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We consider two new subclasses 𝑆
Σ
𝑚

(𝛼, 𝜆) and 𝑆
Σ
𝑚

(𝛽, 𝜆) of Σ
𝑚
consisting of analytic and 𝑚-fold symmetric biunivalent functions

in the open unit disk 𝑈. Furthermore, we establish bounds for the coefficients for these subclasses and several related classes are
also considered and connections to earlier known results are made.

1. Introduction

Let 𝐴 denote the class of functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎
𝑛
𝑧
𝑛
, (1)

which are analytic in the open unit disk𝑈 = {𝑧 : |𝑧| < 1}, and
let 𝑆 be the subclass of 𝐴 consisting of form (1) which is also
univalent in 𝑈.

The Koebe one-quarter theorem [1] states that the image
of 𝑈 under every function 𝑓 from 𝑆 contains a disk of radius
1/4. Thus, every such univalent function has inverse 𝑓−1
which satisfies

𝑓
−1
(𝑓 (𝑧)) = 𝑧 (𝑧 ∈ 𝑈) ,

𝑓 (𝑓
−1
(𝑤)) = 𝑤 (|𝑤| < 𝑟0 (𝑓) , 𝑟0 (𝑓) ≥

1

4
) ,

(2)

where

𝑓
−1
(𝑤) = 𝑤 − 𝑎

2
𝑤
2
+ (2𝑎
2

2
− 𝑎
3
)𝑤
3

− (5𝑎
3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
)𝑤
4
+ ⋅ ⋅ ⋅ .

(3)

Function𝑓 ∈ 𝐴 is said to be biunivalent in𝑈 if both𝑓 and
𝑓
−1 are univalent in 𝑈. Let Σ denote the class of biunivalent

functions defined in unit disk 𝑈.

For a brief history and interesting examples in class Σ, see
[2]. Examples of functions in class Σ are

𝑧

1 − 𝑧
,

− log (1 − 𝑧) ,

1

2
log(1 + 𝑧

1 − 𝑧
) ,

(4)

and so on. However, the familiar Koebe function is not a
member ofΣ. Other common examples of functions in 𝑆 such
as

𝑧 −
𝑧
2

2
,

𝑧

1 − 𝑧2

(5)

are also not members of Σ (see [2]).
For each function 𝑓 ∈ 𝑆, function

ℎ (𝑧) =
𝑚

√𝑓 (𝑧𝑚) (𝑧 ∈ 𝑈, 𝑚 ∈ N) (6)

is univalent and maps unit disk 𝑈 into a region with 𝑚-fold
symmetry. A function is said to be𝑚-fold symmetric (see [3,
4]) if it has the following normalized form:

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑘=1

𝑎
𝑚𝑘+1

𝑧
𝑚𝑘+1

(𝑧 ∈ 𝑈, 𝑚 ∈ N) . (7)
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We denote by 𝑆
𝑚
the class of𝑚-fold symmetric univalent

functions in𝑈, which are normalized by the series expansion
(7). In fact, the functions in class 𝑆 are one-fold symmetric.

Analogous to the concept of𝑚-fold symmetric univalent
functions, we here introduced the concept of 𝑚-fold sym-
metric biunivalent functions. Each function 𝑓 ∈ Σ generates
an 𝑚-fold symmetric biunivalent function for each integer
𝑚 ∈ N. The normalized form of 𝑓 is given as in (7) and the
series expansion for 𝑓−1, which has been recently proven by
Srivastava et al. [5], is given as follows:

𝑔 (𝑤) = 𝑤 − 𝑎
𝑚+1

𝑤
𝑚+1

+ [(𝑚 + 1) 𝑎
2

𝑚+1
− 𝑎
2𝑚+1

]

⋅ 𝑤
2𝑚+1

− [
1

2
(𝑚 + 1) (3𝑚 + 2) 𝑎

3

𝑚+1

− (3𝑚 + 2) 𝑎𝑚+1𝑎2𝑚+1 + 𝑎3𝑚+1]𝑤
3𝑚+1

+ ⋅ ⋅ ⋅ ,

(8)

where 𝑓
−1

= 𝑔. We denote by Σ
𝑚

the class of 𝑚-fold
symmetric biunivalent functions in 𝑈. For 𝑚 = 1, formula
(8) coincides with formula (3) of class Σ. Some examples of
𝑚-fold symmetric biunivalent functions are given as follows:

(
𝑧
𝑚

1 − 𝑧𝑚
)

1/𝑚

,

[− log (1 − 𝑧𝑚)]1/𝑚 ,

[
1

2
log(1 + 𝑧

𝑚

1 − 𝑧𝑚
)

1/𝑚

] .

(9)

Lewin [6] studied the class of biunivalent functions,
obtaining the bound 1.51 formodulus of the second coefficient
|𝑎
2
|. Subsequently, Brannan and Clunie [7] conjectured that

|𝑎
2
| ≤ √2 for 𝑓 ∈ Σ. Later, Netanyahu [8] showed that

max |𝑎
2
| = 4/3 if 𝑓(𝑧) ∈ Σ. Brannan and Taha [9] introduced

certain subclasses of biunivalent function class Σ similar to
the familiar subclasses. 𝑆⋆(𝛽) and 𝐾(𝛽) are of starlike and
convex function of order 𝛽 (0 ≤ 𝛽 < 1), respectively (see
[8]). Classes 𝑆⋆

Σ
(𝛼) and𝐾

Σ
(𝛼)of bistarlike functions of order𝛼

and biconvex functions of order 𝛼, corresponding to function
classes 𝑆⋆(𝛼) and 𝐾(𝛼), were also introduced analogously.
For each of function classes 𝑆⋆

Σ
(𝛼) and 𝐾

Σ
(𝛼), they found

nonsharp estimates on the initial coefficients. In fact, the
aforecited work of Srivastava et al. [2] essentially revived the
investigation of various subclasses of biunivalent function
class Σ in recent years. Recently, many authors investigated
bounds for various subclasses of biunivalent functions (see
[2, 10–15]). Not much is known about the bounds on general
coefficient |𝑎

𝑛
| for 𝑛 ≥ 4. In the literature, only few works

determine general coefficient bounds |𝑎
𝑛
| for the analytic

biunivalent functions (see [16–18]). The coefficient estimate
problem for each of |𝑎

𝑛
| (𝑛 ∈ N \ {1, 2}; N = {1, 2, 3, . . .}) is

still an open problem.
The aim of the this paper is to introduce two new

subclasses of function class Σ
𝑚
and derive estimates on initial

coefficients |𝑎
𝑚+1

| and |𝑎
2𝑚+1

| for functions in these new
subclasses. We have to remember the following lemma here
so as to derive our basic results.

Lemma 1 (see [4]). If 𝑝(𝑧) = 1+𝑝
1
𝑧+𝑝
2
𝑧
2
+𝑝
3
𝑧
3
+ ⋅ ⋅ ⋅ is an

analytic function in 𝑈 with positive real part, then
󵄨󵄨󵄨󵄨𝑝𝑛

󵄨󵄨󵄨󵄨 ≤ 2 (𝑛 ∈ N = {1, 2, . . .}) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
2
−
𝑝
2

1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2 −

󵄨󵄨󵄨󵄨𝑝1
󵄨󵄨󵄨󵄨

2

2
.

(10)

2. Coefficient Bounds for Function
Class 𝑆

Σ𝑚
(𝛼,𝜆)

Definition 2. A function𝑓 ∈ Σ
𝑚
is said to be in class 𝑆

Σ
𝑚

(𝛼, 𝜆)

if the following conditions are satisfied:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑧𝑓
󸀠
(𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓󸀠 (𝑧)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2

𝑓 ∈ Σ, (0 < 𝛼 ≤ 1, 0 ≤ 𝜆 < 1, 𝑧 ∈ 𝑈) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝜆𝑔
󸀠
(𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔󸀠 (𝑤)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2

(0 < 𝛼 ≤ 1, 0 ≤ 𝜆 < 1, 𝑤 ∈ 𝑈) ,

(11)

where function 𝑔 = 𝑓−1.

Theorem 3. Let𝑓 given by (7) be in class 𝑆
Σ
𝑚

(𝛼, 𝜆), 0 < 𝛼 ≤ 1.
Then,

󵄨󵄨󵄨󵄨𝑎𝑚+1
󵄨󵄨󵄨󵄨 ≤

2𝛼

𝑚 (1 − 𝜆)√𝛼 + 1
,

󵄨󵄨󵄨󵄨𝑎2𝑚+1
󵄨󵄨󵄨󵄨 ≤

𝛼

𝑚 (1 − 𝜆)
+
2 (𝑚 + 1) 𝛼

2

𝑚2 (1 − 𝜆)
2
.

(12)

Proof. Let 𝑓 ∈ 𝑆
Σ
𝑚

(𝛼, 𝜆). Then,

𝑧𝑓
󸀠
(𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓󸀠 (𝑧)
= [𝑝 (𝑧)]

𝛼
,

𝜆𝑔
󸀠
(𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔󸀠 (𝑤)
= [𝑞 (𝑤)]

𝛼
,

(13)

where 𝑔 = 𝑓−1 and 𝑝, 𝑞 in 𝑃 have the following forms:

𝑝 (𝑧) = 1 + 𝑝𝑚𝑧
𝑚
+ 𝑝
2𝑚
𝑧
2𝑚
+ ⋅ ⋅ ⋅ ,

𝑞 (𝑤) = 1 + 𝑞𝑚𝑤
𝑚
+ 𝑞
2𝑚
𝑤
2𝑚
+ ⋅ ⋅ ⋅ .

(14)

Now, equating the coefficients in (13), we get
𝑚(1 − 𝜆) 𝑎𝑚+1 = 𝛼𝑝𝑚, (15)

𝑚(1 − 𝜆) [2𝑎2𝑚+1 − (𝜆𝑚 + 1) 𝑎
2

𝑚+1
]

= 𝛼𝑝
2𝑚
+
𝛼 (𝛼 − 1)

2
𝑝
2

𝑚
,

(16)

− 𝑚 (1 − 𝜆) 𝑎𝑚+1 = 𝛼𝑞𝑚, (17)

𝑚(1 − 𝜆) [(1 + 𝑚 (2 − 𝜆)) 𝑎
2

𝑚+1
− 2𝑎
2𝑚+1

]

= 𝛼𝑞
2𝑚
+
𝛼 (𝛼 − 1)

2
𝑞
2

𝑚
.

(18)
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From (15) and (17), we obtain

𝑝
𝑚
= −𝑞
𝑚
, (19)

2𝑚
2
(1 − 𝜆)

2
𝑎
2

𝑚+1
= 𝛼
2
(𝑝
2

𝑚
+ 𝑞
2

𝑚
) . (20)

Also from (16), (18), and (20), we have

2𝑚
2
(1 − 𝜆)

2
𝑎
2

𝑚+1
= 𝛼 (𝑝

2𝑚
+ 𝑞
2𝑚
)

+
𝛼 (𝛼 − 1)

2
(𝑝
2

𝑚
+ 𝑞
2

𝑚
)

= 𝛼 (𝑝
2𝑚
+ 𝑞
2𝑚
)

+
𝛼 (𝛼 − 1)

2

2𝑚
2
(1 − 𝜆)

2

𝛼2
𝑎
2

𝑚+1
.

(21)

Therefore, we have

𝑎
2

𝑚+1
=

𝛼
2
(𝑝
2𝑚
+ 𝑞
2𝑚
)

𝑚2 (1 − 𝜆)
2
(𝛼 + 1)

. (22)

Applying Lemma 1 for coefficients 𝑝
2𝑚

and 𝑞
2𝑚
, we obtain

󵄨󵄨󵄨󵄨𝑎𝑚+1
󵄨󵄨󵄨󵄨 ≤

2𝛼

𝑚 (1 − 𝜆)√𝛼 + 1
. (23)

Next, in order to find the bound on |𝑎
2𝑚+1

|, by subtracting
(18) from (16), we obtain

4𝑚 (1 − 𝜆) 𝑎2𝑚+1 − 2𝑚 (𝑚 + 1) (1 − 𝜆) 𝑎
2

𝑚+1

= 𝛼 (𝑝
2𝑚
− 𝑞
2𝑚
) +

𝛼 (𝛼 − 1)

2
(𝑝
2

𝑚
− 𝑞
2

𝑚
) .

(24)

Then, in view of (19) and (20) and applying Lemma 1 for
coefficients 𝑝

2𝑚
, 𝑝
𝑚
and 𝑞
2𝑚
, 𝑞
𝑚
, we have

󵄨󵄨󵄨󵄨𝑎2𝑚+1
󵄨󵄨󵄨󵄨 ≤

𝛼

𝑚 (1 − 𝜆)
+
2 (𝑚 + 1) 𝛼

2

𝑚2 (1 − 𝜆)
2
. (25)

This completes the proof of Theorem 3.

3. Coefficient Bounds for Function
Class 𝑆

Σ𝑚
(𝛽,𝜆)

Definition 4. Function 𝑓 ∈ Σ
𝑚
given by (7) is said to be in

class 𝑆
Σ
𝑚

(𝛽, 𝜆) if the following conditions are satisfied:

Re(
𝑧𝑓
󸀠
(𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓󸀠 (𝑧)
) > 𝛽

𝑓 ∈ Σ, (0 ≤ 𝛽 < 1, 0 ≤ 𝜆 < 1, 𝑧 ∈ 𝑈) ,

Re(
𝜆𝑔
󸀠
(𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔󸀠 (𝑤)
) > 𝛽

(0 ≤ 𝛽 < 1, 0 ≤ 𝜆 < 1, 𝑤 ∈ 𝑈) ,

(26)

where function 𝑔 = 𝑓−1.

Theorem 5. Let𝑓 given by (7) be in class 𝑆
Σ
𝑚

(𝛽, 𝜆), 0 ≤ 𝛽 < 1.
Then,

󵄨󵄨󵄨󵄨𝑎𝑚+1
󵄨󵄨󵄨󵄨 ≤

√2 (1 − 𝛽)

𝑚 (1 − 𝜆)
,

󵄨󵄨󵄨󵄨𝑎2𝑚+1
󵄨󵄨󵄨󵄨 ≤

2 (𝑚 + 1) (1 − 𝛽)
2

𝑚2 (1 − 𝜆)
2

+
1 − 𝛽

𝑚 (1 − 𝜆)
.

(27)

Proof. Let 𝑓 ∈ 𝑆
Σ
𝑚

(𝛽, 𝜆). Then,

𝑧𝑓
󸀠
(𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓󸀠 (𝑧)
= 𝛽 + (1 − 𝛽) 𝑝 (𝑧) ,

𝜆𝑔
󸀠
(𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔󸀠 (𝑤)
= 𝛽 + (1 − 𝛽) 𝑞 (𝑤) ,

(28)

where 𝑝, 𝑞 ∈ 𝑃 and 𝑔 = 𝑓−1.
It follows from (28) that

𝑚(1 − 𝜆) 𝑎𝑚+1 = (1 − 𝛽) 𝑝𝑚, (29)

𝑚(1 − 𝜆) [2𝑎2𝑚+1 − (𝜆𝑚 + 1) 𝑎
2

𝑚+1
] = (1 − 𝛽) 𝑝

2𝑚
, (30)

− 𝑚 (1 − 𝜆) 𝑎𝑚+1 = (1 − 𝛽) 𝑞𝑚, (31)

𝑚(1 − 𝜆) [(1 + 𝑚 (2 − 𝜆)) 𝑎
2

𝑚+1
− 2𝑎
2𝑚+1

]

= (1 − 𝛽) 𝑞
2𝑚
.

(32)

From (29) and (31), we obtain

𝑝
𝑚
= −𝑞
𝑚
,

2𝑚
2
(1 − 𝜆)

2
𝑎
2

𝑚+1
= (1 − 𝛽)

2
(𝑝
2

𝑚
+ 𝑞
2

𝑚
) .

(33)

Adding (30) and (32), we have

2𝑚
2
(1 − 𝜆)

2
𝑎
2

𝑚+1
= (1 − 𝛽) (𝑝

2𝑚
+ 𝑞
2𝑚
) . (34)

Therefore, we obtain

𝑎
2

𝑚+1
=
(1 − 𝛽) (𝑝

2𝑚
+ 𝑞
2𝑚
)

2𝑚2 (1 − 𝜆)
2

. (35)

Applying Lemma 1 for coefficients 𝑝
2𝑚

and 𝑞
2𝑚
, we obtain

󵄨󵄨󵄨󵄨𝑎𝑚+1
󵄨󵄨󵄨󵄨 ≤

√2 (1 − 𝛽)

𝑚 (1 − 𝜆)
.

(36)

Next, in order to find the bound on |𝑎
2𝑚+1

|, by subtracting
(32) from (30), we obtain

4𝑚 (1 − 𝜆) 𝑎2𝑚+1 − 2𝑚 (𝑚 + 1) (1 − 𝜆) 𝑎
2

𝑚+1

= (1 − 𝛽) (𝑝
2𝑚
− 𝑞
2𝑚
) .

(37)

Then, in view of (33), applying Lemma 1 for coefficients
𝑝
2𝑚
, 𝑝
𝑚
and 𝑞
2𝑚
, 𝑞
𝑚
, we have

󵄨󵄨󵄨󵄨𝑎2𝑚+1
󵄨󵄨󵄨󵄨 ≤

2 (𝑚 + 1) (1 − 𝛽)
2

𝑚2 (1 − 𝜆)
2

+
1 − 𝛽

𝑚 (1 − 𝜆)
. (38)

This completes the proof of Theorem 5.
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If we set 𝜆 = 0 inTheorems 3 and 5, then classes 𝑆
Σ
𝑚

(𝛼, 𝜆)

and 𝑆
Σ
𝑚

(𝛽, 𝜆) reduce to classes 𝑆𝛼
Σ
𝑚

and 𝑆
𝛽

Σ
𝑚

and thus we
obtain the following corollaries.

Corollary 6. Let 𝑓 given by (7) be in class 𝑆𝛼
Σ
𝑚

(0 < 𝛼 ≤ 1).
Then,

󵄨󵄨󵄨󵄨𝑎𝑚+1
󵄨󵄨󵄨󵄨 ≤

2𝛼

𝑚√𝛼 + 1
,

󵄨󵄨󵄨󵄨𝑎2𝑚+1
󵄨󵄨󵄨󵄨 ≤

𝛼

𝑚
+
2 (𝑚 + 1) 𝛼

2

𝑚2
.

(39)

Corollary 7. Let 𝑓 given by (7) be in class 𝑆𝛽
Σ
𝑚

(0 ≤ 𝛽 < 1).
Then,

󵄨󵄨󵄨󵄨𝑎𝑚+1
󵄨󵄨󵄨󵄨 ≤

√2 (1 − 𝛽)

𝑚
,

󵄨󵄨󵄨󵄨𝑎2𝑚+1
󵄨󵄨󵄨󵄨 ≤

2 (𝑚 + 1) (1 − 𝛽)
2

𝑚2
+
1 − 𝛽

𝑚
.

(40)

Classes 𝑆𝛼
Σ
𝑚

and 𝑆𝛽
Σ
𝑚

are, respectively, defined as follows.

Definition 8. Function 𝑓 ∈ Σ
𝑚
given by (7) is said to be in

class 𝑆𝛼
Σ
𝑚

if the following conditions are satisfied:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2
𝑓 ∈ Σ, (0 < 𝛼 ≤ 1, 𝑧 ∈ 𝑈) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝜆𝑔
󸀠
(𝑤)

𝑔 (𝑤)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2
(0 < 𝛼 ≤ 1, 𝑤 ∈ 𝑈) ,

(41)

where function 𝑔 = 𝑓−1.

Definition 9. Function 𝑓 ∈ Σ
𝑚
given by (7) is said to be in

class 𝑆𝛽
Σ
𝑚

if the following conditions are satisfied:

Re(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
) > 𝛽 𝑓 ∈ Σ, (0 ≤ 𝛽 < 1, 𝑧 ∈ 𝑈) ,

Re(
𝜆𝑔
󸀠
(𝑤)

𝑔 (𝑤)
) > 𝛽 (0 ≤ 𝛽 < 1, 𝑤 ∈ 𝑈) ,

(42)

where function 𝑔 = 𝑓−1.

For one-fold symmetric biunivalent functions and 𝜆 = 0,
Theorems 3 and 5 reduce to Corollaries 10 and 11, respectively,
which were proven earlier by Murugusundaramoorty et al.
[19].

Corollary 10. Let𝑓 given by (7) be in class 𝑆⋆
Σ
(𝛼) (0 < 𝛼 ≤ 1).

Then,

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

2𝛼

√𝛼 + 1
,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ 4𝛼

2
+ 𝛼.

(43)

Corollary 11. Let 𝑓 given by (7) be in class 𝑆⋆
Σ
(𝛽) (0 ≤ 𝛽 < 1).

Then,
󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

√2 (1 − 𝛽),

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ 4 (1 − 𝛽)

2
+ (1 − 𝛽) .

(44)
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