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We study the restriction of simplemodules𝐷𝑓,𝜆 of Birman-Murakami-Wenzl algebrasB𝑛(𝑟, 𝑞)with 𝑞 being not a root of 1. Precisely,
we study the module structure for the restriction of 𝐷𝑓,𝜆 to B𝑛−1(𝑟, 𝑞) and describe the socle and head of the restriction of each
simple module completely.

1. Introduction

Classical Schur-Weyl duality relates the representations of
the symmetric and general linear groups via their actions on
tensor space. Brauer [1] introduced a class of algebras called
Brauer algebras to generalize the classical Schur-Weyl duality.
He proved that there is a Schur-Weyl duality between Brauer
algebras with some special parameters overC and orthogonal
or symplectic groups.

Birman-Wenzl [2] andMurakami [3] introduced a class of
associative algebras B𝑛(𝑟, 𝑞) independently, called Birman-
Murakami-Wenzl algebras, in order to study link invariants.
On the other hand, there is a Schur-Weyl duality between
B𝑛(𝑟, 𝑞) with some special parameters over C and quantum
groups of types B, C, andD [4]. So, BMWalgebras can be seen
as the 𝑞-deformation of Brauer algebras.

Recently, based on the results of decomposition numbers
of Brauer algebras, De Visscher and Martin [5] described
the module structure of the restriction of simple modules
of Brauer algebras by using certain combinatorial graph. In
[6], the author gave a combinatorial algorithm for computing
decomposition numbers of BMW algebras. Motivated by
these works, we study the restriction of simple modules of
BMW algebras in this paper.

We organize this paper as follows: in Section 2, we recall
some results on representation theory of BMW algebras.
Then, we will describe the structure of the restriction from
B𝑛(𝑟, 𝑞) toB𝑛−1(𝑟, 𝑞) for simple modules in Section 3.

2. Birman-Murakami-Wenzl Algebra

In this section, we recall some results on the BMW algebra
B𝑛(𝑟, 𝑞) [2] over an integral domain 𝑅 := Z[𝑟±1, 𝑞±1, 𝜔−1],
where 𝜔 = 𝑞 − 𝑞

−1 and 𝑞, 𝑟 are indeterminates.

Definition 1 (see [2]). The BMW algebra B𝑛(𝑟, 𝑞) is a unital
associative 𝑅-algebra generated by 𝑇𝑖, 1 ≤ 𝑖 < 𝑛 subject to the
following relations:

(a) (𝑇𝑖 − 𝑞)(𝑇𝑖 + 𝑞
−1
)(𝑇𝑖 − 𝑟

−1
) = 0, for 1 ≤ 𝑖 < 𝑛,

(b) (1) 𝑇𝑖𝑇𝑗 = 𝑇𝑗𝑇𝑖 if |𝑖 − 𝑗| > 1,

(2) 𝑇𝑖𝑇𝑖+1𝑇𝑖 = 𝑇𝑖+1𝑇𝑖𝑇𝑖+1, for 1 ≤ 𝑖 < 𝑛 − 1,

(c) (1) 𝐸𝑖𝑇𝑖 = 𝑟
−1
𝐸𝑖 = 𝑇𝑖𝐸𝑖, for 1 ≤ 𝑖 ≤ 𝑛 − 1,

(2) 𝐸𝑖𝑇
±1
𝑗 𝐸𝑖 = 𝑟

±1
𝐸𝑖, for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑗 = 𝑖 ± 1,

where 𝐸𝑖 = 1 − 𝜔
−1
(𝑇𝑖 − 𝑇

−1
𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛 − 1.

It is well-known that the Hecke algebra H𝑛 associated
with the symmetric group S𝑛 is a quotient algebra of BMW
algebra B𝑛(𝑟, 𝑞). Morton and Wassermann [7] proved that
B𝑛(𝑟, 𝑞) is free over 𝑅 with rank (2𝑛 − 1)!!.

When B𝑛(𝑟, 𝑞) is semisimple, the simple modules are
cell modules in the sense of [8]. The branching rule of cell
modules is well-known [9]. However, the algebra B𝑛(𝑟, 𝑞) is
not always semisimple. In 2009, Rui and Si gave a necessary
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and sufficient condition for BMW algebras being semisimple
over an arbitrary field [10].

It is different from Hecke algebra H𝑛; BMW algebra
B𝑛(𝑟, 𝑞) may not be semisimple even if 𝑞 is not a root of 1.
In this paper, we study the restriction of simple modules of
BMW algebra B𝑛(𝑟, 𝑞) over a field and with the assumption
that 𝑞 is not a root of 1. According to [10], we will assume
𝑟 = 𝜀𝑞

𝑎 for some 𝑎 ∈ Z and 𝜀 = ±1. Otherwise, B𝑛(𝑟, 𝑞) is
semisimple.

Now, we need some of combinatorics in order to state the
results onB𝑛(𝑟, 𝑞).

Let Λ 𝑛 = {(𝑓, 𝜆) | 0 ≤ 𝑓 ≤ ⌊𝑛/2⌋, 𝜆 ∈ Λ
+
(𝑛 − 2𝑓)},

where Λ
+
(𝑛 − 2𝑓) is the set of partitions of 𝑛 − 2𝑓. By

definition, each 𝜆 = (𝜆1, 𝜆2, . . .) ∈ Λ
+
(𝑛 − 2𝑓) is a weakly

decreasing sequence of nonnegative integers such that |𝜆|, the
summation of those integers, is 𝑛−2𝑓. For (𝑓, 𝜆), (ℓ, 𝜇) ∈ Λ 𝑛,
we say that (𝑓, 𝜆) dominates (ℓ, 𝜇) and write (𝑓, 𝜆) ≥ (ℓ, 𝜇), if
𝑓 > ℓ in the usual sense or 𝑓 = ℓ and 𝜆 ⊵ 𝜇 in the sense that

𝑙

∑

𝑘=1

𝜆𝑘 ≥

𝑙

∑

𝑘=1

𝜇𝑘 (1)

for all 𝑙 ≥ 1. So, Λ 𝑛 is a poset. We write 𝜆 ⊇ 𝜇 if 𝜆𝑗 ≥ 𝜇𝑗 for
all possible 𝑗. Let Λ = ⋃

∞
𝑛=1 Λ 𝑛 and Λ

+
= ⋃
∞
𝑛=1 Λ
+
(𝑛).

The Young diagram 𝑌(𝜆) for a partition 𝜆 = (𝜆1, 𝜆2, . . .)

is a collection of boxes with 𝜆𝑖 boxes in the 𝑖th row of 𝑌(𝜆).
A box of 𝑌(𝜆) is called removable (resp., addable) if it can be
removed from (resp., added to)𝑌(𝜆) such that the result is still
a Young diagram for a partition. A 𝜆-tableau s is obtained by
inserting 𝑖, 1 ≤ 𝑖 ≤ 𝑛, into𝑌(𝜆)without repetition.We denote
the set of all removable boxes of 𝑌(𝜆) byR(𝜆) and the set of
all addable boxes of 𝑌(𝜆) byA(𝜆).

We recall the definition of a cellular algebra in [8].

Definition 2 (see [8]). Let 𝑅 be a commutative ring and 𝐴 an
𝑅-algebra. Fix a partially ordered set Λ = (Λ, ⊵). Then for
each 𝜆 ∈ Λ, let 𝑇(𝜆) be a finite set and 𝐶𝜆st ∈ 𝐴, where s, t ∈
𝑇(𝜆). The triple (Λ, 𝑇, 𝐶) is a cell datum for 𝐴 if

(a) {𝐶𝜆st | 𝜆 ∈ Λ and s, t ∈ 𝑇(𝜆)} is an 𝑅-basis for 𝐴;
(b) there is an 𝑅-linear anti-involution ∗ on 𝐴 such that

(𝐶
𝜆
st)
∗
= 𝐶
𝜆
ts, for all 𝜆 ∈ Λ and all s, t ∈ 𝑇(𝜆);

(c) we let 𝐴⊳𝜆 = 𝑅-span {𝐶𝜇uk | 𝜇 ⊳ 𝜆 and u, k ∈ 𝑇(𝜇)}.
For any 𝜆 ∈ Λ, s ∈ 𝑇(𝜆), and 𝑎 ∈ 𝐴 there exist scalars
𝑟tu(𝑎) ∈ 𝑅 such that

𝐶
𝜆
st𝑎 = ∑

u∈𝑇(𝜆)
𝑟tu (𝑎) 𝐶

𝜆
su (mod𝐴⊳𝜆) . (2)

Algebra 𝐴 is a cellular algebra if it has a cell datum.

Xi [11] proved that B𝑛(𝑟, 𝑞) is a cellular algebra over 𝑅
associated with the poset Λ 𝑛.

We recall the representations of B𝑛(𝑟, 𝑞) over a field as
follows. For each (𝑓, 𝜆) ∈ Λ 𝑛, there is a cell module Δ(𝑓, 𝜆)
for B𝑛(𝑟, 𝑞). On each Δ(𝑓, 𝜆), there is an invariant form,
say 𝜙𝑓,𝜆. Let RadΔ(𝑓, 𝜆) be the radical of 𝜙𝑓,𝜆. Then the
corresponding quotient module Δ(𝑓, 𝜆)/RadΔ(𝑓, 𝜆) is either

zero or absolutely irreducible. In the latter case, we write it as
𝐷
𝑓,𝜆. Let 𝑃(𝑓, 𝜆) be the projective cover of𝐷𝑓,𝜆.
Let mod-B𝑛(𝑟, 𝑞) be the category of right B𝑛(𝑟, 𝑞)-

modules. We have embedding of the BMW algebras

B𝑛−1 (𝑟, 𝑞) 󳨅→ B𝑛 (𝑟, 𝑞) 󳨅→ B𝑛+1 (𝑟, 𝑞) . (3)

So, we have corresponding induction functor ind𝑛 : mod-
B𝑛(𝑟, 𝑞) → mod-B𝑛+1(𝑟, 𝑞) and restriction functor res𝑛 :
mod-B𝑛(𝑟, 𝑞) → mod-B𝑛−1(𝑟, 𝑞). Note that res𝑛 is exact
functor and ind𝑛 is right exact functor.

By standard arguments in [12, Section 6], Rui and
Si defined the exact functor F𝑛 : mod-B𝑛(𝑟, 𝑞) →

mod-B𝑛−2(𝑟, 𝑞) and right exact functor G𝑛−2 :

mod-B𝑛−2(𝑟, 𝑞) → mod-B𝑛(𝑟, 𝑞) in [13], which satisfy

F𝑛 (𝑀) = 𝑀𝐸𝑛−1,

G𝑛−2 (𝑁) = 𝑁 ⨂

B
𝑛−2
(𝑟,𝑞)

𝐸𝑛−1B𝑛 (𝑟, 𝑞)
(4)

for all𝑀 ∈ mod-B𝑛(𝑟, 𝑞) and𝑁 ∈ mod-B𝑛−2(𝑟, 𝑞). For the
simplification of notation, we will useF andG instead ofF𝑛
andG𝑛, respectively.

The following results were proved by Rui and Si for
cyclotomic BMW algebras [14] and we only need the special
case here.

Lemma 3 (see [14, Lemma 5.1]). Suppose that (𝑓, 𝜆) ∈ Λ 𝑛

and (ℓ, 𝜇) ∈ Λ 𝑛+2. We have

(1) FG = 1,
(2) G(Δ(𝑓, 𝜆)) = Δ(𝑓 + 1, 𝜆),
(3) F(Δ(𝑓, 𝜆)) = Δ(𝑓 − 1, 𝜆),
(4) HomB

𝑛+2
(𝑟,𝑞)(G(Δ(𝑓, 𝜆)), Δ(ℓ, 𝜇)) ≅

HomB
𝑛
(𝑟,𝑞)(Δ(𝑓, 𝜆),F(Δ(ℓ, 𝜇))) as vector spaces.

At the end of this section, we recall the branching rule for
cell modules ofB𝑛(𝑟, 𝑞) over 𝑅.

Theorem 4 (see [9]). For each (𝑓, 𝜆) ∈ Λ 𝑛, then Δ(𝑓, 𝜆) has a
filtration 0 = 𝑀0 ⊆ 𝑀1 ⊆ ⋅ ⋅ ⋅ ⊆ 𝑀𝑚 = Δ(𝑓, 𝜆) ofB𝑛−1(𝑟, 𝑞)-
modules such that 𝑀𝑖/𝑀𝑖−1 ≅ Δ(ℓ, 𝜇), where 𝜇 ranges over
all partitions obtained from 𝜆 by either removing a removable
node if ℓ = 𝑓 or adding an addable node if ℓ = 𝑓 − 1. Further,
the multiplicity of Δ(ℓ, 𝜇) in res𝑛Δ(𝑓, 𝜆) is one. In particular,
this result is true over an arbitrary field.

Notation. IfΔ(ℓ, 𝜇) appear in the section defined by the above
theorem, we write (ℓ, 𝜇) → (𝑓, 𝜆).

In [6], the author proved the following result for cyclo-
tomic BMW algebra and so for BMW algebra.

Lemma 5. res𝑛+2(?) ∘G𝑛(?) = ind𝑛(?).

Remark 6. Theorem 4, togetherwith Lemmas 3 and 5, implies
that there is a result for ind𝑛Δ(𝑓, 𝜆) similar to Theorem 4.
Hence we will use Theorem 4 for ind𝑛Δ(𝑓, 𝜆) with no addi-
tional comments.
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3. The Structure of Simple Modules of B𝑛(𝑟,𝑞)

In this section, we describe the module structure of the
restriction of𝐷𝑓,𝜆 toB𝑛−1(𝑟, 𝑞) for (𝑓, 𝜆) ∈ Λ 𝑛.

For each partition 𝜆 = (𝜆1, 𝜆2, . . .) and each 𝑎 ∈ Z, define
𝜌𝑎, 𝑒𝑎(𝜆) ∈ RN by

(1) 𝜌𝑎 = (−(𝑎 + 1)/2, −(𝑎 + 3)/2, . . .) if 𝑟 = 𝑞
𝑎,

(2) 𝜌𝑎 = ((𝑎 − 1)/2, (𝑎 − 3)/2, . . .) if 𝑟 = −𝑞
𝑎,

(3) 𝑒𝑎(𝜆) = 𝜆
𝑡
+ 𝜌𝑎 if 𝑟 = 𝑞

𝑎,
(4) 𝑒𝑎(𝜆) = 𝜆 + 𝜌𝑎 if 𝑟 = −𝑞

𝑎,

where 𝜆𝑡 is the conjugate of 𝜆.
It is easy to see that 𝑒𝑎(𝜆) is a strictly decreasing sequence.

Let 𝑠(𝑒𝑎(𝜆)) (or 𝑠(𝜆) for brevity) be the number of pairs
{𝑝, −𝑝} in 𝑒𝑎(𝜆).

Example 7. Assume 𝑟 = −𝑞
3 and 𝜆 = (3, 2, 1); then 𝜌𝑎 =

(1, 0, −1, −2, . . .) and 𝑒𝑎(𝜆) = (4, 2, 0, −2, −3, −4, −5, . . .). The
pairs {𝑝, −𝑝} in 𝑒𝑎(𝜆) are {4, −4} and {2, −2}, so 𝑠(𝑒𝑎(𝜆)) = 2.

Let 𝑋 be the set of all infinite sequences k = (V1, V2,
. . . , V𝑘, . . .) such that V𝑖 ∈ R. Define 𝑊 to be the reflection
group on𝑋 generated by the reflections (𝑖, 𝑗) and (𝑖, 𝑗)− (𝑖, 𝑗 ∈
Z>0), where

(𝑖, 𝑗) (V1, . . . , V𝑖, . . . , V𝑗, . . .) = (V1, . . . , V𝑗, . . . , V𝑖, . . .) ,

(𝑖, 𝑗)− (V1, . . . , V𝑖, . . . , V𝑗, . . .)

= (V1, . . . , −V𝑗, . . . , −V𝑖, . . .) .

(5)

Rui and Si classified the blocks of BMW algebras with 𝑜(𝑞) >
𝑛 [13]. Based on this result, it was shown in [6] that two simple
B𝑛(𝑟, 𝑞)-modules 𝐷𝑓,𝜆 and 𝐷ℓ,𝜇 are in the same block if and
only if 𝑒𝑎(𝜆) ∈ 𝑊𝑒𝑎(𝜇). For (𝑓, 𝜆) ∈ Λ 𝑛, letB𝑛(𝜆) be the block
containing 𝜆. Now we define B(𝜆) to be the set of partitions
in the𝑊-orbit of 𝜆. So we have B(𝜆) = ⋃𝑚 B𝑚(𝜆) where the
union is taken over all𝑚 such that (ℓ, 𝜆) ∈ Λ𝑚 for some ℓ.

We consider the projection functor Proj𝜆 from the cat-
egory of B𝑛(𝑟, 𝑞)-module to the block of B𝑛(𝑟, 𝑞) which
contains Δ(𝑓, 𝜆). So we have

res𝑛𝐷
𝑓,𝜆

=⨁

B(𝜇)
Proj𝜇 ∘ res𝑛𝐷

𝑓,𝜆
. (6)

ByTheorem 4, we know that the direct sum can be taken over
all blocks B(𝜇) with 𝜇 ∈ supp(𝜆), where supp(𝜆) = {𝜇 ∈ Λ+ |
(ℓ, 𝜇) → (𝑓, 𝜆), for some 𝑓, ℓ ∈ Z≥0}.

According to the definition of 𝑠(𝜆), it is easy to see that
there are three cases to consider depending on the relation
between 𝑠(𝜆) and 𝑠(𝜇) with 𝜇 ∈ supp(𝜆):

(1) 𝑠(𝜆) = 𝑠(𝜇),
(2) 𝑠(𝜆) = 𝑠(𝜇) − 1,
(3) 𝑠(𝜆) = 𝑠(𝜇) + 1.

Now, we need some notation in order to state the result of
case (1).

Definition 8 (see [15]). Two partitions 𝜆 and 𝜇 are said to be
translation equivalent if

(a) B(𝜆) ∩ supp(𝜇) = {𝜆} and B(𝜇) ∩ supp(𝜆) = {𝜇};
(b) for each 𝜆󸀠 ∈ B(𝜆), there is unique 𝜇󸀠 ∈ B(𝜇) such that

B(𝜆) ∩ supp(𝜇󸀠) = {𝜆󸀠} and B(𝜇) ∩ supp(𝜆󸀠) = {𝜇󸀠}.

Proposition 9 (see [6]). Let (𝑓, 𝜆) ∈ Λ 𝑛, (ℓ, 𝜇) ∈ Λ 𝑛−1, and
𝜇 ∈ supp(𝜆). If 𝑠(𝜆) = 𝑠(𝜇), then 𝜆 and 𝜇 are translation
equivalent.

Theorem 10. Let (𝑓, 𝜆) ∈ Λ 𝑛, (ℓ, 𝜇) ∈ Λ 𝑛−1, and𝜇 ∈ supp(𝜆).
If 𝑠(𝜆) = 𝑠(𝜇), then

Proj𝜇 ∘ res𝑛𝐷
𝑓,𝜆

= 𝐷
ℓ,𝜇
. (7)

Proof. According to the theory of cellular algebra, we have
an epimorphism 𝜓 : Δ(𝑓, 𝜆) → 𝐷

𝑓,𝜆. Applying the functor
Proj𝜇 ∘ res𝑛 to 𝜓, we have an epimorphism Δ(ℓ, 𝜇) → Proj𝜇 ∘
res𝑛𝐷

𝑓,𝜆 by Theorem 4 and Proposition 9. Hence Proj𝜇 ∘
res𝑛𝐷

𝑓,𝜆 has simple head𝐷ℓ,𝜇.
If𝐷𝑘,] is in the socle of Proj𝜇 ∘ res𝑛𝐷

𝑓,𝜆, then𝐷𝑘,] must be
a composition factor of Δ(ℓ, 𝜇). So, we have

0 ̸= Hom (Δ (𝑘, ]) ,Proj𝜇 ∘ res𝑛𝐷
𝑓,𝜆
)

≅ Hom (Δ (𝑘, ]) , res𝑛𝐷
𝑓,𝜆
)

≅ Hom (ind𝑛−1Δ (𝑘, ]) , 𝐷
𝑓,𝜆
)

≅ Hom (Proj𝜆 ∘ ind𝑛−1Δ (𝑘, ]) , 𝐷
𝑓,𝜆
)

= Hom (Δ (𝑘
󸀠
, ]󸀠) , 𝐷𝑓,𝜆) .

(8)

The last equality follows fromDefinition 8 and Proposition 9.
Since Hom(Δ(𝑘󸀠, ]󸀠), 𝐷𝑓,𝜆) ̸= 0, we have ]󸀠 = 𝜆. Hence we

have ] = 𝜇.
So Proj𝜇 ∘ res𝑛𝐷

𝑓,𝜆 has simple head𝐷ℓ,𝜇 and simple socle
𝐷
ℓ,𝜇. However, the composition factors of Proj𝜇 ∘ res𝑛𝐷

𝑓,𝜆

must be the composition factors of Δ(ℓ, 𝜇) and [Δ(ℓ, 𝜇) :

𝐷
ℓ,𝜇
] = 1, so we have Proj𝜇 ∘ res𝑛𝐷

𝑓,𝜆
= 𝐷
ℓ,𝜇.

In order to deal with case (2) and case (3), we need some
notation here.

Definition 11 (see [15]). Suppose that 𝜆󸀠 ∈ supp(𝜆). We say 𝜆󸀠
separates 𝜆− and 𝜆+ if 𝜆− ̸= 𝜆

+ with one of 𝜆+ or 𝜆− being
equal to 𝜆 and

(1) 𝜆󸀠 is the unique element of B(𝜆󸀠) ∩ supp(𝜆−);
(2) 𝜆󸀠 is the unique element of B(𝜆󸀠) ∩ supp(𝜆+);
(3) 𝜆− and 𝜆+ are the unique pair of elements of B(𝜆−) ∩

supp(𝜆󸀠).

For p ∈ R(𝜆) (or A(𝜆)), we denote the partition corre-
sponding to the Young diagram𝑌(𝜆)\p (or𝑌(𝜆)∪p) by 𝜆−p
(or by 𝜆 + p).
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Proposition 12. Let (𝑓, 𝜆) ∈ Λ 𝑛, (ℓ, 𝜆󸀠) ∈ Λ 𝑛−1, and 𝜆󸀠 ∈
supp(𝜆). If 𝑠(𝜆) = 𝑠(𝜆󸀠) − 1, then 𝜆󸀠 separates 𝜆 and 𝜆 − p − p̃
for some p, p̃ ∈ R(𝜆) or 𝜆󸀠 separates 𝜆 and 𝜆+p󸀠 + p̃󸀠 for some
p󸀠, p̃󸀠 ∈ A(𝜆).

Proof. The first statement is [6, Proposition 4.11]. For the
second statement, it is just needed to replace 𝜆 and 𝜆 − p − p̃
by 𝜆 + p󸀠 + p̃󸀠 and 𝜆 in the proof of [6, Proposition 4.11],
respectively.

Remark 13. Fixing the above notation, we assume that 𝜆+ ⊃
𝜆
−. So, we write 𝜆+ and 𝜆− instead of 𝜆 and 𝜆−p− p̃ and write
𝜆
+ and 𝜆− instead of 𝜆 + p󸀠 + p̃󸀠 and 𝜆, respectively.

Theorem 14. Let (𝑓, 𝜆+), (𝑓+1, 𝜆−) ∈ Λ 𝑛, (𝑓, 𝜆󸀠) ∈ Λ 𝑛−1, and
𝜆
󸀠
∈ supp(𝜆+) be as above. Then we have

(1) Proj𝜆󸀠 ∘ res𝑛𝐷
𝑓,𝜆+

= 𝐷
𝑓,𝜆󸀠 ,

(2) Proj𝜆󸀠 ∘ res𝑛𝐷
𝑓+1,𝜆−

= 0.

Proof. Similar to the proof of Theorem 10, we have two
epimorphisms 𝜓+ : Δ(𝑓, 𝜆

+
) → 𝐷

𝑓,𝜆+ and 𝜓
−
: Δ(𝑓 +

1, 𝜆
−
) → 𝐷

𝑓+1,𝜆− . Applying the functor Proj𝜆󸀠 ∘ res𝑛 to 𝜓
+

and 𝜓
−, we have two epimorphisms Δ(𝑓, 𝜆󸀠) → Proj𝜆󸀠 ∘

res𝑛𝐷
𝑓,𝜆+ and Δ(𝑓, 𝜆󸀠) → Proj𝜆󸀠 ∘ res𝑛𝐷

𝑓+1,𝜆− by Theorem 4
and Proposition 12. Hence Proj𝜆󸀠 ∘ res𝑛𝐷

𝑓,𝜆+ and Proj𝜆󸀠 ∘
res𝑛𝐷

𝑓+1,𝜆− are either 0 or have simple head𝐷ℓ,𝜆
󸀠

.
By [9, Corollary 5.8] and Proposition 12, we have an exact

sequence

0 󳨀→ Δ (𝑓 + 1, 𝜆
−
) 󳨀→ Proj𝜆+ ∘ ind𝑛−1Δ (𝑓, 𝜆

󸀠
)

󳨀→ Δ (𝑓, 𝜆
+
) 󳨀→ 0.

(9)

So, we have

Hom (Δ (𝑓, 𝜆
󸀠
) ,Proj𝜆󸀠 ∘ res𝑛𝐷

𝑓,𝜆+
)

≅ Hom (Δ (𝑓, 𝜆
󸀠
) , res𝑛𝐷

𝑓,𝜆+
)

≅ Hom (ind𝑛−1Δ (𝑓, 𝜆
󸀠
) , 𝐷
𝑓,𝜆+

)

≅ Hom (Proj𝜆+ ∘ ind𝑛−1Δ (𝑓, 𝜆
󸀠
) , 𝐷
𝑓,𝜆+

) ̸= 0.

(10)

Hence Proj𝜆󸀠 ∘ res𝑛𝐷
𝑓,𝜆+ has simple head𝐷𝑓,𝜆

󸀠

.
With the same reason as Theorem 10, we complete the

proof of (1).
Since [Δ(𝑓, 𝜆󸀠) : 𝐷𝑓,𝜆

󸀠

] = 1, according to the proof of (1),
the unique copy of 𝐷𝑓,𝜆

󸀠

must come from Proj𝜆󸀠 ∘ res𝑛𝐷
𝑓,𝜆+ .

So Proj𝜆󸀠 ∘ res𝑛𝐷
𝑓+1,𝜆− cannot have simple head 𝐷

𝑓,𝜆󸀠 ; this
implies that Proj𝜆󸀠 ∘ res𝑛𝐷

𝑓+1,𝜆−
= 0.

Keeping the same notation, for case (3), we need to
describe Proj𝜆+ ∘ res𝑛𝐷

𝑓,𝜆󸀠 for (𝑓, 𝜆󸀠) ∈ Λ 𝑛 and (𝑓 − 1, 𝜆
+
),

(𝑓, 𝜆
−
) ∈ Λ 𝑛−1. In this paper, we only describe the head and

socle of Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠 .

Theorem 15. Let (𝑓, 𝜆󸀠) ∈ Λ 𝑛 and (𝑓 − 1, 𝜆+), (𝑓, 𝜆−) ∈ Λ 𝑛−1
be as above. Then

(1) if 𝑓 = 0, then Proj𝜆+ ∘ res𝑛𝐷
0,𝜆󸀠

= 𝐷
0,𝜆− ;

(2) if 𝑓 > 0, then Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠 has simple head

𝐷
𝑓−1,𝜆+ and simple socle𝐷𝑓−1,𝜆

+

.

Proof. When 𝑓 = 0, Δ(0, 𝜆󸀠) can be considered as the cell
module of Hecke algebra H𝑛. However, under our assump-
tion, Hecke algebra H𝑛 is semisimple. So we have 𝐷0,𝜆

󸀠

=

Δ(0, 𝜆
󸀠
). Similarly, we have 𝐷0,𝜆

−

= Δ(0, 𝜆
−
). So, (1) follows

fromTheorem 4 and Proposition 12.
Similar to the proof of Theorem 10, we have an epimor-

phism

𝜙 : Proj𝜆+ ∘ res𝑛Δ (𝑓, 𝜆
󸀠
) 󳨀→ Proj𝜆+ ∘ res𝑛𝐷

𝑓,𝜆󸀠
. (11)

If𝐷ℓ,𝜇 is in the head of Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠 , it must be in the

head of Proj𝜆+ ∘ res𝑛Δ(𝑓, 𝜆
󸀠
).

By [9, Corollary 5.8] and Proposition 12, we have an exact
sequence

0 󳨀→ Δ (𝑓, 𝜆
−
) 󳨀→ Proj𝜆+ ∘ res𝑛Δ (𝑓, 𝜆

󸀠
)

󳨀→ Δ (𝑓 − 1, 𝜆
+
) 󳨀→ 0.

(12)

It is easy to see that 𝐷𝑓−1,𝜆
+

is in the head of Proj𝜆+ ∘
res𝑛Δ(𝑓, 𝜆

󸀠
). Note that

Proj𝜆+ ∘ res𝑛Δ (𝑓, 𝜆
󸀠
) = Proj𝜆+ ∘ ind𝑛−2Δ (𝑓 − 1, 𝜆

󸀠
) . (13)

So, we have

Hom (Proj𝜆+ ∘ res𝑛Δ (𝑓, 𝜆
󸀠
) , 𝐷
𝑓,𝜆−

)

≅ Hom (Proj𝜆+ ∘ ind𝑛−2Δ (𝑓 − 1, 𝜆
󸀠
) , 𝐷
𝑓,𝜆−

)

≅ Hom (Δ (𝑓 − 1, 𝜆
󸀠
) ,Proj𝜆󸀠 ∘ res𝑛−1𝐷

𝑓,𝜆−
) = 0.

(14)

The last equality follows fromTheorem 14(2).
Hence Proj𝜆+ ∘ res𝑛Δ(𝑓, 𝜆

󸀠
) has simple head 𝐷

𝑓−1,𝜆+ . It
follows that Proj𝜆+ ∘ res𝑛𝐷

𝑓,𝜆󸀠 has simple head𝐷𝑓−1,𝜆
+

.
Assume that𝐷ℓ,𝜇 is in the socle of Proj𝜆+ ∘ res𝑛𝐷

𝑓,𝜆󸀠 .Then

0 ̸= Hom (Δ (ℓ, 𝜇) ,Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠

)

≅ Hom (Δ (ℓ, 𝜇) , res𝑛𝐷
𝑓,𝜆󸀠

)

≅ Hom (ind𝑛−1Δ (ℓ, 𝜇) , 𝐷
𝑓,𝜆󸀠

)

≅ Hom (Proj𝜆󸀠 ∘ ind𝑛−1Δ (ℓ, 𝜇) , 𝐷
𝑓,𝜆󸀠

) .

(15)

Hence the socle of Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠 consists of 𝐷𝑓−1,𝜆

+

and𝐷𝑓,𝜆
−

by Proposition 12.



Journal of Mathematics 5

Suppose that 𝐷𝑓,𝜆
−

is in the socle of Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠 .

Consider the set Λ̃ 𝑛−1 = {(ℓ, 𝜇) ∈ Λ 𝑛−1 | 𝐷
ℓ,𝜇 is a

composition factor of Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠

}. According to the
assumption, (𝑓, 𝜆−) ∈ Λ̃ 𝑛−1 and must be the maximal one
in the poset Λ̃ 𝑛−1; hence 𝐷

𝑓,𝜆− must come from Δ(𝑓, 𝜆
−
). So,

we have 𝜙(Δ(𝑓, 𝜆−)) ⊇ 𝐷𝑓,𝜆
−

.
Hence we have the following commutative diagram:

Δ(f, 𝜆−)
𝜙|Δ(f,𝜆− )

Df,𝜆−

𝜙(Δ(f, 𝜆−))

𝜑

∃! 󳰀𝜙
(16)

It follows that 𝜙(Δ(𝑓, 𝜆−)) = ker𝜙󸀠 ⊕ 𝐷𝑓,𝜆
−

. This implies
that 𝜙(Δ(𝑓, 𝜆−)) = 𝐷

𝑓,𝜆− . With the exact sequence (12), we
have the following commutative diagram:

Proj𝜆+ ∘ resnΔ(f, 𝜆
󳰀)

𝜓

Proj𝜆+ ∘ resnD
f,𝜆󳰀 𝜋𝜙

Δ(f − 1, 𝜆+)

∃! 𝜂

Proj𝜆+ ∘ resn
Df,𝜆󳰀

Df,𝜆−

(17)

Since 𝜙 and 𝜋 are two epimorphisms, 𝜂 is an epimor-
phism. This means that the composition factors of Proj𝜆+ ∘
res𝑛𝐷

𝑓,𝜆󸀠 must be composition factors of Δ(𝑓 − 1, 𝜆+) except
one copy of𝐷𝑓,𝜆

−

.
However, we have

[Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠

: 𝐷
𝑓−1,𝜆+

]

= dimHom (𝑃 (𝑓 − 1, 𝜆
+
) ,Proj𝜆+ ∘ res𝑛𝐷

𝑓,𝜆󸀠
)

≅ dimHom (Proj𝜆󸀠 ∘ ind𝑛−1𝑃 (𝑓 − 1, 𝜆
+
) , 𝐷
𝑓,𝜆󸀠

)

= 2.

(18)

The last equality follows from the proof of [6, Proposition
4.13].

It is in contradiction with [Δ(𝑓 − 1, 𝜆
+
) : 𝐷
𝑓−1,𝜆+

] = 1.
Hence 𝐷𝑓,𝜆

−

cannot be in the socle of Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠 . It

follows that𝐷𝑓−1,𝜆
+

is in the socle of Proj𝜆+ ∘ res𝑛𝐷
𝑓,𝜆󸀠 . Since

we have proved that Proj𝜆+ ∘res𝑛𝐷
𝑓,𝜆󸀠 has simple head𝐷𝑓−1,𝜆

+

,
Proj𝜆+ ∘ res𝑛𝐷

𝑓,𝜆󸀠 has simple socle𝐷𝑓−1,𝜆
+

.
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