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Some sharp estimates of coefficients, distortion, and growth for harmonicmappings with analytic parts convex or starlike functions
of order 𝛽 are obtained. We also give area estimates and covering theorems. Our main results generalise those of Klimek and
Michalski.

1. Introduction

Let 𝑆 denote the class of functions of the form 𝑓(𝑧) = 𝑧 +
∑
∞

𝑛=2
𝑎
𝑛
𝑧𝑛 that are analytic and univalent in the unit diskD :=

{𝑧 : |𝑧| < 1}. An analytic function𝑓(𝑧) = 𝑧+∑∞
𝑛=2
𝑎
𝑛
𝑧𝑛 is said

to be convex of order 𝛽 if

Re{1 +
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
} ≥ 𝛽 > 0, 𝑧 ∈ D (1)

for which we write 𝑓(𝑧) ∈ 𝐶
𝛽
⊂ 𝑆. An analytic function

𝑓(𝑧) = 𝑧 + ∑
∞

𝑛=2
𝑎
𝑛
𝑧𝑛 is said to be starlike of order 𝛽 if

Re{
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
} ≥ 𝛽 > 0, 𝑧 ∈ D (2)

for whichwewrite𝑓(𝑧) ∈ 𝑆∗
𝛽
⊂ 𝑆, where𝛽 ∈ (0, 1]. Moreover,

when the positive constant 𝛽 vanishes in (1), (2), the function
𝑓 turns to be starlike or convex function.That is to say, when
an analytic function 𝑓 only satisfies Re{𝑧𝑓󸀠(𝑧)/𝑓(𝑧)} > 0 or
Re{1 + 𝑧𝑓󸀠󸀠(𝑧)/𝑓󸀠(𝑧)} > 0, we call 𝑓 belongs to starlike or
convex function, for which we write 𝑓 ∈ 𝑆∗

0
or 𝑓 ∈ 𝐶

0
for

convenience.
A complex-valued harmonic function 𝑓 in the open unit

disk D ⊂ C has a canonical decomposition

𝑓 (𝑧) = ℎ (𝑧) + 𝑔 (𝑧), (3)

where ℎ and 𝑔 are analytic in D. Generally, we call ℎ(𝑧) the
analytic part and 𝑔(𝑧) the coanalytic part of 𝑓(𝑧) = ℎ(𝑧) +

𝑔(𝑧). An elegant and complete account of the theory of planar
harmonic mappings is given in Duren’s monograph [1].

Lewy [2] proved in 1936 that a necessary and sufficient
condition for 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) to be locally univalent and
sense-preserving in D is 𝐽

𝑓
(𝑧) > 0, where

𝐽
𝑓
(𝑧) =

󵄨󵄨󵄨󵄨󵄨ℎ
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
2

−
󵄨󵄨󵄨󵄨󵄨𝑔
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
2

, 𝑧 ∈ D. (4)

To such a function 𝑓, ℎ󸀠 does not vanish in D; let

𝜔 (𝑧) =
𝑔󸀠 (𝑧)

ℎ󸀠 (𝑧)
, 𝑧 ∈ D, (5)

and then the second complex dilatation 𝜔(𝑧) is analytic with
|𝜔(𝑧)| < 1.

Clunie and Sheil-Small introduced the class of all sense-
preserving univalent harmonic mappings of D with ℎ(0) =
𝑔(0) = ℎ󸀠(0) − 1 = 0 that is denoted by 𝑆

𝐻
[3]. In [4], Hotta

and Michalski denoted the class 𝐿
𝐻
of all locally univalent

and sense-preserving harmonic functions in the unit disk
with ℎ(0) = 𝑔(0) = ℎ󸀠(0) − 1 = 0. Obviously, 𝑆

𝐻
⊂ 𝐿
𝐻
.
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Every function𝑓 ∈ 𝐿
𝐻
is uniquely determined by coefficients

of the following power series expansions:

ℎ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛,

𝑔 (𝑧) =
∞

∑
𝑛=1

𝑏
𝑛
𝑧𝑛,

𝑧 ∈ D,

(6)

where 𝑎
𝑛
, 𝑏
𝑛
∈ C, 𝑛 = 2, 3, 4, . . ..

In [5], the classes of starlike and convex functions of order
𝛽 were first introduced by Robertson. Then, such functions
have been studied and used in [6–9], and so forth. In [10, 11],
Klimek and Michalski studied the cases when the analytic
part ℎ is the identity mapping (convex of order 1) and convex
mapping (convex of order 0), respectively. In [4], Hotta and
Michalski considered the case when the analytic part ℎ is a
starlike analytic mapping (starlike of order 0). The main idea
of this paper is to characterize the subclasses of 𝑆

𝐻
when ℎ ∈

𝐶
𝛽
and the subclasses of 𝐿

𝐻
when ℎ ∈ 𝑆∗

𝛽
, where 𝛽 ∈ [0, 1].

In order to establish our main results, we need the
following lemma.

Lemma 1 (see [12]). If 𝑓(𝑧) = 𝑎
0
+ 𝑎
1
𝑧 + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑧𝑛 + ⋅ ⋅ ⋅ is

analytic and |𝑓(𝑧)| ≤ 1 on D, then
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 ≤ 1 −

󵄨󵄨󵄨󵄨𝑎0
󵄨󵄨󵄨󵄨
2

, 𝑛 = 1, 2, . . . . (7)

2. Main Results and Their Proofs

In what follows, the harmonic mappings that we consider are
all normalized locally univalent and sense-preserving.

Definition 2. For 𝛼 ∈ [0, 1), let

𝑆𝛼
𝐻
(𝐶
𝛽
) := {𝑓 (𝑧) = ℎ (𝑧) + 𝑔 (𝑧) : ℎ (𝑧) ∈ 𝐶

𝛽
,
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨

= 𝛼, 0 ≤ 𝛽 ≤ 1} ⊂ 𝑆
𝐻
.

(8)

By [3, Theorem 5.7], if ℎ(𝑧) ∈ 𝐶
𝛽
with |𝜔(𝑧)| = |𝑔󸀠(𝑧)/

ℎ󸀠(𝑧)| < 1, then 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝑆
𝐻
; hence, the class

𝑆𝛼
𝐻
(𝐶
𝛽
) is well-defined.

Definition 3. For 𝛼 ∈ [0, 1), let

𝐿𝛼
𝐻
(𝑆∗
𝛽
) := {𝑓 (𝑧) = ℎ (𝑧) + 𝑔 (𝑧) : ℎ (𝑧) ∈ 𝑆

∗

𝛽
,
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨

= 𝛼, 0 ≤ 𝛽 ≤ 1} ⊂ 𝐿
𝐻
.

(9)

In particular, we establish a smaller subclass of 𝑆
𝐻
,

𝑆𝛼
𝐻
(𝑆∗
𝛽
) := {𝑓 (𝑧) = ℎ (𝑧) + 𝑔 (𝑧) ∈ 𝑆

𝐻
: ℎ (𝑧)

∈ 𝑆∗
𝛽
,
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 = 𝛼, 0 ≤ 𝛽 ≤ 1} .

(10)

Lemma 4. If 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝐿𝛼
𝐻
(𝑆∗
𝛽
), then 𝐹(𝑧) =

𝐻(𝑧) + 𝐺(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
), where ℎ(𝑧), 𝑔(𝑧), and𝐻(𝑧), 𝐺(𝑧) are

related by 𝑧𝐻󸀠(𝑧) = ℎ(𝑧), 𝑧𝐺󸀠(𝑧) = 𝑔(𝑧), 𝑧 ∈ D.

Proof. By the definition of 𝐿𝛼
𝐻
(𝑆∗
𝛽
), ℎ(𝑧) ∈ 𝑆∗

𝛽
. Using classical

Alexander’s theorem [13, page 43], the function 𝐻(𝑧) ∈ 𝐶
𝛽
.

Also, 𝐻(0) = 0, 𝐻󸀠(0) = lim
𝑧→0

ℎ(𝑧)/𝑧 = ℎ󸀠(0) = 1, and
|𝐺󸀠(0)| = |lim

𝑧→0
𝑔(𝑧)/𝑧| = |𝑔󸀠(0)| = 𝛼. Let Γ := [0, ℎ(𝑧)] ⊂

ℎ(D), 𝑧 ∈ D \ {0}; then

󵄨󵄨󵄨󵄨𝑔 (𝑧)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γ

𝑑 (𝑔 ∘ ℎ−1 (𝑤))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑 (𝑔 ∘ ℎ−1 (𝑤))

𝑑𝑤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

|𝑑𝑤| < ∫
Γ

|𝑑𝑤| = |ℎ (𝑧)| .

(11)

Hence,
󵄨󵄨󵄨󵄨󵄨𝐺
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨 = lim
𝑡→𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 (𝑡)

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< lim
𝑡→𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ (𝑡)

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨𝐻
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨 ,

𝑧 ∈ D \ {0} ,

(12)

which implies that 𝐹(𝑧) is a sense-preserving and locally
univalent harmonic mapping in D. By [11, Corollary 2.3], we
obtain that 𝐹 ∈ 𝑆𝛼

𝐻
(𝐶
𝛽
).

Applying Lemma 1, we can prove the following theorem.

Theorem 5. If 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) = 𝑧 + ∑
∞

𝑛=2
𝑎
𝑛
𝑧𝑛 +

∑
∞

𝑛=1
𝑏
𝑛
𝑧𝑛 ∈ 𝑆𝛼

𝐻
(𝐶
𝛽
), then

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 ≤

∏
𝑛

𝑘=2
(𝑘 − 2𝛽)

𝑛!
, 𝑛 = 2, 3, 4, . . . , (13)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

𝛼∏
𝑛

𝑘=2
(𝑘 − 2𝛽)

𝑛!

+
1 − 𝛼2

𝑛
(1 +

𝑛−1

∑
𝑘=2

(
∏
𝑘

𝑡=2
(𝑡 − 2𝛽)

(𝑘 − 1)!
)) ,

𝑛 = 3, 4, 5, . . . .

(14)

Specially,

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 ≤

1 + 2𝛼 (1 − 𝛽) − 𝛼2

2
,

𝑤ℎ𝑒𝑟𝑒
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 = 𝛼, 0 ≤ 𝛽 ≤ 1.

(15)

The estimate for |𝑏
2
| is sharp; the extremal functions are

Ω (𝑧) := 𝐻
0
(𝑧) + 𝐺

0
(𝑧)

=

{{{{{
{{{{{
{

1 − (1 − 𝑧)2𝛽−1

2𝛽 − 1
+ ∫
𝑧

0

𝜉 + 𝛼

(1 + 𝛼𝜉) (1 − 𝜉)
2−2𝛽

𝑑𝜉, 𝛽 ̸=
1

2
,

log 1

1 − 𝑧
+ ∫
𝑧

0

𝜉 + 𝛼

1 − (1 − 𝛼) 𝜉 − 𝛼𝜉2
𝑑𝜉, 𝛽 =

1

2
.

(16)

Proof. Assuming 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) = 𝑧 + ∑
∞

𝑛=2
𝑎
𝑛
𝑧𝑛 +

∑
∞

𝑛=1
𝑏
𝑛
𝑧𝑛 ∈ 𝑆𝛼

𝐻
(𝐶
𝛽
), 𝑧 ∈ D, then by [7] we have (13). Let

𝑔󸀠(𝑧) = 𝜔(𝑧)ℎ󸀠(𝑧), where 𝜔(𝑧) is the dilatation of 𝑓. Since
𝜔(𝑧) is analytic in D, it has a power series expansion

𝜔 (𝑧) =
∞

∑
𝑛=0

𝑐
𝑛
𝑧𝑛, 𝑧 ∈ D, (17)
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where 𝑐
𝑛
∈ C, 𝑛 = 0, 1, 2, . . ., and |𝑐

0
| = |𝜔(0)| = |𝑔󸀠(0)| =

|𝑏
1
| = 𝛼. Recall that |𝜔(𝑧)| < 1 for all 𝑧 ∈ D; then, by Lemma 1,

we have

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 ≤ 1 −

󵄨󵄨󵄨󵄨𝑐0
󵄨󵄨󵄨󵄨
2

, 𝑛 = 1, 2, 3, . . . . (18)

Together with formulas (5), (6), and (17) we give

∞

∑
𝑛=1

𝑛𝑏
𝑛
𝑧𝑛−1 =

∞

∑
𝑛=0

𝑐
𝑛
𝑧𝑛
∞

∑
𝑛=1

𝑛𝑎
𝑛
𝑧𝑛−1, 𝑧 ∈ D, (19)

which leads to

∞

∑
𝑛=0

(𝑛 + 1) 𝑏
𝑛+1
𝑧𝑛 =

∞

∑
𝑛=0

(
𝑛

∑
𝑘=0

(𝑘 + 1) 𝑎
𝑘+1
𝑐
𝑛−𝑘
)𝑧𝑛,

𝑧 ∈ D.

(20)

Comparing coefficients, we obtain

(𝑛 + 1) 𝑏
𝑛+1

=
𝑛

∑
𝑘=0

(𝑘 + 1) 𝑎
𝑘+1
𝑐
𝑛−𝑘
, 𝑛 = 0, 1, 2, . . . . (21)

Applying formulas (13) and (18) and by simple calculation, we
have

𝑛
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑐𝑛−1
󵄨󵄨󵄨󵄨 + 2

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑐𝑛−2

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + (𝑛 − 1)
󵄨󵄨󵄨󵄨𝑎𝑛−1

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨

+ 𝑛
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑐0
󵄨󵄨󵄨󵄨

≤ (1 +
𝑛−1

∑
𝑘=2

𝑘
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨) (1 −

󵄨󵄨󵄨󵄨𝑐0
󵄨󵄨󵄨󵄨
2

) + 𝑛
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑐0
󵄨󵄨󵄨󵄨

≤ (1 +
𝑛−1

∑
𝑘=2

(
∏
𝑘

𝑡=2
(𝑡 − 2𝛽)

(𝑘 − 1)!
)) (1 − 𝛼2)

+
∏
𝑛

𝑘=2
(𝑘 − 2𝛽)

(𝑛 − 1)!
𝛼, 𝑛 = 3, 4, 5, . . . .

(22)

In particular,

2
󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 + 2

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑐0
󵄨󵄨󵄨󵄨 ≤ 1 −

󵄨󵄨󵄨󵄨𝑐0
󵄨󵄨󵄨󵄨
2

+ 2
󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑐0
󵄨󵄨󵄨󵄨

≤ 1 + 2 (1 − 𝛽) 𝛼 − 𝛼2.
(23)

Next, we will prove the estimate is sharp. For 𝛼 ∈ [0, 1) ⊂
D, consider a functionΩ(𝑧) := 𝐻

0
(𝑧) + 𝐺

0
(𝑧), such that

𝐶
𝛽
∋ 𝐻
0
(𝑧) :=

{{{{
{{{{
{

1 − (1 − 𝑧)2𝛽−1

2𝛽 − 1
, 𝛽 ̸=

1

2
,

log 1

1 − 𝑧
, 𝛽 =

1

2
,

𝑧 ∈ D. (24)

and suppose that the dilatation ofΩ(𝑧) satisfies

𝜔
0
(𝑧) :=

𝑧 + 𝛼

1 + 𝛼𝑧
, 𝑧 ∈ D. (25)

Applying formula (5), we obtain

𝐺󸀠
0
(𝑧) =

{{{{
{{{{
{

𝑧 + 𝛼

(1 + 𝛼𝑧) (1 − 𝑧)2−2𝛽
= 𝛼 + (1 + 2𝛼 (1 − 𝛽) − 𝛼2) 𝑧 + ⋅ ⋅ ⋅ , 𝛽 ̸=

1

2
,

𝑧 + 𝛼

(1 + 𝛼𝑧) (1 − 𝑧)
= 𝛼 + (1 + 𝛼 − 𝛼2) 𝑧 + ⋅ ⋅ ⋅ , 𝛽 =

1

2
.

(26)

which implies the estimate of (15) is sharp. Obviously,
|𝜔
0
(𝑧)| < 1, 𝑧 ∈ D, which means Ω(𝑧) := 𝐻

0
(𝑧) + 𝐺

0
(𝑧) ∈

𝑆𝛼
𝐻
(𝐶
𝛽
). Hence, the proof is completed.

Corollary 6. If 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) = 𝑧 + ∑
∞

𝑛=2
𝑎
𝑛
𝑧𝑛 +

∑
∞

𝑛=1
𝑏
𝑛
𝑧𝑛 ∈ 𝐿𝛼

𝐻
(𝑆∗
𝛽
), then |𝑎

𝑛
| ≤ ∏

𝑛

𝑘=2
(𝑘 − 2𝛽)/(𝑛 − 1)!,

𝑛 = 2, 3, 4, . . .,

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 ≤ 2 (1 − 𝛽) 𝛼 +

1 − 𝛼2

2
,

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

𝛼∏
𝑛

𝑘=2
(𝑘 − 2𝛽)

(𝑛 − 1)!

+ (1 − 𝛼2)(1 +
𝑛−1

∑
𝑘=2

(
∏
𝑘

𝑡=2
(𝑡 − 2𝛽)

(𝑘 − 1)!
)) ,

𝑛 = 3, 4, 5, . . . .

(27)

Proof. If 𝑓(𝑧) ∈ 𝐿𝛼
𝐻
(𝑆∗
𝛽
), then, by Lemma 4, the function

𝐹(𝑧) := 𝐻(𝑧) + 𝐺(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
), where 𝑧𝐻󸀠(𝑧) = ℎ(𝑧), 𝑧𝐺󸀠(𝑧)

= 𝑔(𝑧), 𝑧 ∈ D. Let 𝐺(𝑧) be expanded in the power series

𝐺 (𝑧) =
∞

∑
𝑛=1

𝐵
𝑛
𝑧𝑛, 𝑧 ∈ D, 𝐵

𝑛
∈ C. (28)

Together with expansion (6) of 𝑔(𝑧) and formula 𝑔(𝑧) =
𝑧𝐺󸀠(𝑧), we have 𝑏

𝑛
= 𝑛𝐵
𝑛
; then by Theorem 5 we can easily

obtain the coefficient estimates of 𝑓(𝑧) ∈ 𝐿𝛼
𝐻
(𝑆∗
𝛽
).

Specially, by comparing coefficients, we have 2𝑏
2
= 2𝑎
2
𝑐
0
+

𝑐
1
, which easily leads to the estimate |𝑏

2
| ≤ 2(1 − 𝛽)𝛼 + (1 −

𝛼2)/2 by the condition of Corollary 6.
Since the analytic part ℎ of 𝑓 ∈ 𝑆𝛼

𝐻
(𝐶
𝛽
) belongs to 𝐶

𝛽
,

then, by [7], we have the following distortion estimate of ℎ:
1

(1 + 𝑟)2(1−𝛽)
≤
󵄨󵄨󵄨󵄨󵄨ℎ
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨 ≤

1

(1 − 𝑟)2(1−𝛽)
,

𝑧 = 𝑟𝑒𝑖𝜃 ∈ D.

(29)
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Our next aim is to give the distortion estimate of the
coanalytic part 𝑔 of 𝑓 ∈ 𝑆𝛼

𝐻
(𝐶
𝛽
).

Theorem 7. If 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
), then

󵄨󵄨󵄨󵄨󵄨𝑔
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨 ≥

|𝛼 − 𝑟|

(1 − 𝛼𝑟) (1 + 𝑟)2(1−𝛽)
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D, (30)

󵄨󵄨󵄨󵄨󵄨𝑔
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨 ≤

𝛼 + 𝑟

(1 + 𝛼𝑟) (1 − 𝑟)2(1−𝛽)
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. (31)

These inequalities are sharp. The equalities hold for the har-
monic function Ω(𝑧) which is defined in (16).

Proof. Let 𝑔󸀠(0) = 𝛼𝑒𝑖𝜇. Consider the function

𝑓
0
(𝑧) :=

𝑒−𝑖𝜇𝜔 (𝑧) − 𝛼

1 − 𝛼𝑒−𝑖𝜇𝜔 (𝑧)
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D, (32)

which satisfies assumptions of the Schwarz lemma; then we
have
󵄨󵄨󵄨󵄨󵄨𝑒
−𝑖𝜇𝜔 (𝑧) − 𝛼

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑟
󵄨󵄨󵄨󵄨󵄨1 − 𝛼𝑒

−𝑖𝜇𝜔 (𝑧)
󵄨󵄨󵄨󵄨󵄨 , 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. (33)

It is equivalent to

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒−𝑖𝜇𝜔 (𝑧) −
𝛼 (1 − 𝑟2)

1 − 𝛼2𝑟2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑟 (1 − 𝛼2)

1 − 𝛼2𝑟2
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. (34)

Hence, applying the triangle inequalities to formula (34)
we have

|𝛼 − 𝑟|

1 − 𝛼𝑟
≤ |𝜔 (𝑧)| ≤

𝛼 + 𝑟

1 + 𝛼𝑟
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. (35)

Finally, applying formula (29) together with (35) to the
identity 𝑔󸀠 = 𝜔ℎ󸀠, we obtain (30) and (31). The functionΩ(𝑧)
defined in (16) shows that inequalities (30) and (31) are sharp.
The proof is completed.

Corollary 8. If 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝐿
𝐻
(𝑆∗
𝛽
), then

󵄨󵄨󵄨󵄨󵄨𝑔
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨 ≥

|𝛼 − 𝑟| (1 − 𝑟 + 2𝛽𝑟)

(1 + 𝑟)3−2𝛽
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D,

󵄨󵄨󵄨󵄨󵄨𝑔
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨 ≤

(𝛼 + 𝑟) (1 + 𝑟 − 2𝛽𝑟)

(1 − 𝑟)3−2𝛽
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D.

(36)

Proof. In [7], we know that if 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝐿
𝐻
(𝑆∗
𝛽
),

then

1 − (1 − 2𝛽) 𝑟

(1 + 𝑟)3−2𝛽
≤
󵄨󵄨󵄨󵄨󵄨ℎ
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨 ≤

1 + (1 − 2𝛽) 𝑟

(1 − 𝑟)3−2𝛽
,

𝑧 = 𝑟𝑒𝑖𝜃 ∈ D.

(37)

Using inequality (35) to identity 𝑔󸀠(𝑧) = 𝜔(𝑧)ℎ󸀠(𝑧), then the
corollary can be obtained immediately.

By [7], we have the following growth estimate of ℎ ∈ 𝐶
𝛽
,

where 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
).

In the case 𝛽 ̸= 1/2,

(1 + 𝑟)2𝛽−1 − 1

2𝛽 − 1
≤ |ℎ (𝑧)| ≤

1 − (1 − 𝑟)2𝛽−1

2𝛽 − 1
,

𝑧 = 𝑟𝑒𝑖𝜃 ∈ D.

(38)

In the case 𝛽 = 1/2,

log (1 + 𝑟) ≤ |ℎ (𝑧)| ≤ − log (1 − 𝑟) , 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. (39)
In the next results, we give the growth estimate of coanalytic
part 𝑔 of 𝑓 ∈ 𝑆𝛼

𝐻
(𝐶
𝛽
).

Theorem 9. If 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
), then

󵄨󵄨󵄨󵄨𝑔 (𝑧)
󵄨󵄨󵄨󵄨 ≤ ∫
𝑟

0

𝛼 + 𝜌

(1 + 𝛼𝜌) (1 − 𝜌)
2(1−𝛽)

𝑑𝜌, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. (40)

The inequality is sharp. The equality holds for the harmonic
function Ω(𝑧) which is defined in (16).

Proof. Let 𝛾 := [0, 𝑧]; applying estimate (31) we have

󵄨󵄨󵄨󵄨𝑔 (𝑧)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝛾

𝑔󸀠 (𝜉) 𝑑𝜉
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝛾

󵄨󵄨󵄨󵄨󵄨𝑔
󸀠

(𝜉)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑑𝜉
󵄨󵄨󵄨󵄨

≤ ∫
𝑟

0

𝛼 + 𝜌

(1 + 𝛼𝜌) (1 − 𝜌)
2(1−𝛽)

𝑑𝜌,

(41)

where 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. The function Ω(𝑧) defined (16) shows
that inequality (40) is sharp.

For 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝐿
𝐻
(𝑆∗
𝛽
), by [7], we have

𝑟

(1 + 𝑟)2(1−𝛽)
≤ |ℎ (𝑧)| ≤

𝑟

(1 − 𝑟)2(1−𝛽)
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. (42)

Now, we give the growth estimates of coanalytic part 𝑔(𝑧) of
𝑓(𝑧) ∈ 𝐿

𝐻
(𝑆∗
𝛽
).

Corollary 10. If 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝐿
𝐻
(𝑆∗
𝛽
), then

󵄨󵄨󵄨󵄨𝑔 (𝑧)
󵄨󵄨󵄨󵄨 ≤ ∫
𝑟

0

(𝛼 + 𝜌) (1 + 𝜌 − 2𝛽𝜌)

(1 − 𝜌)
3−2𝛽

𝑑𝜌,

𝑧 = 𝑟𝑒𝑖𝜃 ∈ D.

(43)

Using the distortion estimates in (29) and (35), we can
easily deduce the following area estimates of 𝑓(𝑧) ∈ 𝑆𝛼

𝐻
(𝐶
𝛽
).

Theorem 11. Let 𝛽 ∈ (1/2, 1] and 𝐴 := ∬
D
𝐽
𝑓
(𝑧)𝑑𝑥 𝑑𝑦; if

𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
), then

2𝜋∫
1

0

𝑟 (1 − 𝑟2) (1 − 𝛼2)

(1 + 𝑟)4(1−𝛽) (1 + 𝛼𝑟)2
𝑑𝑟 ≤ 𝐴

≤ 2𝜋∫
1

0

𝑟 (1 − 𝑟2) (1 − 𝛼2)

(1 − 𝑟)4(1−𝛽) (1 − 𝛼𝑟)2
𝑑𝑟,

(44)

where 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D.
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Proof. Observe that if 𝑓(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
), then ℎ󸀠(𝑧) does not

vanish in D. We can give the Jacobian of 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧)
in the form

𝐽
𝑓
(𝑧) =

󵄨󵄨󵄨󵄨󵄨ℎ
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
2

(1 − |𝜔 (𝑧)|
2) , 𝑧 ∈ D, (45)

where 𝜔(𝑧) is the dilatation of 𝑓(𝑧). Applying (29) and (35)
to (45) we obtain

𝐴 := ∬
D

𝐽
𝑓
(𝑧) 𝑑𝑥 𝑑𝑦 = ∫

2𝜋

0

𝑑𝜃∫
1

0

𝐽
𝑓
(𝑟𝑒𝑖𝜃) 𝑟 𝑑𝑟

= 2𝜋∫
1

0

𝑟𝐽
𝑓
(𝑟𝑒𝑖𝜃) 𝑑𝑟

= 2𝜋∫
1

0

𝑟
󵄨󵄨󵄨󵄨󵄨ℎ
󸀠 (𝑟𝑒𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
2

(1 −
󵄨󵄨󵄨󵄨󵄨𝜔 (𝑟𝑒

𝑖𝜃)
󵄨󵄨󵄨󵄨󵄨
2

) 𝑑𝑟

≥ 2𝜋∫
1

0

𝑟 (
1

(1 + 𝑟)2(1−𝛽)
)

2

(1 − (
𝛼 + 𝑟

1 + 𝛼𝑟
)
2

)𝑑𝑟

= 2𝜋∫
1

0

𝑟
(1 − 𝛼2) (1 − 𝑟2)

(1 + 𝑟)4(1−𝛽) (1 + 𝛼𝑟)2
𝑑𝑟,

𝐴 := 2𝜋∫
1

0

𝑟
󵄨󵄨󵄨󵄨󵄨ℎ
󸀠 (𝑟𝑒𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
2

(1 −
󵄨󵄨󵄨󵄨󵄨𝜔 (𝑟𝑒

𝑖𝜃)
󵄨󵄨󵄨󵄨󵄨
2

) 𝑑𝑟

≤ 2𝜋∫
1

0

𝑟 (
1

(1 − 𝑟)2(1−𝛽)
)

2

(1 − (
𝛼 − 𝑟

1 − 𝛼𝑟
)
2

)𝑑𝑟

= 2𝜋∫
1

0

𝑟
(1 − 𝛼2) (1 − 𝑟2)

(1 − 𝑟)4(1−𝛽) (1 − 𝛼𝑟)2
𝑑𝑟,

(46)

where 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D; this completes the proof.

Remark 12. To avoid the maximum of 𝐴 having no sense, we
give the limiting condition 𝛽 ∈ (1/2, 1] in Theorem 11.

Corollary 13. Let 𝛽 ∈ [0, 1) and 𝐴 := ∬
D
𝐽
𝑓
(𝑧)𝑑𝑥 𝑑𝑦; if

𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) ∈ 𝐿
𝐻
(𝑆∗
𝛽
), then

𝐴 ≥ 2𝜋∫
1

0

(1 − 𝛼2) 𝑟 (1 − 𝑟2) (1 − 𝑟 + 2𝛽𝑟)

(1 + 𝑟)6−4𝛽 (1 + 𝛼𝑟)2
𝑑𝑟,

𝐴 ≤ 2𝜋∫
1

0

(1 − 𝛼2) 𝑟 (1 − 𝑟2) (1 + 𝑟 − 2𝛽𝑟)
2

(1 − 𝑟)6−4𝛽 (1 − 𝛼𝑟)2
𝑑𝑟.

(47)

Theorem 14. If 𝑓(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
), then

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≥ ∫
𝑟

0

(1 − 𝛼) (1 − 𝜌)

(1 + 𝛼𝜌) (1 + 𝜌)
2(1−𝛽)

𝑑𝜌, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D, (48)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

≤

{{{{
{{{{
{

1 − (1 − 𝑟)2𝛽−1

2𝛽 − 1
+ ∫
𝑟

0

𝛼 + 𝜌

(1 + 𝛼𝜌) (1 − 𝜌)
2(1−𝛽)

𝑑𝜌, 𝛽 ̸=
1

2
,

log 1 + 𝛼𝑟
1 − 𝑟

, 𝛽 =
1

2
,

𝑧 = 𝑟𝑒𝑖𝜃 ∈ D.

(49)

Proof. For any point 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D, let D
𝑟
:= D(0, 𝑟) = {𝑧 ∈

D : |𝑧| < 𝑟} and denote

𝑑 := min
𝑧∈D
𝑟

󵄨󵄨󵄨󵄨𝑓 (D𝑟)
󵄨󵄨󵄨󵄨 (50)

and then D(0, 𝑑) ⊆ 𝑓(D
𝑟
) ⊆ 𝑓(D). Hence, there exists 𝑧

𝑟
∈

𝜕D
𝑟
such that 𝑑 = |𝑓(𝑧

𝑟
)|. Let 𝐿(𝑡) := 𝑡𝑓(𝑧

𝑟
), 𝑡 ∈ [0, 1]; then

𝑙(𝑡) := 𝑓−1(𝐿(𝑡)) and 𝑡 ∈ [0, 1] is a well-defined Jordan arc.
Since 𝑓 = ℎ + 𝑔, then we can obtain

𝑑 =
󵄨󵄨󵄨󵄨𝑓 (𝑧𝑟)

󵄨󵄨󵄨󵄨 = ∫
𝐿

|𝑑𝑤| = ∫
𝑙

󵄨󵄨󵄨󵄨𝑑𝑓
󵄨󵄨󵄨󵄨

= ∫
𝑙

󵄨󵄨󵄨󵄨󵄨ℎ
󸀠

(𝜉) 𝑑𝜉 + 𝑔󸀠 (𝜉)𝑑𝜉
󵄨󵄨󵄨󵄨󵄨

≥ ∫
𝑙

(
󵄨󵄨󵄨󵄨󵄨ℎ
󸀠

(𝜉)
󵄨󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨󵄨𝑔
󸀠

(𝜉)
󵄨󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑑𝜉
󵄨󵄨󵄨󵄨 .

(51)

By 𝜔 = 𝑔󸀠/ℎ󸀠 with formulas (29) and (35), we have

󵄨󵄨󵄨󵄨󵄨ℎ
󸀠

(𝜉)
󵄨󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨󵄨𝑔
󸀠

(𝜉)
󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨ℎ
󸀠

(𝜉)
󵄨󵄨󵄨󵄨󵄨 (1 −

󵄨󵄨󵄨󵄨𝜔 (𝜉)
󵄨󵄨󵄨󵄨)

≥
1

(1 +
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨)
2(1−𝛽)

(1 −
𝛼 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1 + 𝛼
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
)

=
(1 − 𝛼) (1 −

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨)

(1 + 𝛼
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨) (1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨)
2(1−𝛽)

.

(52)

Hence, we obtain

𝑑 ≥ ∫
𝑙

(1 − 𝛼) (1 −
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨)

(1 + 𝛼
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨) (1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨)
2(1−𝛽)

󵄨󵄨󵄨󵄨𝑑𝜉
󵄨󵄨󵄨󵄨

= ∫
1

0

(1 − 𝛼) (1 − |𝑙 (𝑡)|)

(1 + 𝛼 |𝑙 (𝑡)|) (1 + |𝑙 (𝑡)|)2(1−𝛽)
𝑑𝑡

≥ ∫
𝑟

0

(1 − 𝛼) (1 − 𝜌)

(1 + 𝛼𝜌) (1 + 𝜌)
2(1−𝛽)

𝑑𝜌.

(53)

To prove (49) we simply use the inequality

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨ℎ (𝑧) + 𝑔 (𝑧)
󵄨󵄨󵄨󵄨󵄨 ≤ |ℎ (𝑧)| +

󵄨󵄨󵄨󵄨𝑔 (𝑧)
󵄨󵄨󵄨󵄨 . (54)

By formulas (38), (39), and (40) with simple calculation we
have (49); this completes the proof.

Corollary 15. If 𝑓(𝑧) ∈ 𝑆
𝐻
(𝑆∗
𝛽
), then

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≥ ∫
𝑟

0

(1 − 𝛼) (1 − 𝜌) (1 − 𝜌 + 2𝛽𝜌)

(1 + 𝛼𝜌) (1 + 𝜌)
3−2𝛽

𝑑𝜌,

𝑧 = 𝑟𝑒𝑖𝜃 ∈ D,

(55)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤

𝑟

(1 − 𝑟)2(1−𝛽)
+ ∫
𝑟

0

(𝛼 + 𝜌) (1 + 𝜌 − 2𝛽𝜌)

(1 − 𝜌)
3−2𝛽

𝑑𝜌,

𝑧 = 𝑟𝑒𝑖𝜃 ∈ D.

(56)



6 Journal of Mathematics

Finally, the growth estimate of 𝑓 ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
) yields the

following covering estimate.

Theorem 16. If 𝑓(𝑧) ∈ 𝑆𝛼
𝐻
(𝐶
𝛽
), then

𝐷 (0, 𝑅) ⊂ 𝑓 (𝐷) , (57)

where

𝑅 := ∫
1

0

(1 − 𝛼) (1 − 𝜌)

(1 + 𝛼𝜌) (1 + 𝜌)
2(1−𝛽)

𝑑𝜌. (58)

Proof. Let 𝑟 tend to 1 in estimate (48); then Theorem 16 fol-
lows immediately from the argument principle for harmonic
mappings.

Corollary 17. If 𝑓(𝑧) ∈ 𝑆
𝐻
(𝑆∗
𝛽
), then

𝐷 (0, 𝑅) ⊂ 𝑓 (𝐷) , (59)

where

𝑅 := ∫
1

0

(1 − 𝛼) (1 − 𝜌) (1 − 𝜌 + 2𝛽𝜌)

(1 + 𝛼𝜌) (1 + 𝜌)
3−2𝛽

𝑑𝜌. (60)

Proof. Let 𝑟 tend to 1 in estimate (55); then Corollary 17 fol-
lows immediately from the argument principle for harmonic
mappings.

Remark 18. The univalence problem of a locally univalent
harmonic mapping with starlike analytic parts is an open
problem. Though 𝑆∗

𝛽
have stronger properties than 𝑆∗

0
, we

cannot obtain the sharp value of 𝛽 such that 𝑓(𝑧) = ℎ(𝑧) +
𝑔(𝑧) ∈ 𝐿

𝐻
(𝑆∗
𝛽
) is univalent. It has important sense to study.

Moreover, case of 𝛽 = 0, 1 was given a systematic study in
[4, 10, 11].
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