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We study the problem of computing weighted analytic center for system of linear matrix inequality constraints.The problem can be
solved using Standard Newton’s method. However, this approach requires that a starting point in the interior point of the feasible
region be given or a Phase I problem be solved. We address the problem by using Infeasible Newton’s method applied to the KKT
system of equations which can be started from any point. We implement the method using backtracking line search technique and
also study the effect of large weights on the method. We use numerical experiments to compare Infeasible Newton’s method with
Standard Newton’s method. The results show that Infeasible Newton’s method moves in the interior of the feasible regions often
very quickly, starting from any point. We recommend it as a method for finding an interior point by setting each weight to be 1. It
appears to work better than Standard Newton’s method in finding the weighted analytic center when none of weights is very large
relative to the other weights. However, we find that Infeasible Newton’s method is more sensitive than Standard Newton’s method
to large variation in the weights.

1. Introduction

We consider a system of linear matrix inequality constraints
given as follows:

subject to 𝐴(𝑗) (𝑥) := 𝐴(𝑗)0 +
𝑛

∑

𝑖=1

𝑥𝑖𝐴
(𝑗)

𝑖
⪰ 0,

𝑗 = 1, 2, . . . , 𝑞,

(1)

where 𝑥 ∈ R𝑛 is a variable and each 𝐴(𝑗)
𝑖

is an 𝑚𝑗 × 𝑚𝑗 sym-
metric matrix. Linear matrix inequality (LMI) constraints
have been well studied especially in the field of semidefinite
programming [1, 2]. LMI constraints have applications in a
variety of fields including engineering, geometry, and statis-
tics. We assume that feasibility determined by the constraints
is bounded and has a nonempty interior. This means that the
set {diag(𝐴(1)1 , . . . , 𝐴

(𝑞)

1 ), . . . , diag(𝐴
(1)
𝑛 , . . . , 𝐴

(𝑞)
𝑛 )} is linearly

independent [3].
In this paper, we are concerned with computing weighted

analytic center for LMIs using Infeasible Newton’s method.

A feasible starting point is not required to start themethod. In
the special case of linear constraints, weighted analytic center
has been studied extensively in the past (e.g., [4]). A weighted
analytic center for LMIs which extends the definition given
in [4] was given in [5, 6]. The study weighted analytic center
is of interest in its own right. Many algorithms for linear
programming and semidefinite programming are based on
weighted analytic centers [2, 3, 7, 8].

Weighted analytic center for linearmatrix inequalities can
be found using Standard Newton’s method by minimizing
the barrier function. This approach has the drawback that a
starting in the interior of the feasible region must be given.
Also, Newton’s method does not work well when some of
the weights are relatively very large relative to the other
weights. Infeasible Newton’s method for analytic center for
single LMI constraint is given in [9]. We present Infeasible
Newton’s method for finding weighted analytic center that
can be started from any point. The method is applied to
the Karush-Kuhn-Tucker (KKT) system of equations for the
weighted analytic center problem.We implement themethod
using backtracking line search technique and also study
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the effect of large weights on the method. We use numerical
experiments to compare Infeasible Newton’s method with
Standard Newton’s method.

We find that Infeasible Newton’s method moves very
quickly into the interior of the feasible regions for most of
our test problems. It seems to be a suitablemethod for finding
an interior point for the system by setting each weight to be
1. It works better than Standard Newton’s method if none of
the weights is relatively very large with respect to the other
weights.We also find that InfeasibleNewton’smethod ismore
sensitive to large variations in the weights than Standard
Newton’s method. In the case of very large variation in the
weights, we recommend using Infeasible Newton’s method
to get into the interior with each weight set to 1 and then
switching to Standard Newton’s method for convergence to
the weighted analytic center using the original weights and
starting from the interior.

2. Weighted Analytic Center for
Linear Matrix Inequalities

Let R denote the feasible region defined by inequalities (1).
Given 𝜔 > 0, define the barrier function 𝜙𝜔(𝑥) : R

𝑛
→ R by

𝜙𝜔 (𝑥)

=

{{{

{{{

{

𝑞

∑

𝑗=1

𝜔𝑗 log det [(𝐴
(𝑗)
(𝑥))
−1
] , if 𝑥 ∈ int (R) ,

∞, otherwise.

(2)

The weighted analytic center for system (1) is defined by [5, 6]

𝑥ac (𝜔) = argmin {𝜙𝜔 (𝑥) | 𝑥 ∈R
𝑛
} . (3)

This definition extends that given in [4] for linear
constraints. When 𝜔 = [1, . . . , 1], 𝑥ac(𝜔) is called the
analytic center. Weighted analytic center has been used in
interior point methods for linear programs and semidefinite
programs [2, 3, 7, 8, 10]. The primal-dual central path in
semidefinite programming converges to the analytic center
of the optimal solution set [11].

Standard Newton’s method has the choice for finding
weighted analytic center. The gradient and Hessian of the
barrier function 𝜙𝜔(𝑥) are given by [6] the following:

for 𝑖, 𝑗 = 1, . . . , 𝑛

∇𝑖𝜙𝜔 (𝑥) = −

𝑞

∑

𝑗=1

𝜔𝑗 (𝐴
(𝑗)
(𝑥))
−1
∙ 𝐴
(𝑗)

𝑖
,

𝐻𝑖𝑗 (𝑥)

=

𝑞

∑

𝑘=1

𝜔𝑘 [(𝐴
(𝑘)
(𝑥))
−1
𝐴
(𝑘)

𝑖 ]

𝑇

∙ [(𝐴
(𝑘)
(𝑥))
−1
𝐴
(𝑘)

𝑗 ] .

(4)

Standard Newton’s Method for Computing Weighted Analytic
Center

Input: An interior point 𝑥, tolerance TOL > 0

Set 𝑘 = 1

Repeat

(1) Compute the Newton’s direction 𝑠 =

−[𝐻(𝑥)]
−1
∇𝜙𝜔(𝑥)

(2) Compute 𝑑 = √𝑠𝑇𝐻(𝑥)𝑠
(3) Do line search to get stepsize ℎ
(4) Update 𝑥 := 𝑥 + ℎ𝑠
(5) Update 𝑘 = 𝑘 + 1

Until 𝑑 ≤ TOL.

Line search technique such as backtracking line search
technique can be used in Newton’s method to find weighted
analytic center [9].

3. Infeasible Newton’s Method for
Computing Weighted Analytic Center

In this section, we describe Infeasible Newton’s method for
finding weighted analytic center. The problem of computing
the weighted analytic center in (3) is a more general form of
the determinant maximization problem [3]. Its dual is given
by the following:

maximize
𝑞

∑

𝑗=1

𝜔𝑗 log det(
1

𝜔𝑗

) +

𝑞

∑

𝑗=1

𝜔𝑗𝑚𝑗

−

𝑞

∑

𝑗=1

𝐴
(𝑗)

0 ∙ 𝑍
(𝑗)

subject to
𝑞

∑

𝑗=1

𝐴
(𝑗)

𝑖
∙ 𝑍
(𝑗)
= 0, (𝑖 = 1, . . . , 𝑛) ,

𝑍
(𝑗)
⪰ 0, (𝑗 = 1, . . . , 𝑞) ,

(5)

where the bullet ∙ is the matrix dot-product. Theorem 1 gives
optimality conditions for computing the weighted analytic
center 𝑥ac(𝜔).

Theorem 1 (see [3]). Suppose both primal problem (3) and
dual problem (5) are strictly feasible. The set of primal optimal
solutions 𝑥 and dual optimal solutions 𝑍 is the set of feasible
solutions to the system

𝐴
(𝑗)

0 +

𝑛

∑

𝑖=1

𝑥𝑖𝐴
(𝑗)

𝑖
− 𝑌
(𝑗)
= 0, (𝑗 = 1, . . . , 𝑞) ,

𝑞

∑

𝑗=1

𝐴
(𝑗)

𝑖
∙ 𝑍
(𝑗)
= 0, (𝑖 = 1, . . . , 𝑛) ,
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𝑍
(𝑗)
𝑌
(𝑗)
= 𝑤𝑗𝐼𝑚𝑗

, (𝑗 = 1, . . . , 𝑞) ,

𝑌
(𝑗)
⪰ 0, (𝑗 = 1, . . . , 𝑞) ,

𝑍
(𝑗)
⪰ 0, (𝑗 = 1, . . . , 𝑞) .

(6)

The optimality conditions in Theorem 1 can be written
equivalently as

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐴
(1)
0 +

𝑛

∑

𝑖=1

𝑥𝑖𝐴
(1)

𝑖
− 𝑌
(1)

.

.

.

𝐴
(𝑞)

0 +

𝑛

∑

𝑖=1

𝑥𝑖𝐴
(𝑞)

𝑖
− 𝑌
(𝑞)

𝑞

∑

𝑗=1

𝐴
(𝑗)

1 ∙ 𝑍
(𝑗)

.

.

.

𝑞

∑

𝑗=1

𝐴
(𝑗)
𝑛 ∙ 𝑍

(𝑗)

𝑍
(1)
𝑌
(1)
− 𝑤1𝐼𝑚1

.

.

.

𝑍
(𝑞)
𝑌
(𝑞)
− 𝑤𝑞𝐼𝑚𝑞

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 0, (7)

𝑍
(𝑗)
⪰ 0, (𝑗 = 1, . . . , 𝑞) , (8)

𝑌
(𝑗)
⪰ 0, (𝑗 = 1, . . . , 𝑞) . (9)

Now, as in [3], let

𝑧
(𝑗)
= vec𝑍(𝑗),

𝑦
(𝑗)
= vec𝑌(𝑗),

𝐵
(𝑗)
=

[
[
[
[
[

[

(vec𝐴(𝑗)1 )
𝑇

.

.

.

(vec𝐴(𝑗)𝑛 )
𝑇

]
]
]
]
]

]

,

𝑅
(𝑗)

𝑝 = 𝑌
(𝑗)
− 𝐴
(𝑗)

0 −mat (𝐵(𝑗))
𝑇
𝑥,

𝑅𝑑 =

[
[
[
[
[
[
[
[
[

[

−

𝑞

∑

𝑗=1

𝐴
(𝑗)

1 ∙ 𝑍
(𝑗)

.

.

.

−

𝑞

∑

𝑗=1

𝐴
(𝑗)
𝑛 ∙ 𝑍

(𝑗)

]
]
]
]
]
]
]
]
]

]

,

𝑅
(𝑗)

𝑐 = 𝜔𝑗𝐼𝑚𝑗
− 𝑍
(𝑗)
𝑌
(𝑗)
,

𝑟
(𝑗)

𝑝 = vec𝑅(𝑗)𝑝 = 𝑦
(𝑗)
− vec𝐴(𝑗)0 − (𝐵

(𝑗)

𝑗
)
𝑇

𝑥,

𝑟𝑑 = vec𝑅𝑑 = −
𝑞

∑

𝑗=1

𝐵
(𝑗)
𝑧
(𝑗)
,

𝑟
(𝑗)

𝑐 = vec𝑅𝑐 = vec (𝜔𝑗𝐼𝑚𝑗) − (𝐼𝑚𝑗 ⊗ 𝑍
(𝑗)
) 𝑦
(𝑗)
,

𝑟
(𝑗)

𝑐 = vec𝑅𝑐 = vec (𝜔𝑗𝐼𝑚𝑗) − (𝑌
(𝑗)
⊗ 𝐼𝑚𝑗

) 𝑧
(𝑗)
,

𝐺 (𝑥, 𝑦
(1)
, . . . , 𝑦

(𝑞)
, 𝑧
(1)
, . . . , 𝑧

(𝑞)
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑟
(1)
𝑝

.

.

.

−𝑟
(𝑞)
𝑝

−𝑟𝑑

−𝑟
(1)
𝑐

.

.

.

−𝑟
(𝑞)
𝑐

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(10)

where vec is the map that stacks the columns of a matrix on
top of each other into a single vector and mat is the inverse
map. Also, let

𝑟𝑝 =

[
[
[
[

[

𝑟
(1)
𝑝

.

.

.

𝑟
(𝑞)
𝑝

]
]
]
]

]

,

𝑟𝑐 =

[
[
[
[

[

𝑟
(1)
𝑐

.

.

.

𝑟
(𝑞)
𝑐

]
]
]
]

]

,

𝑦 =

[
[
[
[

[

𝑦
(1)

.

.

.

𝑦
(𝑞)

]
]
]
]

]

,

𝑧 =

[
[
[
[

[

𝑧
(1)

.

.

.

𝑧
(𝑞)

]
]
]
]

]

,

𝐴 = [𝐵
(1)
, . . . , 𝐵

(𝑞)
] ,

𝐸 = diag (𝑌(1) ⊗ 𝐼𝑚1 , . . . , 𝑌
(𝑞)
⊗ 𝐼𝑚𝑞

) ,

𝐹 = diag (𝐼𝑚1 ⊗ 𝑍
(1)
, . . . , 𝐼𝑚𝑞

⊗ 𝑍
(𝑞)
) ,

𝐼 = diag (𝐼𝑚21 , . . . , 𝐼𝑚2𝑞) .

(11)
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Then, the system of (7) becomes 𝐺(𝑥, 𝑦, 𝑧) = 0. Newton’s
directions for the system are found by solving the linear
system:

[
[
[

[

𝐴
𝑇
−𝐼 0

0 0 𝐴

0 𝐹 𝐸

]
]
]

]

[
[

[

Δ𝑥

Δ𝑦

Δ𝑧

]
]

]

=
[
[

[

𝑟𝑝

𝑟𝑑

𝑟𝑐

]
]

]

. (12)

Using block elimination, we get

𝑀Δ𝑥 = 𝐴𝐸
−1
(𝐹𝑟𝑝 + 𝑟𝑐) − 𝑟𝑑,

Δ𝑧 = 𝐸
−1
(𝐹 (𝑟𝑝 − 𝐴

𝑇
Δ𝑥) + 𝑟𝑐) ,

Δ𝑦 = 𝐹
−1
(𝑟𝑐 − 𝐸Δ𝑧) ,

(13)

where

𝑀 = 𝐴𝐸
−1
𝐹𝐴
𝑇
. (14)

Thematrix𝑀 is positive definite.The following is an iteration
of Infeasible Newton’s method. In Step 2, the iterate Δ𝑍(𝑗) is
not symmetric. We symmetrize Δ𝑍(𝑗) in Step 3.

An Iteration of Infeasible Newton’s Method for Computing
Weighted Analytic Center

Step 1. Compute Newton’s direction (Δ𝑥, Δ𝑦, Δ𝑧) using (13).
This gives (Δ𝑥, Δ𝑦(1), . . . , Δ𝑦(𝑞), Δ𝑧(1), . . . , Δ𝑧(𝑞)).

Step 2. For each 𝑗, determine

Δ𝑌
(𝑗)
= matΔ𝑦(𝑗),

Δ𝑍
(𝑗)
= matΔ𝑧(𝑗).

(15)

Step 3. Symmetrize Δ𝑍(𝑗).
Replace Δ𝑍(𝑗) by (1/2)(Δ𝑍(𝑗) + (Δ𝑍(𝑗))𝑇) (𝑗 = 1, . . . , 𝑞).

Step 4. Do line search to get stepsize ℎ.

Step 5. Update the iterates

𝑥 ← 𝑥 + ℎΔ𝑥,

𝑌
(𝑗)
← 𝑌

(𝑗)
+ ℎΔ𝑌

(𝑗)
, (𝑗 = 1, . . . , 𝑞) ,

𝑍
(𝑗)
← 𝑍

(𝑗)
+ ℎΔ𝑍

(𝑗)
, (𝑗 = 1, . . . , 𝑞) .

(16)

Any point 𝑥 ∈ R𝑛 can be picked as a starting point.Then,
for 𝑗 = 1, . . . , 𝑞 choose

𝑌
(𝑗)
=
{

{

{

𝐴
(𝑗)
(𝑥) , if 𝐴(𝑗) (𝑥) ≻ 0,

𝐼𝑚𝑗
, otherwise,

𝑍
(𝑗)
= 𝜔𝑗 (𝑌

(𝑗)
)
−1
.

(17)

The above iteration is repeated until ‖𝑟(𝑥, 𝑦, 𝑧)‖ < TOL,
where 𝑟 = (𝑟𝑝, 𝑟𝑑, 𝑟𝑐) is the residual and TOL is a given
tolerance. One can use backtracking line search [9] or other
techniques to get the stepsize ℎ.

Table 1: Test problems.

LMI test problem 𝑛 𝑞 𝑚

1 2 2 [2, 1]
2 3 4 [3, 4, 1, 2]
3 2 2 [2, 2]
4 5 3 [4, 1, 3]
5 4 3 [5, 4, 3]
6 4 5 [4, 3, 1, 1, 4]
7 3 3 [4, 2, 3]
8 3 4 [4, 2, 2, 5]
9 5 3 [4, 1, 1]
10 3 5 [5, 3, 5, 1, 4]
11 2 7 [2, 5, 3, 5, 2, 5, 1]
12 5 6 [5, 1, 3, 4, 1, 4]
13 14 5 [5, 1, 3, 4, 2]
14 20 5 [5, 2, 5, 1, 5]
15 3 8 [5, 4, 1, 5, 3, 5, 1, 3]
16 9 7 [1, 4, 2, 4, 4, 2, 2]
17 6 5 [4, 4, 2, 1, 4]
18 10 2 [3, 5]
19 15 9 [2, 5, 3, 1, 2, 3, 3, 1, 2]
20 8 2 [4, 5]
21 19 7 [5, 2, 2, 2, 5, 5, 5]
22 9 10 [3, 4, 1, 1, 3, 5, 5, 4, 5, 2]
23 3 4 [2, 3, 2, 5]
24 8 2 [5, 1]
25 2 8 [5, 2, 1, 1, 1, 5, 3, 3]
26 13 8 [4, 1, 4, 2, 3, 1, 2, 1]
27 24 10 [5, 4, 5, 1, 4, 2, 3, 5, 5, 2]
28 5 6 [4, 1, 4, 2, 1, 3]
29 16 3 [2, 2, 3]
30 2 2 [4, 5]
31 2 4 [1, 5, 5, 5]
32 4 4 [5, 1, 4, 5]
33 4 4 [1, 2, 3, 5]
34 17 9 [1, 5, 2, 1, 2, 5, 1, 4, 3]
35 20 5 [5, 2, 5, 1, 5]

4. Numerical Experiments

In this section, we give numerical experiments to compare
Infeasible Newton’s method with Standard Newton’s method.
We also investigate the effects of large weights on the two
methods.

Table 1 describes the 35 random test problems used for
our numerical experiments. The second column of Table 1
gives the dimension 𝑛 of the ambient space and the third
column is the number 𝑞 of constraints. The dimensions 𝑚𝑗
of the matrices are given in the fourth column. For each
random problem, 𝑛, 𝑞, and 𝑚𝑗 are given and the LMI 𝐴(𝑗)0 +
∑
𝑛

𝑖=1 𝑥𝑖𝐴
(𝑗)

𝑖
⪰ 0 was generated randomly as follows: 𝐴(𝑗)0 is

an𝑚𝑗 × 𝑚𝑗 diagonal matrix with each diagonal entry chosen
from 𝑈(0, 1). Each 𝐴(𝑗)

𝑖
(1 ≤ 𝑖 ≤ 𝑛) is a random 𝑚𝑗 × 𝑚𝑗
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Table 2: Infeasible Newton’s versus Standard Newton’s methods using different weights 𝜔.

Problem Weights
𝜔

Inf. Newton
1st feas. point

iter.

Inf. Newton
1st feas. point
time (sec)

Inf. Newton
iter.

Inf. Newton
time (sec)

St. Newton
iter.

St. Newton
time (sec)

1 [10
12, 10] 2 0.0185 4 0.0096 2 0.0056

2 [10
12, 100, 100, 1] 3 17.2562 ∗ ∗ 3 0.0161

3 [10
12, 1000] 51 0.3771 46 0.1690 41 0.1042

4 [10
12, 10, 1] 20 10.8898 ∗ ∗ 9 0.0687

5 [10
12, 1, 10] 2 8.8548 ∗ ∗ 4 0.0215

6 [1, 1012, 1, 10, 100] ∗ ∗ ∗ ∗ ∗ ∗

7 [100, 10, 1012] 129 9.5582 ∗ ∗ 33 0.1810
8 [1, 1000, 1012, 10] ∗ ∗ ∗ ∗ ∗ ∗

9 [10
12, 1000, 1000] 1 8.5943 ∗ ∗ 4 0.0278

10 [10
12, 1000, 100, 1000, 100] 6 25.3801 ∗ ∗ 2 0.0158

11 [10
12, 10, 100, 1000, 1000, 10,

100] ∗ ∗ ∗ ∗ ∗ ∗

12 [10
12, 1, 100, 10, 1, 10] 3 17.5497 ∗ ∗ 5 0.0701

13 [1000, 1012, 1000, 100, 100] ∗ ∗ ∗ ∗ ∗ ∗

14 [1, 1000, 1012, 1000, 1] ∗ ∗ ∗ ∗ ∗ ∗

15 [1, 1, 1, 100, 1012, 100, 100,
10] ∗ ∗ ∗ ∗ ∗ ∗

16 [10, 1, 10, 1000, 1000, 10, 1] 24 0.2885 3 0.0234 5 0.2108
17 [100, 100, 10, 1, 1000] 3 0.0508 4 0.0252 3 0.0534
18 [1, 1000] 2 0.0286 6 0.0182 4 0.0579

19 [100, 10, 1000, 1, 1000, 100,
100, 1000, 10] 10 0.2117 7 0.0749 8 0.9943

20 [1000, 1000] 1 0.0180 4 0.0125 7 0.0664
21 [1, 1, 10, 1, 100, 10, 1] 21 0.3301 3 0.0342 3 0.4761

22 [1, 1000, 100, 10, 1000, 1, 100,
100, 100, 1] 7 0.2006 3 0.0491 3 0.2011

23 [100, 10, 1, 1] 4 0.0609 5 0.0231 6 0.0297
24 [1000, 1] 12 0.0564 2 0.0052 3 0.0348
25 [1, 1, 10, 1, 1000, 1, 1, 10] 8 0.1360 3 0.0280 3 0.0224
26 [100, 1, 100, 1, 1, 1, 1, 1] 20 0.2815 2 0.0208 3 0.3256
27 [1, 1, 1, 10, 1, 10, 1, 100, 1, 10] 8 0.3212 4 0.0945 6 2.1028
28 [10, 10, 100, 1, 1, 1] 7 0.0986 3 0.0246 4 0.0718
29 [1, 1, 10] 1 0.0092 ∗ ∗ ∗ ∗

30 [10, 1] 2 0.0268 4 0.0149 3 0.0121
31 [1, 10, 1, 1] 1 0.0444 4 0.0326 4 0.0270
32 [100, 1, 10, 1] 8 0.0994 4 0.0278 4 0.0444
33 [100, 100, 1, 10] 6 0.0612 3 0.0168 3 0.0318
34 [1, 100, 1, 1, 1, 10, 100, 100, 10] 7 0.1870 3 0.0426 5 0.9478
35 [1, 10, 100, 1, 1] 31 0.3678 2 0.0175 2 0.3845

symmetric and sparse matrix with approximately 0.8 ∗ 𝑚2𝑗
nonzero entries generated using the MATLAB command
sprandsym(𝑚𝑗, 0.8). Each problem has a nonempty interior.

Our codes were written in MATLAB and ran on Dell
OPTIPLEX 880 computer. Both Infeasible Newton’s method
and Standard Newton’s method were implemented using a
tolerance of TOL = 10

−4 and up to a maximum of 500
iterations. The starting point is random such that each of

its components is chosen from a normal distribution with
mean 0 and variance 106. We use the backtracking line
search technique in the two methods. Table 2 compares
Infeasible Newton’s method with Standard Newton’s method
for different sets of weights. In each of Problems 1–15, one
weight was set at 1012, which is a very high value relative
to the others. For Problems 16–35, none of the weights was
relatively very large. In Table 2, the third and the fourth
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Table 3: Infeasible Newton’s versus Standard Newton’s methods using weights 𝜔 = [1, 1, . . . , 1].

Problem
Inf. Newton
1st feas. point

iter.

Inf. Newton
1st feas. point
time (sec)

Inf. Newton iter. Inf. Newton
time (sec)

St. Newton
iter.

St. Newton
time (sec)

1 1 0.0115 3 0.0068 3 0.0059
2 2 0.0327 4 0.0188 3 0.0177
3 1 0.0318 9 0.0271 10 0.0180
4 2 0.0230 3 0.0114 3 0.0249
5 1 0.0250 4 0.0180 4 0.0239
6 1 0.0348 4 0.0248 4 0.0355
7 1 0.0271 5 0.0206 7 0.0247
8 1 0.0284 4 0.0202 3 0.0170
9 1 0.0215 4 0.0145 3 0.0224
10 1 0.0641 6 0.0532 8 0.0520
11 1 0.0451 3 0.0311 3 0.0207
12 2 0.0460 3 0.0237 3 0.0461
13 2 0.0555 4 0.0268 6 0.3949
14 13 0.1481 4 0.0302 6 0.8056
15 1 0.0805 5 0.0629 3 0.0330
16 2 0.0599 4 0.0339 7 0.2742
17 2 0.0370 3 0.0185 3 0.0508
18 2 0.0184 3 0.0088 4 0.0569
19 3 0.0933 4 0.0390 3 0.4423
20 1 0.0196 4 0.0134 7 0.0665
21 12 0.2080 4 0.0463 5 0.7110
22 2 0.1079 4 0.0659 3 0.2002
23 1 0.0276 4 0.0196 3 0.0164
24 4 0.0281 4 0.0123 6 0.0616
25 2 0.0553 3 0.0286 3 0.0217
26 13 0.1980 3 0.0303 3 0.3295
27 3 0.1791 2 0.0902 2 1.6525
28 3 0.0612 3 0.0262 3 0.0567
29 1 0.0102 ∗ ∗ ∗ ∗

30 2 0.0275 4 0.0157 3 0.0140
31 1 0.0359 3 0.0231 3 0.0210
32 2 0.0431 3 0.0212 2 0.0264
33 4 0.0573 4 0.0240 6 0.0543
34 2 0.0992 4 0.0550 4 0.7863
35 13 0.1795 4 0.0367 6 0.8997

columns give the number of iterations and time required
to find the first point in the interior of the feasible region
(resp.) by Infeasible Newton’s method. The fourth and the
fifth columns give the number of iterations and time required
to find the weighted analytic center (resp.) starting from the
first interior point found. The sixth and the seventh columns
in Table 2 give the number of iterations and time required
to find the weighted analytic center (resp.) by Standard
Newton’s method. Standard Newton’s method is started from
the same interior point as in Infeasible Newton’s method.

Infeasible Newton’s method and Standard Newton’s method
are compared in Table 3 with weights 𝜔 = [1, 1, . . . , 1].

Figure 1 shows the iterates taken by Infeasible Newton’s
method to converge in Problem 3 with 𝜔 = [10

12
, 1000].

It is clear from the figure that Infeasible Newton’s method
slowed down considerably before converging to the weighted
analytic center. On the other hand, as seen in Figure 2,
the method converged quickly with 𝜔 = [1, 1]. Figure 3
shows how the norm of the gradient varies with the number
of iterations for the two values of the weights. In Table 2,
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Figure 1: Iterates (51 + 46 = 97) taken by Infeasible Newton’s method to converge in Problem 3 with 𝜔 = [1012, 1000]. The graph on the right
is the graph on the left zoomed and showing the last iterate ∗ in the interior, but near the boundary of the feasible region.
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the entry ∗means that Infeasible Newton’s method has failed
to converge after the maximum number of 500 iterations in
Problems 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 29. However,
it managed to find an interior point of (1) in Problems 2, 4, 5,
7, 9, 10, 12, and 29. We see from the table that both methods
might not work well when some of the weights are relatively
larger than the other weights. The results also show that
Standard Newton’s method performs better than Infeasible
Newton’s method in this case. In Infeasible Newton’s method,
the Jacobian of the residual function becomes increasingly
ill conditioned near the boundary of systems (8) and (9)
due to matrices 𝐸 and 𝐹 as the variation among the weights
increases. Observe that Infeasible Newton’s method failed to
converge in 8 problems, even though it found a point in the
interior of the feasible region (1). Standard Newton’s method
converged (within the 500 iterations’ limit) for each of the 8
problems except in Problem 29. Standard Newton’s method
converged after 536 iterations in Problem 29.

In Table 3, the entry ∗ in Problem 29 indicates that
Infeasible Newton’s method has failed to converge to the
analytic center after the maximum number of 500 iterations.
However, it managed to find an interior point of (1) after 1
iteration. Problem 29 shows both Infeasible Newton’s method
and Standard Newton’s method may fail to converge (within
500 iterations) even if the weights are all equal and an
interior point is found. We see from Table 3 that Infeasible
Newton’s method took a fewer number of iterations in 12
out of 35 problems while Standard Newton’s method took a
fewer number of iterations in 9 out of 35 problems. Infeasible
Newton’s method took less time in 23 out of 35 problems
and Standard Newton’s method took less time in 11 out of
35 problems. It is interesting to note from the table that
Infeasible Newton’s method found an interior point of (1)
within 1–3 iterations on most of the test problems.

The results from Tables 2 and 3 suggest that when none
of the weights is relatively very large, Infeasible Newton’s
method is a better method than Standard Newton’s method
to find the weighted analytic center. When one weight
is relatively very large, one could use Infeasible Newton’s
method with 𝜔 = [1, 1, . . . , 1] to find an interior point and
then switch to Standard Newton’s method using the original
weights and starting from the interior point found.

5. Conclusion

We presented Infeasible Newton’s method for computing
weighted analytic center for system of linear matrix inequal-
ities and compared it with Standard Newton’s method.

We found that Infeasible Newton’s method finds a point
in the interior point fairly quickly, starting from any point,
especially when none of the weights is relatively very large.
When none of the weights is relatively very large, Infeasible
Newton’s method seems to work better than Standard New-
ton’s method to find the weighted analytic center. However,
Infeasible Newton’s method does not work well when some
of the weights are very large relative to others, but it still
often finds a point in the interior, starting from any point.We
find that Infeasible Newton’s method is suitable for finding an

interior point for the system by setting eachweight to be 1.We
recommend that when some weights are relatively very large,
one should use Infeasible Newton’s method to find a point in
the interior with𝜔 = [1, 1, . . . , 1] to find an interior point and
then switch to Standard Newton’s method using the original
weights and starting from the interior point found.

To improve the efficiency of Infeasible Newton’s method
for finding weighted analytic center, it would be useful to
exploit the block-diagonal structure of matrices 𝐴, 𝐸, and
𝐹 in future implementation. We would like to investigate
how the method could handle weights where some are
relatively much larger than the other weights. Furthermore,
it would be of interest to study the application of Infeasible
Newton’s method for weighted analytic center to the SDP-
CUT algorithm for semidefinite programming, presented in
[8]. Implementing Infeasible Newton’s method for weighted
analytic center using different search directions is currently
under investigation.The problem of weighted analytic center
is a determinant maximization problem and can be solved
with the algorithms for those problems. It would be of interest
to compare the performance of those algorithms with the
method presented in this paper.
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