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It is shown for coefficient matrices of Russell-Rao coefficients and two asymmetric Dice coefficients that ordinal information on a
latent variable model can be obtained from the eigenvector corresponding to the largest eigenvalue.

1. Introduction

An important role in statistics and data analysis is played by
similarity coefficients. A similarity coefficient is a measure of
resemblance or association of two data vectors, such as score
patterns, variables, and items. For example, in ecological biol-
ogy similarity coefficients are used for measuring the degree
of coexistence between two species types over different loca-
tions. Inmany research studies the data consist of binary (0, 1)
vectors: presence or absence of disease; presence or absence
of species characteristics; yes or no answers in questionnaires;
pass or fail in high-stakes testing. For expressing the degree
of resemblance of two binary vectors in a number, a variety of
similarity coefficients has been proposed [1–3]. Examples are
the Jaccard coefficient [4], the Russell-Rao coefficient [5], the
Dice coefficient [6], and the simplematching coefficient [7, 8].
In choosing a coefficient, a measure has to be considered
in the context of the data-analytic study of which it is a
part [9]. Because there are so many similarity coefficients for
binary data to choose from, it is important that the different
coefficients and their properties are better understood.

Instead of studying properties of individual coefficients
[10–13] one may also study properties of coefficient matrices
[14]. Coefficient matrices are used as input in various tech-
niques of multivariate data analysis, including factor or com-
ponent analysis [15, 16], hierarchical cluster analysis, and
techniques in classification and dissimilarity analysis [17].
Moreover, exploratory data-analytic methods such as prin-
cipal coordinates analysis and (multiple) correspondence

analysis can be defined as eigendecomposition of certain
coefficient matrices [15, 16, 18]. It would be interesting to
knowwhat information, if any, is reflected in the eigenvectors
of a coefficient matrix that is based on a similarity coefficient
for binary vectors.

In this paper we show for several coefficient matrices
that ordinal information on latent variable models can be
obtained from the eigenvector corresponding to the largest
eigenvalue. It is thus possible to uncover meaningful order-
ings of various models by using eigenvectors. The results
are first of all of theoretical interest. They show that some
coefficient matrices have more interesting eigenvectors than
others. Coefficient matrices based on some coefficients may
thus lead to more interesting data-analytic solutions than
matrices corresponding to other coefficients. Furthermore,
potentially, the results can enhance the interpretation of a
data analysis that uses these coefficient matrices as input.

The paper is organized as follows. Notation and two
latent variable models are introduced in the next section.
In Section 3 several ordering properties of eigenvectors
corresponding to a largest eigenvalue are presented. An illus-
tration of the results is presented in Section 4. Section 5 con-
tains a conclusion.

2. Latent Variable Models

Suppose the data consist of 𝑚 binary (0, 1) vectors of length
𝑛. It may be assumed that the scores in the binary vectors
are realizations of a latent variable model. In this section
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we introduce two models in the context of nonparametric
item response theory [19, 20]. In item response theory the𝑚
vectors are often viewed as𝑚 items that, for instance, contain
the responses (pass, fail) of a high-stakes test for 𝑛 subjects.
The𝑚 items will be indexed by 𝑖 and 𝑗.

Let 𝜃 denote a one-dimensional latent variable and let
𝐿(𝜃) be its probability density function. Let 𝑝

𝑖
(𝜃) denote the

response function corresponding to the response 1 on item 𝑖.
The unconditional probability of a response 1 on item 𝑖 is then
given by

𝑝
𝑖
= ∫
∞

−∞

𝑝
𝑖 (𝜃) 𝑑𝐿 (𝜃) . (1)

Next, assume local independence; that is, conditionally on
𝜃 the responses of a subject on the items are stochastically
independent. The joint probability of items 𝑖 and 𝑗 for a
value of 𝜃 is then given by 𝑝

𝑖
(𝜃)𝑝
𝑗
(𝜃). The corresponding

unconditional probability is

𝑎
𝑖𝑗
= ∫
∞

−∞

𝑝
𝑖 (𝜃) 𝑝𝑗 (𝜃) 𝑑𝐿 (𝜃) . (2)

Throughout the paper we assume that 0 < 𝑎
𝑖𝑗
≤ 1.

Next, we define the latent variable models. Both models
havemonotone response functions and are frequently applied
in the context of measuring ability. The first model is charac-
terized by requirements (3) and (4). The first requirement is
that 𝑝

𝑖
(𝜃) are monotonically increasing on 𝜃; that is,

𝑝
𝑖
(𝜃
1
) ≤ 𝑝
𝑖
(𝜃
2
) (3)

for 𝜃
1
< 𝜃
2
. The second requirement is that the 𝑚 items can

be ordered such that 𝑝
𝑖
(𝜃) are nonintersecting; that is,

𝑝
𝑖 (𝜃) ≥ 𝑝𝑗 (𝜃) (4)

for 𝑖 < 𝑗. The case that assumes (3) and (4), together
with the assumptions of local independence and a single
latent variable, is called the double monotonicity model in
nonparametric item response theory [19, 20]. A well-known
result is that if the doublemonotonicitymodel holds, then the
items can be ordered such that we have

𝑝
𝑖
> 𝑝
𝑗 (5)

for 𝑖 < 𝑗, and

𝑎
𝑖𝑗
≥ 𝑎
𝑖
󸀠
𝑗 (6)

for 𝑖 < 𝑖󸀠 and 𝑗 ̸= 𝑖󸀠 [19, 20].The secondmodel is characterized
by requirements (3) and (7). The response functions 𝑝

𝑖
(𝜃)

may satisfy various orders of total positivity [21]. If the
functions 𝑝

𝑖
(𝜃) are totally positive of order 2, the items can

be ordered such that

𝑝
𝑖
(𝜃
1
) 𝑝
𝑗
(𝜃
2
) − 𝑝
𝑖
(𝜃
2
) 𝑝
𝑗
(𝜃
1
) ≥ 0 (7)

holds for 𝜃
1
< 𝜃
2
and 𝑖 < 𝑗. Schriever [22] proved the

following result for a set of response functions that are both

monotonically increasing and satisfy total positivity of order
2. If the vectors are ordered such that (3) and (7) hold, then

𝑎
𝑖𝑗

𝑝
𝑖

≤
𝑎
𝑖
󸀠
𝑗

𝑝
𝑖
󸀠

(8)

holds for 𝑖 < 𝑖󸀠 and 𝑗 ̸= 𝑖󸀠.
We conclude this section with a parametric example that

satisfies requirements (3), (4), and (7). A well-known model
from the field of item response theory is theRasch [23]model.
A response function of this one-parameter logistic model is
given by

𝑝
𝑖
(𝜃, 𝑏
𝑖
) =

𝑒𝜃−𝑏𝑖

1 + 𝑒𝜃−𝑏𝑖
, (9)

where 𝑏
𝑖
is a location parameter. In the context of item

response theory the parameter 𝑏
𝑖
is usually called a difficulty

parameter [19, 20]. The functions 𝑝
𝑖
(𝜃, 𝑏
𝑖
) form a location

family.

3. Ordering Properties

In this section we present ordering properties for three coef-
ficient matrices. The coefficient matrices of size𝑚 × 𝑚 are

𝐴 = (𝑎
𝑖𝑗
) ,

𝐵 = (
𝑎
𝑖𝑗

𝑝
𝑖

) ,

𝐶 = (
𝑎
𝑖𝑗

𝑝
𝑗

) .

(10)

An element of thematrix𝐴 is a Russell-Rao coefficient for two
binary vectors 𝑖 and 𝑗 [5, 10]. Some data-analytic properties of
the matrix 𝐴 are discussed in Warrens [14]. The elements of
the matrices 𝐵 and 𝐶 are conditional probabilities discussed
and applied in Dice [6]. The harmonic mean of the two
conditional probabilities is equal to the Dice coefficient [6].
Matrix 𝐶 is also called the conditional adjacency matrix in
Post and Snijders [24].

A specific result that will be used in the proofs of
Theorems 2, 3, and 4 below is the Perron-Frobenius theorem
[25, 26]. More precisely, only the following weaker version of
the Perron-Frobenius theorem will be used.

Lemma 1. If a square matrix 𝐷 has strictly positive elements,
then the eigenvector 𝑦 corresponding to the largest eigenvalue
of𝐷 has strictly positive elements.

In the proof ofTheorems 2, 3, and 4 we use certain special
matrices. Let 𝑆 denote the upper triangularmatrix of size 𝑘×𝑘
(2 ≤ 𝑘 ≤ 𝑚) with unit elements on and above the diagonal
and all other elements zero. Its inverse 𝑆−1 is the matrix with
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unit elements on the diagonal and with elements −1 adjacent
and above the diagonal. Examples of 𝑆 and 𝑆−1 of size 3×3 are

𝑆 = (

1 1 1

0 1 1

0 0 1

) ,

𝑆
−1
= (

1 −1 0

0 1 −1

0 0 1

) .

(11)

Furthermore, let 𝐼 be the identity matrix of size (𝑚 − 𝑘) ×
(𝑚 − 𝑘), and let 𝑇 denote the diagonal block matrix of size
𝑚 × 𝑚 with diagonal elements 𝑆 and 𝐼. Examples of 𝑇 and
𝑇−1 of size 4 × 4 are

𝑇 =(

1 1 1 0

0 1 1 0

0 0 1 0

0 0 0 1

),

𝑇
−1
=(

1 −1 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

).

(12)

We first consider the matrix 𝐶. Let 𝑦 be the eigenvector
corresponding to the largest eigenvalue 𝜆 of the matrix 𝐶.
Theorem 2 shows that if the binary vectors can be ordered
such that (3) and (4) hold, then this ordering is reflected in
the corresponding elements of 𝑦.

Theorem2. Suppose that 𝑘 of the𝑚 vectors, whichwithout loss
of generality can be taken as the first 𝑘, can be ordered such that
(3) and (4) hold. Then the elements of 𝑦 of 𝐶 corresponding to
these 𝑘 vectors satisfy 𝑦

1
> 𝑦
2
> ⋅ ⋅ ⋅ > 𝑦

𝑘
> 0.

Proof. Since 𝑇 is nonsingular, 𝑦 is an eigenvector of 𝐶
corresponding to 𝜆 if and only if 𝑧 = 𝑇−1𝑦 is an eigenvector of
𝐷 = 𝑇−1𝐶𝑇 corresponding to 𝜆. Under the conditions of the
theorem, the elements of 𝐷 are positive and the elements of
𝐷2 are strictly positive. Application of Lemma 1 then yields
that the eigenvector 𝑧 of 𝐷 (or 𝐷2) has strictly positive ele-
ments.The assertion then follows from the identity 𝑧 = 𝑇−1𝑦.

In the remainder of the proof we show that𝐷 has positive
elements and 𝐷2 has strictly positive elements. The matrix
𝑈 = 𝑇−1𝐶 has elements

𝑢
𝑖𝑗
=
𝑎
𝑖𝑗
− 𝑎
𝑖+1,𝑗

𝑝
𝑗

(13)

for 1 ≤ 𝑖 < 𝑘 and 1 ≤ 𝑗 ≤ 𝑚 and

𝑢
𝑖𝑗
=
𝑎
𝑖𝑗

𝑝
𝑗

(14)

for 𝑘 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑚. Under the conditions of the
theorem properties (5) and (6) hold for the first 𝑘 items.
By (6), we have 𝑎

𝑖𝑗
≥ 𝑎
𝑖+1,𝑗

, and the matrix 𝑈 has positive
elements except for 𝑢

𝑖,𝑖+1
for 1 ≤ 𝑖 ≤ 𝑘 − 1. However by (5),

we have 𝑝
𝑖
> 𝑝
𝑖+1

and it follows that

𝑢
𝑖𝑖
+ 𝑢
𝑖,𝑖+1
=
𝑝
𝑖+1
𝑎
𝑖𝑖
− 𝑝
𝑖+1
𝑎
𝑖,𝑖+1
+ 𝑝
𝑖
𝑎
𝑖,𝑖+1
− 𝑝
𝑖
𝑎
𝑖+1,𝑖+1

𝑝
𝑖
𝑝
𝑖+1

=
𝑎
𝑖,𝑖+1
(𝑝
𝑖
− 𝑝
𝑖+1
)

𝑝
𝑖
𝑝
𝑖+1

> 0

(15)

for 1 ≤ 𝑖 ≤ 𝑘 − 1. Hence, the matrix 𝐷 = 𝑈𝑇 has positive
elements. Moreover, because the elements in the last row
and last column of 𝐷 are strictly positive, it follows that the
elements of𝐷2 are strictly positive.

An analogous result holds for the matrix 𝐴. Let 𝑦 be the
eigenvector corresponding to the largest eigenvalue 𝜆 of the
matrix 𝐴. Theorem 3 shows that if the binary vectors can
be ordered such that (3) and (4) hold, then this ordering is
reflected in the corresponding elements of 𝑦 of 𝐴.

Theorem3. Suppose that 𝑘 of the𝑚 vectors, whichwithout loss
of generality can be taken as the first 𝑘, can be ordered such that
(3) and (4) hold. Then the elements of 𝑦 of 𝐴 corresponding to
these 𝑘 vectors satisfy 𝑦

1
> 𝑦
2
> ⋅ ⋅ ⋅ > 𝑦

𝑘
> 0.

Proof. The proof is similar to the proof of Theorem 2. The
matrix 𝑈 = 𝑇−1𝐴 has elements

𝑢
𝑖𝑗
= 𝑎
𝑖𝑗
− 𝑎
𝑖+1,𝑗 (16)

for 1 ≤ 𝑖 < 𝑘 and 1 ≤ 𝑗 ≤ 𝑚 and

𝑢
𝑖𝑗
= 𝑎
𝑖𝑗 (17)

for 𝑘 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑚. Under the conditions of
the theorem properties (5) and (6) hold for the first 𝑘 items.
By (6), we have 𝑎

𝑖𝑗
≥ 𝑎
𝑖+1,𝑗

, and the matrix 𝑈 has positive
elements except for 𝑢

𝑖,𝑖+1
for 1 ≤ 𝑖 ≤ 𝑘−1. But by (5), we have

𝑝
𝑖
> 𝑝
𝑖+1

, and it follows that

𝑢
𝑖𝑖
+ 𝑢
𝑖,𝑖+1
= 𝑎
𝑖𝑖
− 𝑎
𝑖,𝑖+1
+ 𝑎
𝑖,𝑖+1
− 𝑎
𝑖+1,𝑖+1

= 𝑝
𝑖
− 𝑝
𝑖+1

> 0
(18)

for 1 ≤ 𝑖 ≤ 𝑘 − 1.

Finally,Theorem4belowpresents an ordering property of
thematrix 𝐵.The ordering holds for a slightly stronger model
than the one considered in Theorems 2 and 3. Theorem 4
shows that if the binary vectors can be ordered such that
(3), (4), and (7) hold, then this ordering is reflected in the
corresponding elements of 𝑦 of 𝐵.

Theorem4. Suppose that 𝑘 of the𝑚 vectors, whichwithout loss
of generality can be taken as the first 𝑘, can be ordered such that
(3), (4), and (7) hold.Then the elements of 𝑦 of𝐵 corresponding
to these 𝑘 vectors satisfy 0 < 𝑦

1
< 𝑦
2
< ⋅ ⋅ ⋅ < 𝑦

𝑘
.
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Proof. The proof is similar to the proof of Theorems 2 and
3. Let (𝑇−1)󸀠 denote the transpose of 𝑇−1. The matrix 𝑈 =
(𝑇−1)󸀠𝐵 has elements

𝑢
𝑖𝑗
=
𝑝
𝑖−1
𝑎
𝑖𝑗
− 𝑝
𝑖
𝑎
𝑖−1,𝑗

𝑝
𝑖−1
𝑝
𝑖

(19)

for 2 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑚 and

𝑢
𝑖𝑗
=
𝑎
𝑖𝑗

𝑝
𝑖

(20)

for 𝑘 < 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑚. Under the conditions
of the theorem properties (5) and (8) hold. By (8), we have
𝑝
𝑖−1
𝑎
𝑖𝑗
≥ 𝑝
𝑖
𝑎
𝑖−1,𝑗

, and the matrix 𝑈 has positive elements
except for 𝑢

𝑖𝑖−1
for 2 ≤ 𝑖 ≤ 𝑘. However, by (5), we have

𝑝
𝑖−1
> 𝑝
𝑖
, and it follows that

𝑢
𝑖,𝑖−1
+ 𝑢
𝑖𝑖
=
𝑝
𝑖−1
𝑎
𝑖,𝑖−1
− 𝑝
𝑖
𝑎
𝑖−1,𝑖−1

+ 𝑝
𝑖−1
𝑎
𝑖𝑖
− 𝑝
𝑖
𝑎
𝑖,𝑖−1

𝑝
𝑖−1
𝑝
𝑖

=
𝑎
𝑖,𝑖−1
(𝑝
𝑖−1
− 𝑝
𝑖
)

𝑝
𝑖−1
𝑝
𝑖

> 0

(21)

for 2 ≤ 𝑖 ≤ 𝑘.

4. An Illustration

In this section we consider an example from educational
testing to illustrate some of the results from Section 3. The
data consist of responses of 1000 individuals to five items of
the LSAT (Law SchoolAdmissionTest).The test was designed
to measure a one-dimensional latent variable. The example
is part of a data set given by Bock and Lieberman [27]. The
data set is distributed with the R package “ltm” written by
Rizopoulos [28].

Requirements (3), (4), and (7) cannot be checked directly
for real life data. However, it can be shown that the Rasch
model in (9) fits these data quite well. Using subroutines from
the “ltm” package we fitted the Raschmodel and the so-called
two-parameter logisticmodel [19, 20]. In the Raschmodel the
items are allowed to differ in location. In the more general
two-parameter model the items are also allowed to differ
in slope. For these data the two-parameter model has four
additional parameters. The log likelihoods of the models are
−2466.94 and −2466.65, respectively, and the corresponding
likelihood ratio test has a 𝑝 value of 𝑝 = .967. Thus, the extra
slope parameters are statistically not warranted.

Requirements (3), (4), and (7) can also be studied by
verifying if conditions (5), (6), and (8) hold. The proportions
of correct responses are 𝑝

1
= .924, 𝑝

2
= .709, 𝑝

3
= .553,

𝑝
4
= .763, and 𝑝

5
= .870 for items 1 to 5, respectively. For

verifying conditions (6) and (8), we suppose that the items
are ordered on the proportions of correct responses, from
easiest to hardest item (1, 5, 4, 2, and 3). In other words, in
the following we assume that the items are ordered such that
condition (5) holds.

To study condition (6) we may inspect the matrix 𝐴 of
Russell-Rao coefficients. For the LSAT data this matrix is
given by

𝐴 =
(
(

(

.924 .806 .710 .664 .524

.806 .870 .678 .630 .490

.710 .678 .763 .553 .445

.664 .630 .553 .709 .418

.524 .490 .445 .418 .553

)
)

)

. (22)

The elements on the main diagonal are the proportions of
correct responses. If we ignore the elements on the main
diagonal it can be verified that the other four elements in
each column of 𝐴 are strictly decreasing. Hence, condition
(6) holds.

Since conditions (5) and (6) hold for all five LSAT items
it follows from Theorem 3 that the ordering of the items
is reflected in the eigenvector corresponding to the largest
eigenvalue of 𝐴. The largest eigenvalue is 𝜆 = 3.191 and the
associated eigenvector is given by (.516, .495, .446, .420, .336).
The item ordering is thus reflected in the elements of the
eigenvector.

To verify whether condition (8) holds we may inspect the
matrix 𝐵 of Dice coefficients. For the LSAT data this matrix
is given by

𝐵 =
(
(

(

1.00 .872 .768 .719 .567

.926 1.00 .779 .724 .563

.931 .889 1.00 .725 .583

.937 .889 .780 1.00 .590

.948 .886 .805 .756 1.00

)
)

)

. (23)

If we ignore the elements on the main diagonal it can be
verified that the remaining four elements in the first, third,
and fourth columns of 𝐵 are strictly increasing. Furthermore,
the elements in the second and fifth columns are roughly
increasing. In both columns there is one anomaly. We may
conclude that condition (8) holds approximately.

If the five LSAT items satisfy conditions (5) and (8)
it follows from Theorem 4 that the ordering of the items
is reflected in the eigenvector corresponding to the largest
eigenvalue of 𝐵. The largest eigenvalue is 𝜆 = 4.106 and the
associated eigenvector is given by (.424, .431, .446, .454, .478).
The item ordering is thus reflected in the elements of the
eigenvector.

5. Conclusion

Similarity coefficients for binary vectors are frequently used
in statistics for analyzing the structure between objects.
Examples that are commonly used are the Russell-Rao coef-
ficient [5] and the Dice coefficient [6]. Since the choice of
a coefficient depends on the context of the data-analytic
study, it is important that the different coefficients and their
properties are well understood.



Journal of Mathematics 5

In this paper we showed that ordinal information on
latent variable models is reflected in the eigenvector corre-
sponding to the largest eigenvalue of the coefficient matrices
with Russell-Rao coefficients (Theorem 3) and two asymmet-
ric coefficients used in Dice [6] (Theorems 2 and 4). For other
well-known coefficients like the Jaccard coefficient [4] and
the simple matching coefficient similar ordering properties
could not been found. The results may indicate that the Rus-
sell-Rao coefficient and Dice coefficients may lead to more
clearly interpretable output if used as input in clustering
methods or principal coordinates analysis. However, more
research on this topic is needed.
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