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The notions of 𝜙-symmetric, 3-dimensional locally 𝜙-symmetric, 𝜙-Ricci symmetric, and 3-dimensional locally 𝜙-Ricci symmetric
𝑁(𝑘)-paracontact metric manifolds have been introduced and properties of these structures have been discussed.

1. Introduction

The study of paracontact geometry was initiated by Kaneyuki
and Williams [1]. A systematic study of paracontact metric
manifolds and their subclasses were started out by Zamkovoy
[2]. Since then, several geometers studied paracontact metric
manifolds and obtained various important properties of these
manifolds ([3–10], etc.). The geometry of paracontact metric
manifolds can be related to the theory of Legendre foliations.
In [11], the authors introduced the class of paracontact metric
manifolds for which the characteristic vector field 𝜉 belongs
to the (𝑘, 𝜇)-nullity condition (or distribution) for some real
constants 𝑘 and 𝜇. Such manifolds are known as (𝑘, 𝜇)-
paracontact metric manifolds. If 𝜇 = 0, then the notion of
(𝑘, 𝜇)-nullity distribution reduces to 𝑘-nullity distribution. A
paracontact metric manifold with 𝜉 belonging to 𝑘-nullity
distribution is called 𝑁(𝑘)-paracontact metric manifold.

In [12], Takahashi introduced the notion of locally 𝜙-
symmetric Sasakian manifold as a weaker version of local
symmetry of such manifolds. In the context of contact geom-
etry, the notion of 𝜙-symmetry was introduced and studied
by Boeckx et al. [13] with examples. In ([14, 15]), they studied
the notion of 𝜙-symmetry and discussed several examples for
Kenmotsu manifolds and almost contact metric manifolds of
dimension 3. In [16, 17], S. S. Shukla andM.K. Shukla, studied
𝜙-Ricci symmetric Kenmotsu manifolds and 𝜙-symmetric
para-Sasakian manifolds.

In the present work, we study 𝜙-symmetry and Ricci
𝜙-symmetry on 𝑁(𝑘)-paracontact metric manifolds. In
Section 2, we give a brief account of the 𝑁(𝑘)-paracontact

metric manifolds. In Section 3, we study the proper-
ties of 𝜙-symmetric 𝑁(𝑘)-paracontact metric manifolds.
Section 4 deals with 3-dimensional locally 𝜙-symmetric
𝑁(𝑘)-paracontact metric manifolds. In this section, we prove
that scalar curvature 𝑟 is constant. Section 5 is devoted to
studying the Ricci 𝜙-symmetric 𝑁(𝑘)-paracontact metric
manifolds. Finally, we study the properties of 3-dimensional
locally Ricci 𝜙-symmetric 𝑁(𝑘)-paracontact metric mani-
folds in Section 6.

2. Preliminaries

A (2𝑛+1)-dimensional smoothmanifold𝑀2𝑛+1 has an almost
paracontact structure (𝜙, 𝜉, 𝜂, 𝑔) if it admits a tensor field 𝜙
of type (1, 1), a vector field 𝜉, a 1-form 𝜂, and a Riemannian
metric 𝑔 satisfying the following conditions ([2, 18]):

𝜂 (𝑋) = 𝑔 (𝑋, 𝜉) ,

𝜂 (𝜉) = 1,

𝜂 ∘ 𝜙 = 0,

𝜙 (𝜉) = 0,

𝜙
2
𝑋 = 𝑋 − 𝜂 (𝑋) 𝜉,

(1)

𝑔 (𝜙𝑋, 𝜙𝑌) = −𝑔 (𝑋, 𝑌) + 𝜂 (𝑋) 𝜂 (𝑌) ,

𝑑𝜂 (𝑋, 𝑌) = 𝑔 (𝑋, 𝜙𝑌) ,
(2)

for every vector field 𝑋, 𝑌 on 𝑀2𝑛+1.
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In a paracontact metric manifold (𝑀2𝑛+1, 𝜙, 𝜉, 𝜂, 𝑔), we
define a (1, 1) tensor field ℎ by ℎ = (1/2)m

𝜉
𝜙, where m denotes

the operator of Lie differentiation. Then, ℎ is symmetric and
satisfies

ℎ𝜉 = 0,

ℎ𝜙 = −𝜙ℎ,

𝑇𝑟 ⋅ ℎ = 𝑇𝑟 ⋅ 𝜙ℎ = 0.

(3)

If∇ denotes the Levi-Civita connection of 𝑔, thenwe have the
following relation:

∇
𝑋

𝜉 = −𝜙𝑋 + 𝜙ℎ𝑋. (4)

A paracontact metric manifold (𝑀2𝑛+1, 𝜙, 𝜉, 𝜂, 𝑔) is said
to be a (𝑘, 𝜇)-space if its curvature tensor 𝑅 satisfies

𝑅 (𝑋, 𝑌) 𝜉 = 𝑘 [𝜂 (𝑌) 𝑋 − 𝜂 (𝑋) 𝑌]

+ 𝜇 [𝜂 (𝑌) ℎ𝑋 − 𝜂 (𝑋) ℎ𝑌] ,
(5)

for all tangent vector fields 𝑋, 𝑌, where 𝑘, 𝜇 are smooth
functions on 𝑀2𝑛+1.

Here, the characteristic vector field 𝜉 belongs to the (𝑘, 𝜇)-
nullity distribution. A paracontact metric manifold with 𝜉
belonging to (𝑘, 𝜇)-nullity distribution is called a (𝑘, 𝜇)-
paracontact metric manifold. In particular, if 𝜇 = 0, then the
notion of (𝑘, 𝜇)-nullity distribution reduces to 𝑘-nullity dis-
tribution. A paracontact metric manifold such that 𝜉 belongs
to 𝑘-nullity distribution is called 𝑁(𝑘)-paracontact metric
manifold. Then, curvature tensor 𝑅 reduces to the following
form:

𝑅 (𝑋, 𝑌) 𝜉 = 𝑘 [𝜂 (𝑌) 𝑋 − 𝜂 (𝑋) 𝑌] . (6)

For 𝑁(𝑘)-paracontact metric manifold (𝑀2𝑛+1, 𝜙, 𝜉, 𝜂,
𝑔) (𝑛 > 1), the following identities hold:

ℎ
2

= (1 + 𝑘) 𝜙
2
, (7)

(∇
𝑋

𝜙) 𝑌 = −𝑔 (𝑋 − ℎ𝑋, 𝑌) 𝜉 + 𝜂 (𝑌) (𝑋 − ℎ𝑋) , (8)

(∇
𝑋

𝜂) 𝑌 = 𝑔 (𝑋 − ℎ𝑋, 𝜙𝑌) , (9)

𝑆 (𝑋, 𝜉) = 2𝑛𝑘𝜂 (𝑋) , (10)

𝑄𝜉 = 2𝑛𝑘𝜉, (11)

for any vector fields𝑋, 𝑌 on𝑀2𝑛+1, where𝑄 and 𝑆 denote the
Ricci operator and Ricci tensor of (𝑀2𝑛+1, 𝑔), respectively.

𝑁(𝑘)-paracontact metric manifold is called an Einstein
manifold if it satisfies

𝑆 (𝑋, 𝑌) = 𝜆𝑔 (𝑋, 𝑌) , (12)

where 𝜆 is any scalar.

Definition 1. 𝑁(𝑘)-paracontact metric manifold is said to be
𝜙-symmetric if

𝜙
2

((∇
𝑊

𝑅) (𝑋, 𝑌) 𝑍) = 0, (13)

for arbitrary vector fields 𝑋, 𝑌, 𝑍, 𝑊.

Definition 2. 𝑁(𝑘)-paracontact metric manifold is said to be
locally 𝜙-symmetric if

𝜙
2

((∇
𝑊

𝑅) (𝑋, 𝑌) 𝑍) = 0, (14)

for all vector fields 𝑋, 𝑌, 𝑍, 𝑊 orthogonal to 𝜉.

3. 𝜙-Symmetric 𝑁(𝑘)-Paracontact
Metric Manifolds

Let us consider 𝜙-symmetric 𝑁(𝑘)-paracontact metric man-
ifold. Then, by virtue of (1) and (13), we have

(∇
𝑊

𝑅) (𝑋, 𝑌) 𝑍 − 𝜂 ((∇
𝑊

𝑅) (𝑋, 𝑌) 𝑍) 𝜉 = 0. (15)

Taking the inner product of (15) by 𝑈, we have

𝑔 ((∇
𝑊

𝑅) (𝑋, 𝑌) 𝑍, 𝑈) − 𝜂 ((∇
𝑊

𝑅) (𝑋, 𝑌) 𝑍) 𝜂 (𝑈)

= 0.
(16)

Let {𝑒
𝑖
}, 𝑖 = 1, 2, . . . , (2𝑛 + 1), be an orthonormal basis of the

tangent space at any point 𝑝 of the manifold. Then, putting
𝑋 = 𝑈 = 𝜉 in (16) and taking summation over 𝑖, 1 ≤ 𝑖 ≤
(2𝑛 + 1), we have

(∇
𝑊

𝑆) (𝑌, 𝑍) −
2𝑛+1

∑
𝑖=1

𝜂 ((∇
𝑊

𝑅) (𝑒
𝑖
, 𝑌) 𝑍) 𝜂 (𝑒

𝑖
) = 0. (17)

Considering the second term of (17) and setting 𝑍 = 𝜉, we
have

2𝑛+1

∑
𝑖=1

𝜂 ((∇
𝑊

𝑅) (𝑒
𝑖
, 𝑌) 𝜉) 𝜂 (𝑒

𝑖
)

=
2𝑛+1

∑
𝑖=1

𝑔 ((∇
𝑊

𝑅) (𝑒
𝑖
, 𝑌) 𝜉, 𝜉) 𝑔 (𝑒

𝑖
, 𝜉) .

(18)

Next,

𝑔 ((∇
𝑊

𝑅) (𝑒
𝑖
, 𝑌) 𝜉, 𝜉) = 𝑔 (∇

𝑊
𝑅 (𝑒
𝑖
, 𝑌) 𝜉, 𝜉)

− 𝑔 (𝑅 (∇
𝑊

𝑒
𝑖
, 𝑌) 𝜉, 𝜉)

− 𝑔 (𝑅 (𝑒
𝑖
, ∇
𝑊

𝑌) 𝜉, 𝜉)

− 𝑔 (𝑅 (𝑒
𝑖
, 𝑌) ∇
𝑊

𝜉, 𝜉) .

(19)

Since {𝑒
𝑖
} is an orthonormal basis, ∇

𝑋
𝑒
𝑖

= 0. Using (6), we
have

𝑔 (𝑅 (𝑒
𝑖
, ∇
𝑊

𝑌) 𝜉, 𝜉)

= 𝑔 (𝑘 (𝜂 (∇
𝑊

𝑌) 𝑒
𝑖
− 𝜂 (𝑒

𝑖
) ∇
𝑊

𝑌) , 𝜉)

= 𝑘 [𝑔 (∇
𝑊

𝑌, 𝜉) 𝑔 (𝑒
𝑖
, 𝜉) − 𝑔 (𝑒

𝑖
, 𝜉) 𝑔 (∇

𝑊
𝑌, 𝜉)]

= 0.

(20)

Using (20) in (19), we have

𝑔 ((∇
𝑊

𝑅) (𝑒
𝑖
, 𝑌) 𝜉, 𝜉) = 𝑔 (∇

𝑊
𝑅 (𝑒
𝑖
, 𝑌) 𝜉, 𝜉)

− 𝑔 (𝑅 (𝑒
𝑖
, 𝑌) ∇
𝑊

𝜉, 𝜉) .
(21)
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Since 𝑔(𝑅(𝑒
𝑖
, 𝑌)𝜉, 𝜉) = −𝑔(𝑅(𝜉, 𝜉)𝑌, 𝑒

𝑖
) = 0, we have

𝑔 (∇
𝑊

𝑅 (𝑒
𝑖
, 𝑌) 𝜉, 𝜉) + 𝑔 (𝑅 (𝑒

𝑖
, 𝑌) 𝜉, ∇

𝑊
𝜉) = 0. (22)

Using (22) in (21), we have

𝑔 ((∇
𝑊

𝑅) (𝑒
𝑖
, 𝑌) 𝜉, 𝜉) = −𝑔 (𝑅 (𝑒

𝑖
, 𝑌) 𝜉, ∇

𝑊
𝜉)

− 𝑔 (𝑅 (𝑒
𝑖
, 𝑌) ∇
𝑊

𝜉, 𝜉) .
(23)

Using (4) in (23), we have

𝑔 ((∇
𝑊

𝑅) (𝑒
𝑖
, 𝑌) 𝜉, 𝜉)

= −𝑔 (𝑅 (𝑒
𝑖
, 𝑌) 𝜉, −𝜙𝑋 + 𝜙ℎ𝑋)

− 𝑔 (𝑅 (𝑒
𝑖
, 𝑌) (𝜙𝑋 + 𝜙ℎ𝑋) , 𝜉)

= 𝑔 (𝑅 (𝑒
𝑖
, 𝑌) 𝜉, 𝜙𝑋) − 𝑔 (𝑅 (𝑒

𝑖
, 𝑌) 𝜉, 𝜙ℎ𝑋)

+ 𝑔 (𝑅 (𝑒
𝑖
, 𝑌) 𝜙𝑋, 𝜉) − 𝑔 (𝑅 (𝑒

𝑖
, 𝑌) 𝜙ℎ𝑋, 𝜉) = 0.

(24)

Putting 𝑍 = 𝜉 in (17) and using (24), it follows that

(∇
𝑊

𝑆) (𝑌, 𝜉) = 0. (25)

We know that

(∇
𝑊

𝑆) (𝑌, 𝜉) = ∇
𝑊

𝑆 (𝑌, 𝜉) − 𝑆 (∇
𝑊

𝑌, 𝜉) − 𝑆 (𝑌, ∇
𝑊

𝜉) . (26)

Using (4), (9), (10), and (25) in (26), we have

2𝑛𝑘𝑔 (𝑊 − ℎ𝑊, 𝜙𝑌) − 𝑆 (𝑌, −𝜙𝑊 + 𝜙ℎ𝑊) = 0. (27)

Putting 𝑊 = 𝜙𝑊 in (27) and using (1), (2), (3), and (10), we
have

𝑆 (𝑌, 𝑊) = 2𝑛𝑘𝑔 (𝑌, 𝑊) + 2𝑛𝑘𝑔 (𝑌, ℎ𝑊) − 𝑆 (𝑌, ℎ𝑊) . (28)

Again, putting 𝑊 = ℎ𝑊 in (28) and using (1) and (7), we
obtain

2𝑛𝑘𝑔 (𝑌, ℎ𝑊) − 𝑆 (𝑌, ℎ𝑊)

= (1 + 𝑘) 𝑆 (𝑌, 𝑊) − 2𝑛𝑘 (1 + 𝑘) 𝑔 (𝑌, 𝑊) .
(29)

By virtue of (28) and (29), we have

𝑆 (𝑌, 𝑊) = 2𝑛𝑘𝑔 (𝑌, 𝑊) . (30)

Thus, we can state the following theorem.

Theorem 3. A (2𝑛 + 1)-dimensional 𝜙-symmetric 𝑁(𝑘)-par-
acontact metric manifold (𝑀2𝑛+1, 𝜙, 𝜉, 𝜂, 𝑔) is an Einstein
manifold.

4. Three-Dimensional Locally 𝜙-Symmetric
𝑁(𝑘)-Paracontact Metric Manifolds

For a three-dimensional semi-Riemannian manifold, the
conformal curvature tensor 𝐶 is given by

𝐶 (𝑋, 𝑌) 𝑍 = 𝑅 (𝑋, 𝑌) 𝑍 − [𝑆 (𝑌, 𝑍) 𝑋 − 𝑆 (𝑋, 𝑍) 𝑌

+ 𝑔 (𝑌, 𝑍) 𝑄𝑋 − 𝑔 (𝑋, 𝑍) 𝑄𝑌] +
𝑟

2
[𝑔 (𝑌, 𝑍) 𝑋

− 𝑔 (𝑋, 𝑍) 𝑌] ,

(31)

for arbitrary vector fields 𝑋, 𝑌, 𝑍.

If 𝐶 = 0, then (31) reduces to the following form:

𝑅 (𝑋, 𝑌) 𝑍 = [𝑆 (𝑌, 𝑍) 𝑋 − 𝑆 (𝑋, 𝑍) 𝑌 + 𝑔 (𝑌, 𝑍) 𝑄𝑋

− 𝑔 (𝑋, 𝑍) 𝑄𝑌] −
𝑟

2
[𝑔 (𝑌, 𝑍) 𝑋 − 𝑔 (𝑋, 𝑍) 𝑌] .

(32)

Putting 𝑍 = 𝜉 in (32) and using (6), we get

(
𝑟

2
− 𝑘) [𝜂 (𝑌) 𝜉 − 𝜂 (𝑋) 𝜉] = 𝜂 (𝑌) 𝑄𝑋 − 𝜂 (𝑋) 𝑄𝑌. (33)

Again, putting 𝑌 = 𝜉 in (33) and using (11), we get

𝑄𝑋 = (
𝑟

2
− 𝑘) 𝑋 + (3𝑘 −

𝑟

2
) 𝜂 (𝑋) 𝜉. (34)

Taking the inner product of (34) with 𝑌, we obtain

𝑆 (𝑋, 𝑌) = (
𝑟

2
− 𝑘) 𝑔 (𝑋, 𝑌) + (3𝑘 −

𝑟

2
) 𝜂 (𝑋) 𝜂 (𝑌) . (35)

Using (34) and (35) in (32), we have

𝑅 (𝑋, 𝑌) 𝑍 = (
𝑟

2
− 2𝑘) [𝑔 (𝑌, 𝑍) 𝑋 − 𝑔 (𝑋, 𝑍) 𝑌]

+ (3𝑘 −
𝑟

2
) [𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜉 − 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜉

+ 𝜂 (𝑌) 𝜂 (𝑍) 𝑋 − 𝜂 (𝑋) 𝜂 (𝑍) 𝑌] ,

(36)

where 𝑅 is Riemannian curvature tensor on the 3-dimen-
sional 𝑁(𝑘)-paracontact metric manifold.

Taking the covariant differentiation of (36) with respect
to 𝑊, we have

(∇
𝑊

𝑅) (𝑋, 𝑌) 𝑍 =
𝑑𝑟 (𝑊)

2
[𝑔 (𝑌, 𝑍) 𝑋 − 𝑔 (𝑋, 𝑍) 𝑌

− 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜉 + 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜉

− 𝜂 (𝑌) 𝜂 (𝑍) 𝑋 + 𝜂 (𝑋) 𝜂 (𝑍) 𝑌] + (3𝑘 −
𝑟

2
)

⋅ [𝑔 (𝑌, 𝑍) (∇
𝑊

𝜂) (𝑋) 𝜉

− 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜙𝑊 + 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜙ℎ𝑊

− 𝑔 (𝑋, 𝑍) (∇
𝑊

𝜂) (𝑌) 𝜉 + 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜙𝑊

− 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜙ℎ𝑊 + (∇
𝑊

𝜂) (𝑌) 𝜂 (𝑍) 𝑋

+ 𝜂 (𝑌) (∇
𝑊

𝜂) (𝑍) 𝑋 − (∇
𝑊

𝜂) (𝑋) 𝜂 (𝑍) 𝑌

− 𝜂 (𝑋) (∇
𝑊

𝜂) (𝑍) 𝑌] .

(37)
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Applying 𝜙2 to both sides of (37), we have

𝜙
2

(∇
𝑊

𝑅) (𝑋, 𝑌) 𝑍 =
𝑑𝑟 (𝑊)

2
[𝑔 (𝑌, 𝑍) 𝑋

− 𝑔 (𝑋, 𝑍) 𝑌 − 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜉 + 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜉

− 𝜂 (𝑌) 𝜂 (𝑍) 𝑋 + 𝜂 (𝑋) 𝜂 (𝑍) 𝑌] + (3𝑘 −
𝑟

2
)

⋅ [𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜙ℎ𝑊

− 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜙ℎ𝑊 − 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜙𝑊

+ 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜙𝑊 + (∇
𝑊

𝜂) (𝑌) 𝜂 (𝑍) 𝑋

− (∇
𝑊

𝜂) (𝑌) 𝜂 (𝑍) 𝜂 (𝑋) 𝜉 + 𝜂 (𝑌) (∇
𝑊

𝜂) (𝑍) 𝑋

− (∇
𝑊

𝜂) (𝑋) 𝜂 (𝑍) 𝑌 + (∇
𝑊

𝜂) (𝑋) 𝜂 (𝑍) 𝜂 (𝑌) 𝜉

− 𝜂 (𝑋) (∇
𝑊

𝜂) (𝑍) 𝑌] .

(38)

Now, taking 𝑋, 𝑌, 𝑍 orthogonal to 𝜉 and using (14), we get

𝑑𝑟 (𝑊)

2
[𝑔 (𝑌, 𝑍) 𝑋 − 𝑔 (𝑋, 𝑍) 𝑌] = 0. (39)

Hence, we can state the following theorem.

Theorem 4. A 3-dimensional 𝑁(𝑘)-paracontact metric man-
ifold (𝑀3, 𝜙, 𝜉, 𝜂, 𝑔) is locally 𝜙-symmetric if the scalar curva-
ture tensor 𝑟 of 𝑔 is constant.

5. 𝜙-Ricci Symmetric 𝑁(𝑘)-Paracontact
Metric Manifolds

Definition 5. 𝑁(𝑘)-paracontact metric manifold is said to be
𝜙-Ricci symmetric if the Ricci operator 𝑄 satisfies

𝜙
2

((∇
𝑋

𝑄) 𝑌) = 0, (40)

for all vector fields 𝑋, 𝑌 on 𝑀.
If 𝑋, 𝑌 are orthogonal to 𝜉, then manifold is said to be

locally 𝜙-Ricci symmetric.

Using (1) in (40), we have

(∇
𝑋

𝑄) 𝑌 − 𝜂 ((∇
𝑋

𝑄) 𝑌) 𝜉 = 0. (41)

Taking the inner product of (41) with 𝑍, we have

𝑔 ((∇
𝑋

𝑄) 𝑌, 𝑍) − 𝜂 ((∇
𝑋

𝑄) 𝑌) 𝜂 (𝑍) = 0. (42)

Further simplification of (42) gives the following:

𝑔 (∇
𝑋

𝑄 (𝑌) , 𝑍) − 𝑆 (∇
𝑋

𝑌, 𝑍) − 𝜂 ((∇
𝑋

𝑄) 𝑌) 𝜂 (𝑍)

= 0.
(43)

Putting 𝑌 = 𝜉 in (43), we have

𝑔 (∇
𝑋

𝑄 (𝜉) , 𝑍) − 𝑆 (∇
𝑋

𝜉, 𝑍) − 𝜂 ((∇
𝑋

𝑄) 𝜉) 𝜂 (𝑍) = 0. (44)

Using (4), (10), and (11) in (44), we have

𝑆 (𝜙𝑋, 𝑍) = 2𝑛𝑘 [𝑔 (𝜙𝑋, 𝑍) − 𝑔 (𝜙ℎ𝑋, 𝑍)]

+ 𝑆 (𝜙ℎ𝑋, 𝑍) + 𝜂 ((∇
𝑋

𝑄) 𝜉) 𝜂 (𝑍) .
(45)

Putting 𝑍 = 𝜙𝑍 in (45), we have

𝑆 (𝜙𝑋, 𝜙𝑍) = 2𝑛𝑘 [𝑔 (𝜙𝑋, 𝜙𝑍) − 𝑔 (𝜙ℎ𝑋, 𝜙𝑍)]

+ 𝑆 (𝜙ℎ𝑋, 𝜙𝑍) .
(46)

Again, putting 𝑋 = 𝜙𝑋, 𝑍 = 𝜙𝑍 in (46) and then using (1),
(3), and (10), we have

𝑆 (𝑋, 𝑍) = 2𝑛𝑘𝑔 (𝑋, 𝑍) + 2𝑛𝑘𝑔 (ℎ𝑋, 𝑍) − 𝑆 (ℎ𝑋, 𝑍) . (47)

Replace 𝑍 = ℎ𝑍 in (47), and using (1), (7), and symmetric
property of ℎ, we have

2𝑛𝑘𝑔 (ℎ𝑋, 𝑍) − 𝑆 (ℎ𝑋, 𝑍)

= (𝑘 + 1) [𝑆 (𝑋, 𝑍) − 2𝑛𝑘𝑔 (𝑋, 𝑍)] .
(48)

By virtue of (47) and (48), we have

𝑆 (𝑌, 𝑊) = 2𝑛𝑘𝑔 (𝑌, 𝑊) . (49)

Hence, we can state the following theorem.

Theorem 6. A (2𝑛 + 1)-dimensional 𝑁(𝑘)-paracontact metric
manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) is 𝜙-Ricci symmetric if 𝑔 is an Einstein
manifold.

6. Three-Dimensional 𝜙-Ricci Symmetric
𝑁(𝑘)-Paracontact Metric Manifolds

On a 3-dimensional 𝑁(𝑘)-paracontact metric manifold, the
Ricci operator 𝑄 is given by (34).

Now, taking the covariant differentiation of (34) with
respect to 𝑊, we have

(∇
𝑊

𝑄) 𝑋 =
𝑑𝑟 (𝑊)

2
[𝑋 − 𝜂 (𝑋) 𝜉]

− (3𝑘 −
𝑟

2
) 𝜂 (𝑋) 𝜙𝑊

+ (3𝑘 −
𝑟

2
) 𝜂 (𝑋) 𝜂 (𝑊) 𝜉

+ (3𝑘 −
𝑟

2
) 𝑔 (𝑊, 𝜙𝑋) 𝜉

+ (3𝑘 −
𝑟

2
) 𝑔 (ℎ𝑊, 𝜙𝑋) 𝜉.

(50)

Applying 𝜙2 to both sides of (50), we have

𝜙
2

((∇
𝑊

𝑄) 𝑋) =
𝑑𝑟 (𝑊)

2
[𝑋 − 𝜂 (𝑋) 𝜉]

− (3𝑘 −
𝑟

2
) 𝜂 (𝑋) 𝜙𝑊.

(51)
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Taking 𝑋 orthogonal to 𝜉 in (51), we get the following form:

𝜙
2

((∇
𝑊

𝑄) 𝑋) =
𝑑𝑟 (𝑊)

2
𝑋. (52)

In view of the above equation, we are able to state the
following theorem.

Theorem 7. A 3-dimensional 𝑁(𝑘)-paracontact metric man-
ifold (𝑀3, 𝜙, 𝜉, 𝜂, 𝑔) is locally 𝜙-Ricci symmetric if the scalar
curvature tensor 𝑟 of 𝑔 is constant.

7. Example of 3-Dimensional
Locally 𝜙-Symmetric 𝑁(𝑘)-Paracontact
Metric Manifolds with 𝑘 = −1

We consider the manifold 𝑀 = R3 with the usual cartesian
coordinates (𝑥, 𝑦, 𝑧). The vector fields

𝑒
1

=
𝜕

𝜕𝑥
+

𝑥

𝑧2
𝜕

𝜕𝑦
− 2𝑦

𝜕

𝜕𝑧
,

𝑒
2

=
𝜕

𝜕𝑦
,

𝑒
3

=
𝜕

𝜕𝑧

(53)

are linearly independent at each point of 𝑀. We can compute

[𝑒
1
, 𝑒
2
] = 2𝑒

3
,

[𝑒
1
, 𝑒
3
] =

2𝑥

𝑧3
𝑒
2
,

[𝑒
2
, 𝑒
3
] = 0.

(54)

We define the semi-Riemannian metric 𝑔 as the nondegener-
ate one, whose only nonvanishing components are 𝑔(𝑒

1
, 𝑒
2
) =

𝑔(𝑒
3
, 𝑒
3
) = 1, and the 1-form 𝜂 as 𝜂 = 2𝑦𝑑𝑥 + 𝑑𝑧, which

satisfies 𝜂(𝑒
1
) = 𝜂(𝑒

2
) = 0, 𝜂(𝑒

3
) = 1. Let 𝜙 be the (1, 1)-tensor

field defined by 𝜙𝑒
1

= 𝑒
1
, 𝜙𝑒
2

= −𝑒
2
, and 𝜙𝜉 = 0. Then,

𝑑𝜂 (𝑒
1
, 𝑒
2
) =

1

2
[𝑒
1

(𝜂 (𝑒
2
)) − 𝑒
2

(𝜂 (𝑒
1
)) − 𝜂 ([𝑒

1
, 𝑒
2
])]

= −1 = −𝑔 (𝑒
1
, 𝑒
2
) = 𝑔 (𝑒

1
, 𝜙𝑒
2
) ,

𝑑𝜂 (𝑒
1
, 𝑒
3
) =

1

2
[𝑒
1

(𝜂 (𝑒
3
)) − 𝑒
3

(𝜂 (𝑒
1
)) − 𝜂 ([𝑒

1
, 𝑒
3
])]

= 0 = 𝑔 (𝑒
1
, 𝜙𝑒
3
) ,

𝑑𝜂 (𝑒
2
, 𝑒
3
) =

1

2
[𝑒
2

(𝜂 (𝑒
3
)) − 𝑒
3

(𝜂 (𝑒
2
)) − 𝜂 ([𝑒

2
, 𝑒
3
])]

= 0 = 𝑔 (𝑒
2
, 𝜙𝑒
3
) .

(55)

Therefore, (𝜙, 𝜉, 𝜂, 𝑔) is a paracontact metric structure on 𝑀.
Moreover, ℎ𝑒

1
= −(2𝑥/𝑧3)𝑒

2
, ℎ𝑒
2

= 0, and ℎ𝜉 = 0. Hence,
ℎ2 = 0 and, given 𝑝 = (𝑥, 𝑦, 𝑧) ∈ R3, rank(ℎ

𝑝
) = 0 if 𝑥 = 0

and rank(ℎ
𝑝
) = 1 if 𝑥 ̸= 0.

Let ∇ be the Levi-Civita connection. Using the properties
of paracontact metric structure and Koszul’s formula

2𝑔 (∇
𝑋

𝑌, 𝑍) = 𝑋𝑔 (𝑌, 𝑍) + 𝑌𝑔 (𝑍, 𝑋) − 𝑍𝑔 (𝑋, 𝑌)

− 𝑔 (𝑋, [𝑌, 𝑍]) − 𝑔 (𝑌, [𝑋, 𝑍])

+ 𝑔 (𝑍, [𝑋, 𝑌]) ,

(56)

we can compute

∇
𝑒
1

𝑒
3

= −𝑒
1

+
2𝑥

𝑧3
𝑒
2
,

∇
𝑒
2

𝑒
3

= 𝑒
2
,

∇
𝑒
3

𝑒
3

= 0,

∇
𝑒
1

𝑒
1

= −
2𝑥

𝑧3
𝑒
3
,

∇
𝑒
2

𝑒
1

= −𝑒
3
,

∇
𝑒
3

𝑒
1

= −𝑒
1
,

∇
𝑒
1

𝑒
2

= 𝑒
3
,

∇
𝑒
2

𝑒
2

= 0,

∇
𝑒
3

𝑒
2

= 𝑒
2
.

(57)

Hence, (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) is 𝑁(𝑘)-paracontact metric manifold
with 𝑘 = −1.

Using the following definition of Riemannian curvature
tensor

𝑅 (𝑋, 𝑌) 𝑍 = ∇
𝑋

∇
𝑌
𝑍 − ∇

𝑌
∇
𝑋

𝑍 − ∇
[𝑋,𝑌]

𝑍, (58)

we obtain
𝑅 (𝑒
1
, 𝑒
2
) 𝑒
3

= 0,

𝑅 (𝑒
1
, 𝑒
3
) 𝑒
3

= −𝑒
1
,

𝑅 (𝑒
2
, 𝑒
3
) 𝑒
3

= −𝑒
2
,

𝑅 (𝑒
1
, 𝑒
2
) 𝑒
2

= −3𝑒
2
,

𝑅 (𝑒
2
, 𝑒
3
) 𝑒
2

= 0,

𝑅 (𝑒
1
, 𝑒
3
) 𝑒
2

= 𝑒
3
,

𝑅 (𝑒
1
, 𝑒
2
) 𝑒
1

= 3𝑒
1
,

𝑅 (𝑒
2
, 𝑒
3
) 𝑒
1

= 𝑒
3
,

𝑅 (𝑒
1
, 𝑒
3
) 𝑒
1

=
4𝑥

𝑧3
𝑒
3
.

(59)

From this, it follows that 𝜙2((∇
𝑊

𝑅)(𝑋, 𝑌)𝑍) = 0 for all
vector fields 𝑋, 𝑌, and 𝑍 are orthogonal to 𝜉. Thus, the three-
dimensional 𝑁(𝑘)-paracontact metric manifold with 𝑘 = −1
is locally 𝜙-symmetric.

Also from the above expressions for the curvature ten-
sor, we obtain that the scalar curvature tensor is constant.
Therefore, fromTheorem 4, it follows that themanifold under
consideration is locally 𝜙-symmetric.
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