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We discuss new approaches to handling Fokker Planck equation on Cantor sets within local fractional operators by using the
local fractional Laplace decomposition and Laplace variational iteration methods based on the local fractional calculus. The
new approaches maintain the efficiency and accuracy of the analytical methods for solving local fractional differential equations.
Mlustrative examples are given to show the accuracy and reliable results.

1. Introduction

The Fokker Planck equation arises in various fields in nat-
ural science, including solid-state physics, quantum optics,
chemical physics, theoretical biology, and circuit theory. The
Fokker Planck equation was first used by Fokker and Plank [1]
to describe the Brownian motion of particles. A FPE describes
the change of probability of a random function in space and
time; hence it is naturally used to describe solute transport.

The local fractional calculus was developed and applied
to the fractal phenomenon in science and engineering [2-13].
Local fractional Fokker Planck equation, which was an analog
of a diffusion equation with local fractional derivative, was
suggested in [5] as follows:

u(x,t) T(+a)
ot 4

%u (x, )
ox?

xc (1) + ¢))

The Fokker Planck equation on a Cantor set with local
fractional derivative was presented in [6, 7] as follows:

0“u(x,t) _a“u (x,1)  0%u(x,1) @)
ot Ox® oxx
subject to the initial condition
u(x,0) = f(x). (3)

In recent years, a variety of numerical and analytical
methods have been applied to solve the Fokker Planck
equation on Cantor sets such as local fractional variational
iteration method [6] and local fractional Adomian decom-
position method [7]. Our main purpose of the paper is to
apply the local fractional Laplace decomposition method
and local fractional variational iteration method to solve the
Fokker Planck equations on a Cantor set. The paper has been
organized as follows. In Section 2, the basic mathematical
tools are reviewed. In Section 3, we give analysis of the
methods used. In Section 4, we consider several illustrative
examples. Finally, in Section 5, we present our conclusions.

2. Mathematical Fundamentals

Definition 1. Setting f(x) € C,(a,b), the local fractional
derivative of f(x) of order « at the point x = x, is defined
as [2, 3, 9-12]

a* @ N = f (%))
dxocf (x) o )= xlgr}% (= x0)° , @
O<ac<l,

where A*(f(x) — f(x,)) = T + 1)(f(x) — f(x,)).



Definition 2. Setting f(x) € C,(a,b), local fractional integral
of f(x) of order « in the interval [a, b] is defined through [2,
3,9-12]

b
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where the partitions of the interval [a,b] are denoted as
(tptiy), with At; =t —t,t) = a,ty = b,and At =
max{Aty, Aty,...}, j=0,...,N-1

Definition 3. Let (1/T(1 + a)) [ | f(x)|(dx)* < k < co. The
Yang-Laplace transform of f(x) is given by [2, 3]

L {f @)} = f1%(s)

1 00 wa )
) I'(l+«a) Jo E, (=s"x%) f (x) (dx)*, (6)

O<ac<l,

where the latter integral converges and s* € R".

Definition 4. The inverse formula of the Yang-Laplace trans-
forms of f(x) is given by [2, 3]

L o=

Btiw I
= J E, (s"x%) £% (s) @), (7)

B
O<ac<l,

where s = % + i*w”, fractal imaginary unit i, and Re(s) =

B>0.

3. Analytical Methods

In order to illustrate two analytical methods, we investigate

the local fractional partial differential equation as follows:
Lou(x,t)+ Ru(x,t) = g(x,1), (8)

where L, = 0%/0t® denotes the linear local fractional
differential operator, R, is the remaining linear operators, and
g(x, 1) is a source term of the nondifferential functions.

3.1. Local Fractional Laplace Decomposition Method
(LFLDM). Taking Yang-Laplace transform on (8), we
obtain

E {Lu (o)} + L, {Rou (x, )} =, {g(x, 1)}, (9)

By applying the local fractional Laplace transform differenti-
ation property, we have

sy {u(x, 1)} —u(x,0) + £, {Ryu (x, 1)}

=L {g (%, 1)},

(10)
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or

L {u(x,t)} = Siau (x,0) + si"‘%“ {g(x,t)}
) (11)
- S_O‘L {sz (X, t)} .

Taking the inverse of local fractional Laplace transform on
(11), we obtain

w0t = u(x,0) + L' (S%La {g(x, t)})
(12)

~£! (Sl“{:a {Ru(x, t)}) .

We are going to represent the solution in an infinite series
given below:

ut) =Y u,(x1). (13)
n=0
Substitute (13) into (12), which gives us this result

i u, (x,1) = u(x,0) + £ <sl“£“ {g(x, t)})
n=0

a1 <
- (S—aﬁa {Ra;un (x,t)]»).

When we compare the left- and right-hand sides of (14), we
obtain

(14)

Uy (x,1) = 1 (x,0) + L] (Siaﬁa {g(x, t)}),

u (x,t) = -£" <%La {Ryuq (x, t)}) ,

’ (15)
_ 1
u, (x,t) = —L' (S_aLa {Ryu; (x, t)})
The recursive relation, in general form, is
Uy (x,1) = u(x,0) +1;;1 <ia{;a {g (x, t)}) ,
s

(16)

(1
Uy (x,8) = — £ <s_"‘£“ {Ryu,, (x, t)}), n=0.

3.2. Local Fractional Laplace Variational Iteration Method
(LEFLDM). According to the rule of local fractional varia-
tional iteration method, the correction local fractional func-
tional for (8) is constructed as [13]

un+1 (t) = un (t)
17)

@ (AE=9" I
e o (R (L, © + R, 0 - 9 @),

where A(t — £)*/T(1 + «) is a fractal Lagrange multiplier.
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We now take Yang-Laplace transform of (17); namely,

Lo {thr ()} = £ {u, (O}

@ (AE=8" _
+£06 { OIt ( T (1 + (X) [L(xun (6) + Rocun (6) (18)

—g(:)])},

or

sz {un+1 (t)}
= £ {u, (1)}

A
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(19)

}L(x {Laun (t) + Rrxﬁn (t) -9 (t)} .
Take the local fractional variation of (19), which is given by

O (Ba {ttir (0}) = 8% (B {u, (0})

o <£“ { r?f?ix) } (20)

Ly {L gty (1) = Ry, (1) — g (t>}) .

By using computation of (20), we get

6a (La {un+1 (t)})
= 0% (£, {u, (O}) (1)

+La{ A @)
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o (ot b -0

Hence, from (21) we get

AD® | o
+£°‘{I‘(1+oc)}s =0 @

where

0% (o {Latty (1)}) = 8% (s {u, ()} — 14, (0))

(23)
= s"6% (E, {u, 1)}).
Therefore, we get
ka{ A )" }:_i‘ (24)
I'l+aw) s¢

Therefore, we have the following iteration algorithm:
L[x {un+1 (t)} = th {un (t)}
L Ly, (6 + Rty () - g 0))
s
1
= ’Eoc {un (t)} - S_aLoc {Laun (t)}
b R, (0 - g (1))
g o Wan g (25)
1 o
= L(x {un (t)} - s_aL(x {S u, (t) —u (O)}
1
- S_a{:a {Raun (t) -9 (t)}
1 1
=t (0) - s_“L“ {Ryu, ) — g (D},
where the initial value reads as
1
L {uy 0} = ot (0). (26)
Thus, the local fractional series solution of (8) is
u(xot) = lim L' (B {u, (x0)}). (27)

4. Ilustrative Examples

In this section three examples for Fokker Planck equation
are presented in order to demonstrate the simplicity and the
efficiency of the above methods.

Example 1. Let us consider the following Fokker Planck
equation on Cantor sets with local fractional derivative in the
form

0u(x,t) _a“u (x, 1) N **u (x,1)

, (28)
ot ox® Ox2%

subject to the initial value

u(x,0) = E, (—x%). (29)

(I) By Using LFLDM. In view of (16) and (28) the local
fractional iteration algorithm can be written as follows:

uy (x,t) = E, (-x%),

un+1 (X, t)

! <iLa {_ao‘un (x,1) . **u,, (x,1) } ) ’ (30)

0x“ ox2

n>0.



Therefore, from (30) we give the components as follows:

Ey (=x%),

uy (x,t) =

ul (x’ t)

a1 0“uy (x, 1) 0*uy (x,t)
Ly 1.9% 0
* (s“ “{ ax* | ox=
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u} (X,t)
a1 u, (x, 1) *u, (x,1)
el B AL 2
« (s“ “{ 0x* " 0x%
= (iE (—x“)) = ﬂ]i (—x%)
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Finally, we can present the solution in local fractional series
form as

u(x,t) = E, (-x%)

2t 4> 8t>*
1+ + +
I'l+a) T(I+2x) T(1+3a)

+ ) (32)

- E, (—x*) E, (2t%) = B, (2t* - x%)..

(II) By Using LFLVIM. Using relation (25) we structure the
iterative relation as

Jjoc {un+1 (x: t)}
=L, {u, (x,1)}

~ i;: 0%u,, (x,t) . 0%u,, (x,t) B **u, (x,1)
“« at“ ax"‘ axz"‘ (33)

S(X

= £ iy (60} = < (5% fn, (.00} -

- lL {a“ug (x,t)  0%u, (x,1) } ’

& x*  oxX™

u, (x,0))

where the initial value is given by

L {ug (0, t)} = £ —E, (-x"). (34)
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Therefore, the successive approximations are

£, {ul (x, t)} =L, {un (x, t)}
- Slzx (S‘XLDL {un (X, t)} —-u, (X, 0))

1 L { u, (x,t)  0*u, (x,1) }

s% ox*  oxX«
- ~E
LE (5

Ij{x {ul (X, t)}

G Ba (X7,

Ly {uy (x, 1)} =

- & (" f (60} - (,0)

N

o &

{B"‘ul (x,1) Bz"‘ul (x, 1) }

0x% ox2

- & (" fiy (6 0} - 1, (5.0)

B —J; {B"‘uz (1) 0%u, (x, t)}

s 0x% ox2

1
- LB ()

SOC

2 4
B () By ()
b B (x7)

=B () (5

2 4 8
St

Hence, the local fractional series solution is

u(xt) = lim: £ (£, {u, (x,1)})

. 52k
p— 1 l —
= lim &, (Ea (=« Z SkDa ) (36)

0 2k ko

A

Example 2. We present the Fokker Planck equation on a
Cantor set with local fractional derivative

E, (2t" — x%).

o o 20
0%u (x,t) :_8 u(x,t)+8 u(x,t)’ (37)
ot ox® Ox2%
and the initial condition is
x20¢
,00= ——m . 38
w0 = T2 (38)
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(I) By Using LELDM. In view of (16) and (37) the local
fractional iteration algorithm can be written as follows:

O T I (1 + 2a)
un+1 (x)t)
1 0w, (x,t) 0, (x,1) )
“ t “u (x,t
ZJ:_I L _ Uy, (X, n \" ,
« (s"‘ “<| 0x% " Ox2* })

n=>0.

Therefore, from (39) we give the components as follows:

x2a

uy (x,t) = m)

ul (X’ t)
a1 uy (x, 1) 0%uy (x,1)
Ly 19 0
* (s"‘ “{ x| ox

_ 1 x% 1
=T 4y =
“« < 2T (1+a) sz"‘)
_ x* . t*
Frl+a)TQ+a) TA+a)

u, (x,t)

_ g lL _a“ul (x,1) . 0% u, (x,t)
“\s® 0x® 0x2« (40)

g <L> __
o\ g3 ra+2a)’

us (x,t)

L1 u, (x,1)  0%u, (x,1)
=L | =&, 1-—=2 2
« (s"‘ “{ 0x® * Ox2

a1 uy (%, 1) 0%uy (x, 1)
=L | =E, 1-—2 3 =0
“ (s"‘ “{ oxt T oxe

Finally, we can present the solution in local fractional series
form as

2 2
x e

wleh) = T T Tt 20

(41)
x“ t* t*

TTU+aT(l+a) TOta)

(II) By Using LFLVIM. Using relation (25) we structure the
iterative relation as

{ja {un+1 (x’ t)} = th {un (x’ t)}

- iL <{8"‘14,1 (o) O"u, (xt) 0*u, (x, t)}

5% ar | ox® ox
1 (42)
=L, {u, (x,t)} - - (s“E, {u, (x,)} —u, (x,0))

1 L {a“un (5t) 0*u,, (x,1) } )

s« Ox® Ox2x

where the initial value is given by

xZ(x } 1 x2a

£, {uy (x, 1)} = E, { T s 20) = (43)

S*T(1+2a)
Therefore, the successive approximations are

Lo fuy (e D)} = £ {ug ()}

- Sl(x (s"E, {ug (x, 1)} — 1y (x,0))

- l)g {B"‘uo (x,t) 0%u, (x, t)}

s 0x“ Ox2
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-
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Hence, the local fractional series solution is

u(x,t) = nleréo£;1 (£, {u, (x,0)})

a1 X 1 1 X
= lim E (——+ST——

n—oo % \ s*T(1+2x) o« s22T (14 «)
1 thx t20¢ xoc (45)
+— | = + -
52"‘> Fl1+20) T(1+2x) T(l+a)
t* t*

T+a) TU+a)

Example 3. We consider the Fokker Planck equation on a
Cantor set with local fractional derivative

0u(x,t) _a“u (x,t) 0 u(x,t)
ot 0x* ox2

and the initial condition is

(46)

x3oc

"T(1+3a) 47)

u(x,0) =

(I) By Using LFLDM. In view of (16) and (46) the local
fractional iteration algorithm can be written as follows:

3a
0 I (1+3a)
un+1(x’t)
0%u, (x,1) 0™, (x,1) )
a1 “u (x,t “u (x,t
=)I_71 —L _ n > n > ,
« (s"‘ “1 ax% | ox= })

n=>0.

Therefore, from (30) we give the components as follows:

x3rx

uy (x,t) = —m’

ul (X, t)
(L . uy (x, 1) 0%uy (x,t)
= ( 5@ Fa { x| ox

=L_1 L x2(x - i xoc
NS (1 +2a) s2*T(1+a)
~ x2a trx xa toc
T T(A+20)T(1+a) Tl+a)T(1+a)

”2 (X, t)

a1 _8“141 (1) 0™u, (x,1)
=% (s"‘ Ea { ox* | o

o

_ 1 x“ 2
S St (P S

« ( ST (1+a) 53“)

x% t

T+ T(+20) T(1+20)

20 2 tth
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a1 _a“uz (1) 0™u, (x,1)
=t ( ot { ox® T ox

_ijl(L) ~ t30c
* \st I'(l+3a)’

a1 %uy (x,1) 0% uy (x,1)
Ly 19 3 _
(5"‘ * 1 ax* | ox= 0

(49)

(%

Finally, we can present the solution in local fractional series
form as

x3(x x2:x t(x

u(x,t)z_r(1+3(x) * IFr1+20)T(1+«)

x* t*
TU+a)T(+a)
(50)
xoc t2(x 2t2(x
- +
Frl+a)T(1+2x) T(1+2x)

t3zx

+—
I'(l+3x)

(1) By Using LEFLVIM. Using relation (18) we structure the
iterative relation as

sz {un+1 (x) t)}
=£, {u, (x,1)}

l{: {a“un (x,t)  0"u, (x,t) - 0*u,, (x, t)]>
’ (51)

o o« 0x% Ox2*

=£, {u, (x,1)} ! (s“E, {u, (x, 1)} — u,, (x,0))

G
1 L u, (x,t)  0™u, (x,1)
& 0x* ox2« ’

where the initial value is given by

3x 3a
1
X } _ X (52)

Lo futo (0,0} = {_F(l 30| S T(1+3a)

Therefore, the successive approximations are

{:ot {ul (x’ t)} = Lot {u() (xr t)}

- sia (SaLa {”o (x, t)} -u, (x, 0))

B l;: <'a"‘uo (1) ™ uy (x, t)}

N ox“ Ox2x
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1 X 1 x> 1 x%

= - 4+ [ — )
*T(1+3x) s2T(1+4+2x) s22T(1+a)

£, {u, (x, 1)} = £, {uy (x, 1)}

- Si ("B {1y (x, 1)} — 1) (x,0))

& 0x“ Ox2

- lI; {a“ul (1) 0™ u, (x, t)}

1 X N 1 X 1 x*
s*T(A+3x) s**T(1+2a) s*T(1+a)

1 x“ 2
—_—— + -,
ST (1 +3a) s
£, {us (6, )} = £, {u, (x, 1)}

- si (s"Eq {uy (x, 1)} — 1, (x,0))

o

1, {a"‘uz (n,) _ 9, (x, t)}

s ox“ Ox2«

1 X 1 X 1 x

__—+_ —_——
*T(1+3x) s2*T(1+2a) s*T(1+a)

o

1 x* N 2 N 1
ST (1+30) s s’

£, {uy (60} = £, {us (5, 1)}

- si“ (S“La {u3 (x, t)} - us (x, O))

1 L %us (x,1)  0%us (x,1)
R ox*  ox
1 X 1 x> 1 x%

= - 4+ -
*T(1+3x) s**T(1+2a) s*T(1+a)

1 x* N 2 N 1
ST (1 +3a) ¢ st

(53)
Hence, the local fractional series solution is
. -1
u(et) = lim £ (&, {u, (x.0)})
- x3zx s xZoc toc
C T(1+43a) T(1+20)T(1+a)

o tOC

X
TT(+a)T(1+a) (54)
xa leZoc 2t20c
+
F(l+a)T(1+2x) T(1+2x)
t?aoc

+
T'(1+3x)

5. Conclusions

In this work solving Fokker Planck equation by using the
local fractional Laplace decomposition method and local
fractional Laplace variational iteration method with local
fractional operators is discussed in detail. Three examples of
applications of these methods are investigated. The reliable
obtained results are complementary to the ones presented in
the literature.
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