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The paper is devoted to the study of the function Wl’g(z), which is an extension of the classical Wright function and Kummer

confluent hypergeometric function. The properties of W;',"s(z) including its auxiliary functions and the integral representations are

proven.

1. Introduction

The special functions of mathematical physics are found to be
very useful for finding solutions of initial and/or boundary-
value problems governed by partial differential equations
and fractional differential equations. Special functions have
widespread applications in other areas of mathematics and
often new perspectives in special functions are motivated by
such connections. Several special functions, called recently
special functions of fractional calculus, play a very important
and interesting role as solutions of fractional order differ-
ential equations, such as the Mittag-Leffler function, Wright
function with its auxiliary functions, and Fox’s H-function.
The Wright function is one of the special functions which
plays an important role in the solution of linear partial
fractional differential equations. It was introduced for the
first time in [1, 2] in connection with a problem in the
number theory regarding the asymptotic of the number of
some special partitions of the natural numbers. Recently this
function has appeared in papers related to partial differential
equations of fractional order. Considering the boundary-
value problems for the fractional diffusion-wave equation,
that is, the linear partial integrodifferential equation obtained
from the classical diffusion or wave equation by replacing
the first- or second-order time derivative by a fractional
derivative of order o with 0 < « < 2, it was found that the
corresponding Green functions can be represented in terms

of the Wright function. Furthermore, extending the methods
of Lie groups in partial differential equations to the partial
differential equations of fractional order, it was shown that
some of the group-invariant solutions of these equations can
be given in terms of the Wright and the generalized Wright
functions [3]. A list of formulas concerning this function can
be found in the handbook of Bateman Project, Erdélyi et al.
1953 [4]; see also [3, 5-11].

The Wright function is defined by the series representa-
tion, valid in the whole complex plane

0 2"
Woc,ﬁ (Z) = ;m, o> -1, ﬁ eC. (1)

It is an entire function of order 1/(1 + «), which has
been known also as generalized Bessel (or Bessel Maitland)
function [12, 13]. There are two auxiliary functions of Wright
function defined as

x (-1)" 2"
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where the function M (z) is recently known as the Mainardi
function [12,13]. In a continuation of this study, we investigate

the generalized Wright function Wo’:ﬁ(z) which is defined for

realaand 3,9, € C; a« > -1, § # 0,-1,-2,... withz € C
and |z| < 1 with @ = —1 as
) Z"
W (z) = 2 3
xp () ,;,(5)nr(om ¥ )l G)
where (y), = T(y + n)/T(y) = y(y + D(y +2)---(y +n—-1)

is a Pochhammer symbol and I'(-) is a gamma function. The
function W;"’Ig(z) is an entire function of order 1/(1 + «) and
generalized Wright function (1).

By analogy with (2), one can also introduce the two
(generalized Wright type) auxiliary functions for any order
« € (0,1) and for all complex variable z # 0 by

Mz’s (Z) Wyofl —a (—Z)
y " (4)
(-1)"z
25) 1"(1—oc(n+1)) n
B @) e W ()= 3 W CD2"

=(0),T(~an) n!

2. Basic Definitions

In this section, the definitions of some special functions
and their properties necessary for our studies on generalized
Wright function (3) and its auxiliary functions (4) and (5) will
be presented to provide convenient references.

2.1. Wright Function. The Wright function which is defined
by (1) has the Hankel contour integral representation and
special case

1 _ o
Wep@) =5 | e, (©)
’ 271 JHa

W_1)2,1 (=2) = erfc <§> , (7)

where Ha is the Hankel contour and erfc(z) is the comple-
mentary error function which is defined as

erfc(z) = % JOO e_tzdt =1-erf(z). (8)

The important relation between two auxiliary functions (2) of
Wright function (1) and some special cases are

F,(z) = azM, (z), )

1
M1/2 (2) = ﬁe /4’ (10)
My (2) = 3 Ai ( = ) (1)
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where Ai(z) is Airy’s function which is the one of the linearly
independent solutions of the ordinary differential equation
y" — zy = 0 and has the following properties [14, 15]:

Ai(x) = %vz [1,1,3 (§x3/2> -1 <§x3/2)] (12)
IS S
C 321 (2/3) 1\ 37 9
(13)
X o (sx
3180 (1/3) " 1\ 379 )’
o 1
Ai(0) = 32/3T (2/3)’ 1
|
AL (0)= 3131 (1/3)°

Airy’s function has, from its differential equation, the follow-
ing indefinite integrals:

J x Ai(x)dx = Ai' (x),
J x2Ai (x) dx = x Ai’ (x) — Ai(x),
J XPAL(x) dx = XA (x) - (n+2) Al () (1D)
+(mn+1)(n+2) J x"Ai (x) dx,
n=012,....

2.2. Mittag-Leffler Function. A two-parameter function of the
Mittag-Leffler type is defined by the series expansion [12, 13]

k

4
For )= L5k

k=0

(>0, BeC). (16)

It follows from the definition that

m-2 k
Ey (2) = [ Z p ] (17)
Let m > 1 be an integer, let p;,p5...,p, > 0, and let
Ui > M, be arbitrary real numbers. By means of “multi-

index” (p;), (4;), we introduce the so-called multi-index
Mittag-Leftler functions [16, 17]:
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k

Epu) (@) = D iz
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2.3. Fox-Wright Function. The Fox-Wright
has series representation [5, 12, 18-20]:

oY (z) function
q

(9]

(anr)en(apas)s | _ zP:lr (a; + aym) Z_n
[ (o). (bq’ﬁq);z] - r;)n?ﬂr(bj + ﬁj”) n!’ (19)

The Fox-Wright W-function is special case of Foxs H-
function:

[(al,al) ..... (ap,); ]

(8181 )5 (BB )5 (20)

oqlp (1=ay,0p)-(1-ayap) ]
Hpqﬂ[ 2l (0,0),01by By )1 )

where H;"q”[ z| Zk g")q ] denotes the Fox H-function [21] which

can be expressed as Mellin-Barnes contour integral represen-
tation in the form

(@A ] _ L
) = sl =
21
J TS, T (b - Bys) H?:lf(l—aj+sAj) oy (1)
. N
P
L Z:erlr(l _bk+5Bk) Hj:nﬂr(aj —SAJ-)

where L is a suitable contour in the complex s-plane, the
orders (m, n, p,q) are integers 1 < m < gq,0 < n < p, and the
parametersa; € R,A;>0,j=1,2,..., p,and b, € R, B, >0,
I(; T ;,2,...,q, are suchthatAj(bk +1) # Bk(aj —-i-1),i=

2.4. Meijer G-Function. In 1936, C. S. Meijer introduced the
G-function as [14]

Gy (+lir) = Gy (slezi) = Hyy | sl |
Z H;Vl:lr(cj - Ck) H;l:lr(l + G — aj)xck

) kZ; H?=m+lr (1 TG~ Cj) Hﬁ):”*lr (aj - Ck)

(22)
-qu_l(l
tG—ap...l+g-apl+g-c,....1+¢q
— ¢ (-DF " x),
where 1 < m < g0 < n < p < g-1,and

» ¢ X) is the generalized hypergeomet-

PFq(al,...,ap;cl,...

ric function which is defined as

v r= 1(61) x"
qu(al,...,ap;cl,...,cq;x)=,§) (b) i (23)

If p = g = 1, we have the confluent hypergeometric function
which has the integral representation with the property

\F, (a5 b5 x)

_ r(b) ! a-1 b-a-1 xu
= m -[0 u (1 - M) e du (24)

=é* \Fp(b-asb;—x).

2.5. Gamma Function and Incomplete Gamma Function. The
contour integral representation for the reciprocal gamma
function, multiplication formula, and important property
[22] are

1 1 t -«
—_— = t%dt,
') 2mi JHae 25)

— e T (x+r—1
I (x) = m* 2 (2m) Vzgr(T), (26)
F(a—n):(_l)n—rw), n=0,1,2,.... (27)
(l_a)n

The upper and lower incomplete gamma function, respec-
tively, are

T'(s,x) = rots_le_tdt, R (s) > 0, (28)
y(s,x) = r Sletdr, R (s) > 0. (29)
0

The two types of incomplete gamma function have the
properties

L(s,x)+y(s,x)=T(s),

y(%,z2> = Vrerf (z),
n-1_k
y(n,z):(n—l)![l—e_z —:|, n=12,...,
k=0

1 2)
y(n+ 2,z

( ) [\/_erf(z)—e

(30)

2k-1

zZ
pra]

n=12,....

3. Integral Representations of the Generalized
Wright Function

Here, we introduce the Mellin-Barnes contour integral repre-
sentation and definite integral representation of function (3).

Theorem 1 (Mellin-Barnes contour integral representation).
Leta > -1; 9,8, € C,and§ + 0,—-1,-2,.... Then function
(3) can be represented by the Mellin-Barnes contour integral as

Wl (@)
IO [T+ I
F(y) 2mi JL TS +s)T(B+as )F(—s)(—z) ds,



where z is not equal to zero and
(-2)° = exp [s (log |z| +iarg(-z))], (32)

in which log denotes the natural logarithm and |arg(—z)| is not
necessarily the principal value, and L is a suitable path in the
complex s-plane which runs from s = —ico to s = ico, so the
pointss =n,n=0,1,2,..., lie to the right of a contour L and
the pointss = —y —n,n =0, 1,2,..., lie to its left.

Proof. Consider the integral in (31) with the contour L
replaced by the contour Cy consisting of a large clockwise-
oriented semicircle of radius R and the center of the origin
which lies to the right of the contour L and is bounded away
from the poles. We can apply Cauchy’s theorem (Residues
Theorem) to the closed contour which is consisting of the
contour Cy and that part of L terminated above and below
by Cras R — ©00; we obtain

! J PO*S) Ly oy ds

27 J T +9)T (B +as)

_ . F(y+5) .
_Z?““{rw+wrw+agf“ﬂem]

33
— 001 l_‘(V'l's) : . ( )
_ng[r®+ﬂrw+aﬂﬁ_m Fﬂ#a]
— \ F(V+I’l) Z”_I‘(y) v5
) Zr(5+”)F(ﬁ+0m) AT Ves @

0

Theorem 2. Let « > —1; y,6, € C, and R(5) > R(y) > 0.
Then function (3) can be represented as

We (2)
= & ! y-1 _ 5,],,1 (34)
T ()T (8-y) L w1 -u) W, p (zu) du,
and consequently one can get
ML (z)
L& y-1 S-y-1 (35)
T(y)T(5-y) J (1-u) M, (zu) du,
FI° (2)
B N RS P (36)
r()rE-y) J (1= )" " Ey (zu) du

Proof. Using the contour integral representation for recip-
rocal gamma function (25), the integral representation of
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confluent hypergeometric function (23), and the Hankel
contour integral representation of Wright function (6), then

2(y), 2"
= (0),, nl

/3( )_Z (V)n Zn

Z(0), T (an+p) n 2711

B _ 1 B (o) —an_n
J Pty = —J t ﬂetZ%t—Zdt
Ha 271 JHa =), n!

L R S !
=50 J-Hat e \F (y:8;2t %) dt = o JHat e
r((S) J y— 1(1 u)8 y— lezut du dt (37)
L(y)T(8-y)
I'(5) J y-1 5—y-1
e (1-u)"
“T()rE-y)
1 -B t+zut™® I'(5)
LI [ dtdu=——O
2mi L ¢ T -y)
1
. j W1 - w)’ ! W, (z1) dut.
’ 0

4. Relationship with Some Known
Special Functions

We devote this section to studying the relationship between
generalized Wright function (3) and some known special
functions like Fox H-function, Fox-Wright function, Meijer
G-function, Mittag-Leftler function, and generalized hyper-
geometric function.

4.1. Relation with Fox H-Function. Using (31) and the defini-
tion of Fox H-function, we obtain

F(5) [ (D) ]

.0 _
W (—) F() 13 (0,1),(1-B,x),(1-6,1) | * (38)

4.2. Relation with Fox Wright Function. Generalized Wright
function (3) can be represented by Fox Wright function (19)
as

_ T (11)s ]

5= NORE [wn(ﬁa) (9)

4.3. Relation with Meijer G-Function. From the definitions of
generalized Wright function (3) and Meijer G-function (22)
with & = 1, we obtain

L©)
r (y)

Theorem 3. Let « = p/q be a rational number with p,q €
Nu{0}, g+ 0; y,6,8 € Cand§ + 0,—-1,-2,..; then one
has

ﬁ(_) [ |01ﬁ16] (40)



Journal of Mathematics 5
»o
Wp/qﬁ( 2)
41)
1-y/q1-(y+1)/q,...1-(y+q-1)/q (
= B B2 (5 ()2 L) ~aq z1
—P q T r( ) q2q+p q p
4 4*P510,1/g,.r(q-1)/g:1-0/ @1~ (0+1) /1~ (8+G~1) /g1~ B/ p,1—~(B+1)/ pro]~(B+p—1)/ p
In particular, if y = 6,
(p-a)j2 1)2-B 1)2q0 | 2V |
Wiy (-2) = 2m) P92 pl2F gl2Ga0 [ = ] (42)
Q" P 10,1/g,...(q-1)/ g1/ p1~(B+1)/ prsl ~(B+p-1)/ p

Proof. Using the contour integral

L&ij T (y+4s)
o

y,0
Weias 2 = T3y 2ni [ T 0+ a9) T (B + p)

rlq

representation  of
generalized Wright function (31) with change of the

I (—gs)z%ds

Z:lr((r -1)/q9- 5)

variable from s to gs and multiplication formula (26), we
get

= P ameon LOLL

1/2- —0+1/2 -q)/2
=p/ ﬁqy +1/ (271)(17 9/

4.4. Relation with Mittag-Leffler Function. Let « = 0, y =
1, 5,6 € C, R(J) > 0; from definition (3), we have

I'(8)

Wit @) = 1 )P

1,8 (Z) > (44)

where E, p(2) is Mittag-Leffler function (16). If we put § =
m € N with using formula (17), then we obtain

m I'(m)
(45)
__wﬂ_k_“é]
r(B)zm1 Sk
In the same way, if we puty = 1 and « > 0, then
W3 (2) = T (0) Eqg1), 50 (2) (46)

L((y+r-1)/q+s) ( 21 >5ds

; (43)
T(y)2mi S [T T (S +7r-1)/q+s) [T, T((B+r-1)/p+s) \qp?
(5) . [ 24 |1V/al-04D)/q.1-(r+a-1)/q :|
q
q2q+p
r(y) GPP 10,1/g,..g-1)/G1-6/4,1-(6+1)/ gy 1~(E4q-1)/ 1=/ p1—(B+1)/ proc1—(B+p-1)/ p
O

where E,) (z) is the multiple Mittag-Leffler function
which is defined by formula (18).

4.5. Relation with PFq(Z)

Theorem 4. Letax =0, f+ 0,-1,—
where f3,y,8 € C; then one has

, 0 #0,-1,-

Wi @)= < By (-85 2),

r (.3) (47)
RS >R(y) >o.
Proof. From the definitions of generalized Wright function

(3) and confluent hypergeometric function ((23); (24)), we
have

w1 (1),
Wog (92 r(ﬁ),;)(&n n T

1
(@) 1 Fr (r92) as)

F([S)IF L(6-9:8;-2).
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Theorem 5. Letax =1, f #0,-1,-2,..., § # 0,-1,-2,..,,
where 3,y,8 € C; then one has
j (2) =~ Fy (138, B 2).
ﬂ 1"(/3) (49)

R () >R (y)>o0.

Proof. From the definitions of generalized Wright function
(3) and generalized hypergeometric function, we have

7,0 _ RS (Y)n z
Wi T 2®), @, (50)
1
— ;0,B52).
I“(,B)IFZ(Y B;z) -

Theorem 6. Leta = -1 with|z| <1; y,f € C,and§ =1-p5,
where [3 is not integer number; then

whi P (z) = ( 5o’ (51a)
and, in particular, ify = 1 - 5,
Wop(@) =1 ( 5o (51b)

Proof. From the definitions of generalized Wright function
(3) and formula (27), we have

yl B _ < (Y)n Z_n

WO B,
X W), 0-p), (1)
_,;)(l-ﬁ)nf(ﬁ) n! (52)

L),
_F(ﬁ),;) i

)IF o (1s—5-2) = (1+2)7.

T (ﬁ r (ﬁ)

O

Theorem 7. Let « = -1/2, B = 1, 9,0 € C; R(y) >
0, R(S) > R(y), and R(z) > 0; then one can deduce that

0
Wy1/21( Z)_I_S\/_

W\ 53)
1 1+y 2+y 3 146 2+8 =z
- 5F, ;= —= ).

> > > > > >

222 272 2 2 4
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Proof. From the integral representation of generalized Wright
function (34) and formula (7), we can deduce that

y,6 o r(8) ! y=1 .7 _ \0-y-1
Wt 9= T ) b Y
zu 3 ING))
(34 rre
1
A J uy—l (1 _ u)(‘i—y—l
0
(-1)" (zu/2)"""! _ 2y
[ Z n'(2n+1) ]du—l—m (54)

_ i (=" (1/2), (/2" (1 +7y) /2), (2 +7y) [2),
S nlG/2), ((1+8)/2),(2+9)/2),

=1-

yz (1 1+y 24y 3 148 2496

’\/_3F3 P > P )2) P > 2 5

O

Theorem 8. Let « = 1/2; y,6 € C; R(y) > 0, R(S) >
R(y), and R(z) > 0; then one can deduce that

1 l+y & 148 2°
M) (2) = —= ,F (3,—V;—,—;——). (55)

Proof. From the integral representation of the auxiliary func-
tions of generalized Wright function (35) and formula (10),
we can deduce that

r'(9)
VAT ()T (6 - y)

1 2,2
. J W1 —w)lr e E Y gy
0

0 -
MI/Z( ) -

O
VAL (y)T(8-y)

1 B o 0 (_l)n (ZM/Z)ZH 1
'Jo W - IQT”’“ T (56)

PV CD” W L

(8)211 - \/E
SR 012, (D), 1
=0 n! 6/2),,(1+6)/2), m
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Theorem 9. Let « = 1/3; y,8 € C; R(y) > 0, R(S) >
R(y), and R(z) > 0; then one can deduce that

(z) 1 y 1+y 2+y 28 1+6
1/3 T(2/3)*4\3 3 3 °33 3°
2+0 z yz I1+y 2+9 3+y
R - > > 5 57
3 27) 6r(1/3)3F4< 330 50 O
4146 246 346 2°
3737 37 3 727)°
In particular, if § =y + 1,
MIE (2)
S p(r23+y 2
re/3)2\3’3" 3 27 (57b)
BN A S A
(y+1)r(/3) "2\ 3’3 3 '27)°
Finally, ify = 1,
1 12472
M (2) = = PP i
v ) = a3 1F2<3 3’3 27)
(57¢)

: (2452
T 2r(1/3) 2\333
Proof. From the integral representation of the auxiliary func-

tions of generalized Wright function (35) and formula (10),
we can deduce that

32/31"(8) L S—p-1 4. [ RU
WLMV (1-u)" Al(ﬁ)du

= Lﬁ) e L= S-y-1
R @—wJ (=

{ramen (35+)
r<1/3>° 1<3 27" )]

. i (1/3),((L+9)/3),((2+7)/3),  (z/3)™
£(2/3),(8/3), (1 +6)/3), (2 +8) /3), n! (58)

1/3( )

T (2/3)

__Y=
8T (1/3)

i ((1+9)/3),(2+7)/3),(B+v)/3), (/3™
= (4/3),(1+6)/3),(2+8)/3),(3+8)/3), n!

1 F Xl+y2+yg§1+82+8i
T T(2/3)3"

Y= l+y 24y 3+y 4 1+8 2+0 3+6,
Sr(1/3)3° 4

2
27 )"

5. Basic Properties of the Generalized
Wright Function

Theorem 10. The important relation between the two auxil-
iary functions ((4); (5)) of generalized Wright function (3) is

ayz

5 My+16+1 (Z) ) (59)

F° (z) =

Proof. By using the integral representations of two auxiliary
functions ((35); (36)) and formula (9), we have

F1® (2)
= L‘S) e S-y-1
= NORCE )J (1-w) E, (zu) du
_ al'(9)z eyt
=TT (6 (y)I‘((S— y) L u’ (1 -u) M, (zu) du (60)
_ al () z F(Y + 1) F((S - Y) p+1,6+1 (2)
T(y)T@-y) T@+1) «
_% y+1,6+1
= M (2).

O

Theorem 11. Let = -1/2, f =1, andy € C; R(y) > 0 and
R(z) > 0; then one can arrive at

2y l+y z
\/_ZV<2’4>’ (61)

where y(a, x) is incomplete gamma function (29) and erf(x) is
error function (8).

wrrH (-2) = erfc<z>

-1/2,1

Proof. From the integral representation of generalized Wright
function (34) and formula (7), we have

1
Wj}l};;ll (-2)=vy L uY71W_1/2,1 (—zu) du

2y Jl y-1 JOO -t
=— | u du e dt
\/ﬁ 0 zu/2

(62)
_ A Jl y Joo —Zut? /4
=— | u'du e dt
Vi o 1
2V [ 1 222
AP
PRV 2 4
3 z 2Y 1+y 2
- ete(5)+ (Tz)
O



Remark 12. Inthecasey =2n+1,n=0,1,2,..., we have

2n+1,2n+2
Wi (-2)

2n+1 n o _2k (63)
z 2 z
= )= a1 TAY 2
erfc<2> + NET n! [l e ,;)k!?k]
and in the case y = 2n,n = 1,2, ..., we have
2n
2n,2n+1 _ z 2 1
W -erte(3) 725 (3),

n 2k—1 (64)
. E\_ Ay _ 2
[\/Eerf<2> € ,;(1/2)k22k‘1]'

Theorem 13. Let o = 1/2, y € C; R(y) > 0 and R(z) > 0;

then one has
( vz ) , (65)

where y(a,x) is the incomplete gamma function which is
defined by (29).

1
Mf/? (2) =

y2r
N

Proof. From integral representation (35) of the auxiliary
function M}X”‘s(z) with using relation (10) and changing the
variable z2u?/4 = t, we have

MIE (z) =y J "My, (zu) du

1 2.2
_ Y J uy—le—z u /4du
0

v (66)
_ y2r! rZ/ .
PARV
- sz 1 y ZZ
\/Ezvy 2’ 4
O

Corollary14. Lety =2n+1,n=0,1,2,..,,

one has
M2 0y <2>2n+1 (l)
1/2 2 n+l

. [erf<§> ) e—z2/4 n (2/2)2k—1 ] )

\/7_.[ k=1 (1/2)k
andify =2n,n=1,2,..

be an odd integer;

(67)

. is an even integer, one has

Mf7£2n+1 (Z) —

2t [1_622/4»121 = ] (68)
\/EZZ" k=0k!22k
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Theorem 15. Let o« = 1/3 and R(z) > 0; then first auxiliary
function (4) of the generalized Wright function has the forms

23, 6 (13,0 ( 2 1
Mw(z)—;[3 A (55)* |

M7 (2)

[ (5)-n () ]
= 2|3 ( Zo) = 3ai( ) ¢ —— |,
23[ "\ "\33) T T 23)

M;l/+34,n+5 (Z )

) 32/3 (n+4)Ai’ (i) (69)

- z2 31/3
3 (n+2)(n+3)

z3 Al<31/3)

3n+1l)(n+2)(n+4)
+ p jotA<31/3 )dt,

n=0,12,....

Proof. From the integral representation of M (z) (35) and

relation (11), we can deduce that

1/3

M (z) = J "My 5 (zu) du

1/3

(70)
_ 2203 y-1
=3 L A1(31/3>du

In the above relation if we change the variable zu/3'/*> = vand

using the relations ((14)-(15)) and integral of Airy’s function
with puttingy =2,y =3,andy=n+4,n=0,1,2,..., then
the proof is completed. O

6. Recurrence Relations

Theorem 16. Let ¢ > —1; z,3,9,0 € C; R(y) > 0, R() >
Ry R(z) > 0andn = 0,1,2,..., then one can deduce the
following recurrence relation:

Wy l);/+n+1 (Z)

y+k,y+k+1 (Z) (71)

>

_ S (-1
W ,;)k! (n—K)!(y + k)
and, in particular, ifn = 1,

Wy P2 (2) + wa“ M2 (2) = (y+1) W M), (72)
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Proof. Consider

T(y+n+1)

ysy+n+l _
We (Z)_l"(y)l"(n+l)

o

1 r (y +n+ 1)
. vl P ¥
Jo W A-w)'wW o (21) du = T T 1)
n n 1 (73)
-y (k) -1)F L u”k_lW“,ﬁ (zu)du = (y),,,
k=0
. - ( 1) y+k,y+k+1
,;)kl -k (y + k) @).
O

Theorem 17. Let o > —1; z,3,9,8 € C; R(y) > 0, R() >
R(y), and R(z) > 0; then one can deduce that

W}’5 (Z) n (1 _ﬁ) ﬁ( ) _ (XYZWV+16+1( ) (74)

aa+f

Remark 18. The above theorem can be returned to
Theorem 10 if we substitute « = —a, f=1,and z = —z.

7. Integral Transforms of the Generalized
Wright Function

In this section, we will introduce the Euler transform, Laplace
transform, and Mellin transform of the function W;"g(z).

71. Euler Transform. The Euler transform of the function
WZ;; (z) follows from the beta function

Jl ta—l (1 )h IWy(S(xt )
0

_TOI®) 7

T(y)

(y>1):(a.0);
273 [ (3.0),(B).(a+bo)

7.2. Laplace Transform. Consider

0 5
J £ e WY (xt7) dt
. :

T (y,l),m,a);ﬁ]
ST (p) 2 2 Lo (pa)s |

7.3. Mellin Transform. Consider

T($T(y-s)
F@-s)T(f-as)

J £ 1wyﬁ( t)dt = (77)
0

8. Derivative of the Generalized
Wright Function

Theorem 19. Letz,f3,y,0 € C;a > -1and§ #0,-1,-2,..;
then the first derivative of generalized Wright function (3) has
the form

a0+

2 wi@] = twrit . (78)

And the higher derivative is

dm (V) y+m S+m
dzm [ ( )] (5) “m“ﬂg =), (79)
m=0,1,2,....
Proof. From definition (3), we have
d 3 W, 2
dz [ e )] dz2(8),T (an + ) n!
0 Zn—l
Z’(é) I‘ ocn+ﬁ) (n-1)!
(80)

_zi b+n, =
) =0 +1),T(an+a+ p)n!

Y +1,0+1
SWZ(H/S ( ) :

By repeating this process m-times, we arrive at the second
requisition. O

Theorem 20. Letz,3,7,0 € C; q € N and R(y) > 0, R(S) >
R(y), and R(z) > 0; then the (q — 1)th derivative of auxiliary
function (4) of generalized Wright function (3) has the form

4 DT (y), 5
ZMYT0 ()
dz1! [ la @ )] q(8), va ) (81)
q=1.2,...,
and, forh =0,1,2,...,q -2 at z = 0, one obtains
dh
dz . [Mr/(‘sf( )]2:0
(82)
_CED I+ /q) (e )
7 (8)y, q
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Proof. From integral representation (35), we have

da
dza!

(M7 )] = a [ TO)
Va dzt™ [T (y)T(6-y)

1
) J TR ) L M, (zu) du]
0

_ (_l)q_lr(s) ! y+q-2 (1 \6—y-1
STy J -

1 Y
—J e dt du =
Ha

27T

(83)
DT ©)

T(y)T(8-y)

1
. L w2 (1 — )1t Fy), (zu) du

_1)q!
_ 1) (Y)q—l Fy+q—1,5+q—l (Z) ,

(é)q—l l/q

and one can use the relation between two auxiliary functions
of generalized Wright function (59) to complete the proof of
the first requisition. To obtain the second requisition, we start
with definition (4) and reflection formula of gamma function,
as

4"
=

d" X
__hZ

M{/‘; (z)]

(_l)n zf’l
1—(n+ )/q) n

(84)

( l)n n-h
T TORN 1—(n+1)/q) n-h "’

M8

when z = 0; then we get

(—l)h (V)h
Ir(1-(h+1)/q) (85)

_(-)"(y), T ((h+1)/q) LGRS
- 7 () q .

"
dz" [ l/q( )] 2=0 (5)h

O

Theorem 21. Lety,0 €e CGGne NU{0},0<a <1, R(y) >0,
and R(8) > R(y); then one has

0 I'(n+1) (1-9)
nMy,6 dr = n+l .
L r'M/” (r)dr Fans 1) (1-y).., (86)
In particular, if n = 0, then one obtains
J M (rydr = 120 (87)
0 -y

Journal of Mathematics

Proof. Consider
I'(9)

v r"MK"S (rdr= ———+——
Jo L(y)r@-y)
1 0
. J W - w)lr! J "M, (ru) dr du
0 0

O
T(y)T(6-y)

1
e 1 1 -
_JuynZ(l_u)6y1 J anltdtdu
0 2711 JHa

(88)
a n!T (6)
S T()T(@E-y)T(an+1)
-Jlu"*"*z(l —u)’ "y
0
3 n!l (6)
CT()T(E-y)T(an+1)
T(y-n-DI@-y)  Tmr+1) (1-8),m.
r@-n-1  T(an+1)(1-y),,"
O

9. Conclusion

In this paper, we generalize the definition of Wright function
(1) and its auxiliary functions (2) to be the function Wo’;’g(z)
defined as in (3) and its auxiliary functions (4) and (5). The
properties of W;/)’g(z) including its auxiliary functions and
the integral representations are provided and proven. The
relationship with some known special functions like Fox H-
function, Fox-Wright function, Meijer G-function, Mittag-
Leffler function, and generalized hypergeometric function
are given. The Euler transform, Laplace transform, and Mellin
transform of function (3) are introduced.
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