𝑘)! (𝛾 + 𝑘)
𝑊

𝛾+𝑘,𝛾+𝑘+1

𝛼,𝛽
(𝑧) .

(73)

Theorem 17. Let 𝛼 > −1; 𝑧, 𝛽, 𝛾, 𝛿 ∈ 𝐶; R(𝛾) > 0, R(𝛿) >

R(𝛾), andR(𝑧) > 0; then one can deduce that

𝑊
𝛾,𝛿

𝛼,𝛽−1
(𝑧) + (1 − 𝛽)𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧) =

𝛼𝛾𝑧

𝛿
𝑊

𝛾+1,𝛿+1

𝛼,𝛼+𝛽
(𝑧) . (74)

Remark 18. The above theorem can be returned to
Theorem 10 if we substitute 𝛼 = −𝛼, 𝛽 = 1, and 𝑧 = −𝑧.

7. Integral Transforms of the Generalized
Wright Function

In this section, wewill introduce the Euler transform, Laplace
transform, and Mellin transform of the function𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧).

7.1. Euler Transform. The Euler transform of the function
𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧) follows from the beta function

∫

1

0

𝑡
𝑎−1

(1 − 𝑡)
𝑏−1

𝑊
𝛾,𝛿

𝛼,𝛽
(𝑥𝑡

𝜎
) 𝑑𝑡

=
Γ (𝛿) Γ (𝑏)

Γ (𝛾)
2Ψ3

[
(𝛾,1),(𝑎,𝜎);

(𝛿,1),(𝛽,𝛼),(𝑎+𝑏,𝜎);
𝑥] .

(75)

7.2. Laplace Transform. Consider

∫

∞

0

𝑡
𝑎−1

𝑒
−𝑠𝑡

𝑊
𝛾,𝛿

𝛼,𝛽
(𝑥𝑡

𝜎
) 𝑑𝑡

=
Γ (𝛿)

𝑠𝑎Γ (𝛾)
2Ψ2

[
(𝛾,1),(𝑎,𝜎);

(𝛿,1),(𝛽,𝛼);

𝑥

𝑠𝜎
] .

(76)

7.3. Mellin Transform. Consider

∫

∞

0

𝑡
𝑠−1

𝑊
𝛾,𝛿

𝛼,𝛽
(−𝑡) 𝑑𝑡 =

Γ (𝑠) Γ (𝛾 − 𝑠)

Γ (𝛿 − 𝑠) Γ (𝛽 − 𝛼𝑠)
. (77)

8. Derivative of the Generalized
Wright Function

Theorem 19. Let 𝑧, 𝛽, 𝛾, 𝛿 ∈ 𝐶; 𝛼 > −1 and 𝛿 ̸= 0, −1, −2, . . .;
then the first derivative of generalized Wright function (3) has
the form

𝑑

𝑑𝑧
[𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧)] =

𝛾

𝛿
𝑊

𝛾+1,𝛿+1

𝛼,𝛼+𝛽
(𝑧) . (78)

And the higher derivative is

𝑑
𝑚

𝑑𝑧𝑚
[𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧)] =

(𝛾)
𝑚

(𝛿)𝑚

𝑊
𝛾+𝑚,𝛿+𝑚

𝛼,𝑚𝛼+𝛽
(𝑧) ,

𝑚 = 0, 1, 2, . . . .

(79)

Proof. From definition (3), we have

𝑑

𝑑𝑧
[𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧)] =

𝑑

𝑑𝑧

∞

∑

𝑛=0

(𝛾)
𝑛

(𝛿)𝑛 Γ (𝛼𝑛 + 𝛽)

𝑧
𝑛

𝑛!

=

∞

∑

𝑛=1

(𝛾)
𝑛

(𝛿)𝑛 Γ (𝛼𝑛 + 𝛽)

𝑧
𝑛−1

(𝑛 − 1)!

=
𝛾

𝛿

∞

∑

𝑛=0

(𝛾 + 1)
𝑛

(𝛿 + 1)𝑛 Γ (𝛼𝑛 + 𝛼 + 𝛽)

𝑧
𝑛

𝑛!

=
𝛾

𝛿
𝑊

𝛾+1,𝛿+1

𝛼,𝛼+𝛽
(𝑧) .

(80)

By repeating this process 𝑚-times, we arrive at the second
requisition.

Theorem 20. Let 𝑧, 𝛽, 𝛾, 𝛿 ∈ 𝐶; 𝑞 ∈ 𝑁 andR(𝛾) > 0,R(𝛿) >

R(𝛾), andR(𝑧) > 0; then the (𝑞 − 1)𝑡ℎ derivative of auxiliary
function (4) of generalized Wright function (3) has the form

𝑑
𝑞−1

𝑑𝑧𝑞−1
[𝑀

𝛾,𝛿

1/𝑞
(𝑧)] =

(−1)
𝑞−1

(𝛾)
𝑞

𝑞 (𝛿)𝑞

𝑧𝑀
𝛾+𝑞,𝛿+𝑞

1/𝑞
(𝑧) ,

𝑞 = 1, 2, . . . ,

(81)

and, for ℎ = 0, 1, 2, . . . , 𝑞 − 2 at 𝑧 = 0, one obtains

𝑑
ℎ

𝑑𝑧ℎ
[𝑀

𝛾,𝛿

1/𝑞
(𝑧)]

𝑧=0

=
(−1)

ℎ
(𝛾)

ℎ
Γ ((ℎ + 1) /𝑞)

𝜋 (𝛿)ℎ

sin 𝜋 (ℎ + 1)

𝑞
.

(82)
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Proof. From integral representation (35), we have

𝑑
𝑞−1

𝑑𝑧𝑞−1
[𝑀

𝛾,𝛿

1/𝑞
(𝑧)] =

𝑑
𝑞−1

𝑑𝑧𝑞−1
[

Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)

⋅ ∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

𝑀1/𝑞 (𝑧𝑢) 𝑑𝑢]

=
(−1)

𝑞−1
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)
∫

1

0

𝑢
𝛾+𝑞−2

(1 − 𝑢)
𝛿−𝛾−1

⋅
1

2𝜋𝑖
∫
Ha

𝑒
𝑡−𝑧𝑢𝑡

1/𝑞

𝑑𝑡 𝑑𝑢 =
(−1)

𝑞−1
Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)

⋅ ∫

1

0

𝑢
𝛾+𝑞−2

(1 − 𝑢)
𝛿−𝛾−1

𝐹1/𝑞 (𝑧𝑢) 𝑑𝑢

=

(−1)
𝑞−1

(𝛾)
𝑞−1

(𝛿)𝑞−1

𝐹
𝛾+𝑞−1,𝛿+𝑞−1

1/𝑞
(𝑧) ,

(83)

and one can use the relation between two auxiliary functions
of generalized Wright function (59) to complete the proof of
the first requisition. To obtain the second requisition, we start
with definition (4) and reflection formula of gamma function,
as

𝑑
ℎ

𝑑𝑧ℎ
[𝑀

𝛾,𝛿

1/𝑞
(𝑧)]

=
𝑑
ℎ

𝑑𝑧ℎ

∞

∑

𝑛=0

(𝛾)
𝑛

(𝛿)𝑛 Γ (1 − (𝑛 + 1) /𝑞)

(−1)
𝑛
𝑧
𝑛

𝑛!

=

∞

∑

𝑛=ℎ

(𝛾)
𝑛

(𝛿)𝑛 Γ (1 − (𝑛 + 1) /𝑞)

(−1)
𝑛
𝑧
𝑛−ℎ

(𝑛 − ℎ)!
,

(84)

when 𝑧 = 0; then we get

𝑑
ℎ

𝑑𝑧ℎ
[𝑀

𝛾,𝛿

1/𝑞
(𝑧)]

𝑧=0

=
(−1)

ℎ
(𝛾)

ℎ

(𝛿)ℎ Γ (1 − (ℎ + 1) /𝑞)

=
(−1)

ℎ
(𝛾)

ℎ
Γ ((ℎ + 1) /𝑞)

𝜋 (𝛿)ℎ

sin 𝜋 (ℎ + 1)

𝑞
.

(85)

Theorem 21. Let 𝛾, 𝛿 ∈ 𝐶; 𝑛 ∈ 𝑁 ∪ {0}, 0 < 𝛼 < 1,R(𝛾) > 0,
andR(𝛿) > R(𝛾); then one has

∫

∞

0

𝑟
𝑛
𝑀

𝛾,𝛿

𝛼
(𝑟) 𝑑𝑟 =

Γ (𝑛 + 1)

Γ (𝛼𝑛 + 1)

(1 − 𝛿)𝑛+1

(1 − 𝛾)
𝑛+1

. (86)

In particular, if 𝑛 = 0, then one obtains

∫

∞

0

𝑀
𝛾,𝛿

𝛼
(𝑟) 𝑑𝑟 =

1 − 𝛿

1 − 𝛾
. (87)

Proof. Consider

∫

∞

0

𝑟
𝑛
𝑀

𝛾,𝛿

𝛼
(𝑟) 𝑑𝑟 =

Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)

⋅ ∫

1

0

𝑢
𝛾−1

(1 − 𝑢)
𝛿−𝛾−1

∫

∞

0

𝑟
𝑛
𝑀𝛼 (𝑟𝑢) 𝑑𝑟 𝑑𝑢

=
𝑛!Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾)

⋅ ∫

1

0

𝑢
𝛾−𝑛−2

(1 − 𝑢)
𝛿−𝛾−1 1

2𝜋𝑖
∫
Ha

𝑡
−𝛼𝑛−1

𝑒
𝑡
𝑑𝑡 𝑑𝑢

=
𝑛!Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾) Γ (𝛼𝑛 + 1)

⋅ ∫

1

0

𝑢
𝛾−𝑛−2

(1 − 𝑢)
𝛿−𝛾−1

𝑑𝑢

=
𝑛!Γ (𝛿)

Γ (𝛾) Γ (𝛿 − 𝛾) Γ (𝛼𝑛 + 1)

⋅
Γ (𝛾 − 𝑛 − 1) Γ (𝛿 − 𝛾)

Γ (𝛿 − 𝑛 − 1)
=

Γ (𝑛 + 1)

Γ (𝛼𝑛 + 1)

(1 − 𝛿)𝑛+1

(1 − 𝛾)
𝑛+1

.

(88)

9. Conclusion

In this paper, we generalize the definition of Wright function
(1) and its auxiliary functions (2) to be the function 𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧)

defined as in (3) and its auxiliary functions (4) and (5). The
properties of 𝑊

𝛾,𝛿

𝛼,𝛽
(𝑧) including its auxiliary functions and

the integral representations are provided and proven. The
relationship with some known special functions like Fox 𝐻-
function, Fox-Wright function, Meijer 𝐺-function, Mittag-
Leffler function, and generalized hypergeometric function
are given.TheEuler transform, Laplace transform, andMellin
transform of function (3) are introduced.
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