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By using the fixed point theorem for monotone maps in a normal cone, we prove a uniqueness theorem for the positive definite
solution of the matrix equation 𝑋 = 𝑄 + 𝐴

∗

𝑓(𝑋)𝐴, where 𝑓 is a monotone map on the set of positive definite matrices. Then we
apply the uniqueness theorem to a special equation 𝑋 = 𝑘𝑄 + 𝐴

∗

(𝑋 − 𝐶)
𝑞

𝐴 and prove that the equation has a unique positive
definite solution when 𝑄 ≥ 𝐶 and 𝑘 > 1and 0 < 𝑞 < 1. For this equation the basic fixed point iteration is discussed. Numerical
examples show that the iterative method is feasible and effective.

1. Introduction

We consider the matrix equation
𝑋 = 𝑄 + 𝐴

∗

𝑓 (𝑋)𝐴, (1)
where𝑄 is an 𝑛×𝑛 positive definite matrix,𝐴 is arbitrary𝑚×

𝑛matrix, and 𝑓 is a monotone map on 𝑃(𝑚).
The study of matrix equation has a long history, involving

in particular the study of algebraic Riccati equations for dis-
crete time optimal control and for the stochastic realization
problem. Motivated by these equations, somewhat simpler
versions, namely, (1) with 𝑓(𝑋) = ±𝑋

−1, were studied in
[1–3]. Those three papers were the start of a development.
Later on came papers on a number of other specific matrix
equations, such as papers [4–10].

Of particular interest is the equation 𝑋 = 𝑄 + 𝐴
∗

(𝑋 −

𝐶)
−1

𝐴, where 𝑋 is the Kronecker product of 𝐼
𝑝
with 𝑋

for some 𝑝. This equation is connected to an interpolation
problem proposed by Sakhnovich in [11]. This equation was
first studied in [12], and a perturbation analysis was discussed
in [13]. Recently, in [14], the author provided a new proof
for the uniqueness of the positive definite solution of this
equation using a change of variable and a fixed point theorem,
which is an easier argument than the one used in [12].

This development leads to consideration of a general class
ofmatrix equations, which started with the paper by El-Sayed

andRan [15], andwas developed further by Ran andReurings
[16–19].

In this paper, we are interested in positive definite
solutions of (1), where 𝑓 is a monotone map. We obtain a
uniqueness theorem by using the fixed point theorem for
monotone maps in a normal cone. The uniqueness theorem
can be widely used in nonlinear matrix equations involving
monotonicity. In addition, we apply the uniqueness theorem
to a special equation anddiscuss the basic fixedpoint iteration
for this special case.

The following notations are used throughout this paper.
Let 𝐻(𝑛) denote 𝑛 × 𝑛 Hermitian matrices, let M(𝑚, 𝑛) de-
note 𝑚 × 𝑛 matrices, let P(𝑛) denote 𝑛 × 𝑛 positive definite
matrices, and let P(𝑛) denote 𝑛 × 𝑛 positive semidefinite
matrices. For𝑋,𝑌 ∈ P(𝑛), we write𝑋 ≥ 𝑌 (𝑋 > 𝑌) if𝑋 − 𝑌

is positive semidefinite (definite). 𝐴∗ denotes the conjugate
transpose of a matrix 𝐴. Let 𝑃 denote a solid cone of a real
Banach space𝐸.𝑃0 denotes the interior points set of𝑃. A cone
is said to be a solid cone if 𝑃0 ̸= 𝜙.

2. Preliminaries

In this section, we introduce some definitions and properties
for monotone operators in a normal cone which are the
theoretical basis of this paper.
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Definition 1 (see [20]). A cone 𝑃 ⊂ 𝐸 is said to be normal if
there exists a constant 𝑁 > 0 such that 0 ≤ 𝑥 ≤ 𝑦 implies
‖𝑥‖ ≤ 𝑁‖𝑦‖. That is, the norm ‖ ⋅ ‖ is semimonotone.

Definition 2 (see [20]). The operator Γ : 𝐷 → 𝐸, 𝐷 ⊂ 𝐸, is
said to be an increasing operator if

𝑥
1
≥ 𝑥
2
, 𝑥
1
, 𝑥
2
∈ 𝐷 ⇒ Γ (𝑥

1
) ≥ Γ (𝑥

2
) . (2)

Γ is said to be an decreasing operator if

𝑥
1
≥ 𝑥
2
, 𝑥
1
, 𝑥
2
∈ 𝐷 ⇒ Γ (𝑥

1
) ≤ Γ (𝑥

2
) . (3)

Definition 3 (see [21]). Let 𝑃 be a solid cone of a real Banach
space 𝐸 and Γ : 𝑃0 → 𝑃

0. Let 0 ≤ 𝛼 < 1. Then Γ is said to be
𝛼-concave if

Γ (𝑡𝑥) ≥ 𝑡
𝛼

Γ (𝑥) ∀𝑥 ∈ 𝑃
0

, 0 < 𝑡 < 1. (4)

Γ is said to be (−𝛼)-convex if

Γ (𝑡𝑥) ≤ 𝑡
−𝛼

Γ (𝑥) ∀𝑥 ∈ 𝑃
0

, 0 < 𝑡 < 1. (5)

Lemma 4 (see [21]). Let 𝑃 be a normal cone of a real Banach
space 𝐸 and let Γ : 𝑃0 → 𝑃

0 be 𝛼-concave and increasing (or
(−𝛼)-convex and decreasing) for 0 ≤ 𝛼 < 1. Then Γ has exactly
one fixed point 𝑥 in 𝑃0.

Lemma 5 (see [20]). A cone 𝑃 is normal if and only if 𝑥
𝑛
≤

𝑧
𝑛
≤ 𝑦
𝑛
, 𝑥
𝑛
→ 𝑥, and 𝑦

𝑛
→ 𝑥 imply 𝑧

𝑛
→ 𝑥.

Lemma 6 (see [22]). For all 𝐴 ∈ 𝐻(𝑛) and 𝑟 ∈ [0, 1], the
operatorΦ given byΦ(𝐴) = 𝐴𝑟 is an increasing operator.Then
𝐴
𝑟

≥ 𝐵
𝑟 if 𝐴, 𝐵 ∈ 𝐻(𝑛), 𝐴 ≥ 𝐵, and 0 ≤ 𝑟 ≤ 1.

In the following, we will apply Lemma 4 to the map
𝐺(𝑋) = 𝑄 + 𝐴

∗

𝑓(𝑋)𝐴.

3. The Application to 𝐺(𝑋) = 𝑄 + 𝐴∗𝑓(𝑋)𝐴

We define the spectral norm ‖ ⋅ ‖ in𝐻(𝑛); then𝐻(𝑛) is a real
Banach space. It is well known that 𝑃(𝑛) is a cone in 𝐻(𝑛)
and the interior points set is 𝑃(𝑛). Since the spectral norm
is monotone, we have from Definition 1 that the set 𝑃(𝑛) is
normal cone. So we can apply the results in Section 2 to the
maps from 𝑃(𝑛) into 𝑃(𝑛). In the following, we will consider
the positive definite solutions of the equation

𝑋 = 𝑄 + 𝐴
∗

𝑓 (𝑋)𝐴 (6)

or equivalently the fixed points of the map

𝐺 (𝑋) = 𝑄 + 𝐴
∗

𝑓 (𝑋)𝐴, (7)

where𝑓 is a monotonemap on𝑃(𝑚) induced by a real valued
map on (0,∞). The following theorem is our main result in
this section.

Theorem 7. Let 𝐺(𝑋) = 𝑄 + 𝐴
∗

𝑓(𝑋)𝐴, 𝑄 ∈ 𝑃(𝑛), 𝐴 ∈

𝑀(𝑚, 𝑛). Then 𝐺 has exactly one fixed point𝑋 in 𝑃(𝑛) if

(1) 𝑓 : 𝑃(𝑚) → 𝑃(𝑚);

(2) 𝑓 is increasing and 𝛼-concave or decreasing and (−𝛼)-
convex.

Proof. For the application of Lemma 4, we set 𝐸 = 𝐻(𝑛), 𝑃 =
𝑃(𝑛), 𝑃0 = 𝑃(𝑛), and Γ = 𝐺. Now we will prove that the map
𝐺 satisfies the conditions of Lemma 4.

For all 𝑋, 𝑌 ∈ 𝑃(𝑛) with 𝑋 ≥ 𝑌, by Lemma 6, we have
the following:

(1) 𝐺 : 𝑃(𝑛) → 𝑃(𝑛), because 𝑓 maps 𝑃(𝑚) into itself
and 𝑄 ∈ 𝑃(𝑛).

(2) If 𝑓 is increasing and 𝛼-concave, then𝐺 is increasing.
For all 𝑡 ∈ (0, 1), we have

𝐺 (𝑡𝑋) = 𝑄 + 𝐴
∗

𝑓 (𝑡𝑋)𝐴 ≥ 𝑡
𝛼

𝑄 + 𝑡
𝛼

𝐴
∗

𝑓 (𝑋)𝐴

= 𝑡
𝛼

[𝑄 + 𝐴
∗

𝑓 (𝑋)𝐴] = 𝑡
𝛼

𝐺 (𝑋) .

(8)

Hence the map 𝐺 is increasing and 𝛼-concave.
If 𝑓 is decreasing and (−𝛼)-convex, then 𝐺 is decreasing.

For all 𝑡 ∈ (0, 1), we have

𝐺 (𝑡𝑋) = 𝑄 + 𝐴
∗

𝑓 (𝑡𝑋)𝐴 ≤ 𝑡
−𝛼

𝑄 + 𝑡
−𝛼

𝐴
∗

𝑓 (𝑋)𝐴

= 𝑡
−𝛼

[𝑄 + 𝐴
∗

𝑓 (𝑋)𝐴] = 𝑡
−𝛼

𝐺 (𝑋) .

(9)

Hence the map 𝐺 is decreasing and (−𝛼)-concave.
So the map 𝐺 satisfies all the conditions in Lemma 4.

According to Lemma 4, 𝐺 has exactly one fixed point 𝑋 in
𝑃(𝑛).

The conditions in this theorem which 𝑓 has to satisfy are
easy to check if 𝑓 is simple. Now, we will give two simple
examples.

Example 8. If𝑓(𝑋) = 𝑋𝑞, 0 < 𝑞 < 1, then𝐺(𝑋) = 𝑄+𝐴∗𝑋𝑞𝐴
has exactly one fixed point𝑋 in 𝑃(𝑛).

Proof. By Lemma 6𝑓 : 𝑃(𝑛) → 𝑃(𝑛) is increasing. Also

𝑓 (𝑡𝑋) = (𝑡𝑋)
𝑞

= 𝑡
𝑞

𝑋
𝑞

= 𝑡
𝑞

𝑓 (𝑋) . (10)

Let 𝛼 = 𝑞; then 𝑓 is 𝛼-concave. According to Theorem 7,
𝐺(𝑋) = 𝑄+𝐴

∗

𝑋
𝑞

𝐴 has exactly one fixed point𝑋 in𝑃(𝑛).

Example 9. If 𝑓(𝑋) = 𝑋
−𝑞, 0 < 𝑞 < 1, then 𝐺(𝑋) = 𝑄 +

𝐴
∗

𝑋
−𝑞

𝐴 has exactly one fixed point𝑋 in 𝑃(𝑛).

Proof. By Lemma 6𝑓 : 𝑃(𝑛) → 𝑃(𝑛) is decreasing. Also

𝑓 (𝑡𝑋) = (𝑡𝑋)
−𝑞

= 𝑡
−𝑞

𝑋
−𝑞

= 𝑡
−𝑞

𝑓 (𝑋) . (11)

Let 𝛼 = 𝑞; then 𝑓 is (−𝛼)-convex. According to Theorem 7,
𝐺(𝑋) = 𝑄 + 𝐴

∗

𝑋
−𝑞

𝐴 has exactly one fixed point 𝑋 in 𝑃(𝑛).

These two examples have been discussed in several papers
by other methods; see, for example, [7, 8]. It seems that the
argument presented here is simpler than the arguments of [7,
8].
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4. The Case of 𝐺(𝑋) = 𝑘𝑄 + 𝐴∗(𝑋 − 𝐶)
𝑞

𝐴

In this section, we will discuss a more complex map; namely,
𝐺(𝑋) = 𝑘𝑄 + 𝐴

∗

(𝑋 − 𝐶)
𝑞

𝐴. Here 𝑋 is the block diagonal
matrix defined by 𝑋 = diag(𝑋,𝑋, . . . , 𝑋), in which 𝑋 is an
𝑛 × 𝑛matrix. Also, 𝑄 is an 𝑛 × 𝑛 positive definite matrix, 𝐶 is
an 𝑚𝑛 × 𝑚𝑛 positive semidefinite matrix, and 𝐴 is arbitrary
𝑚𝑛 × 𝑛 matrix. we always assume that 𝑄 ≥ 𝐶, 𝑘 > 1, and
0 < 𝑞 < 1. under these conditions we discuss the positive
definite solutions of the equation

𝑋 = 𝑘𝑄 + 𝐴
∗

(𝑋 − 𝐶)
𝑞

𝐴 (12)

or equivalently the fixed points of the map𝐺(𝑋). In this case,
𝑓(𝑋) = (𝑋 − 𝐶)

𝑞. The function 𝑓 is increasing, but it seems
to be hard to prove that𝑓 is 𝛼-concave.Therefore, we will use
a change of variable to study an equivalent form of the map
𝐺.

Let 𝑆
1
(𝑛) ⊂ 𝑃(𝑛) be the set defined by

𝑆
1
(𝑛) = {𝑋 ∈ 𝑃 (𝑛) | 𝑋 > 𝑄} . (13)

Let 𝐶
1
= 𝑄 − 𝐶. For 𝑄 ≥ 𝐶, we know that 𝐶

1
is a positive

semidefinite matrix. Then (12) turns into

𝑋 − 𝑄 = (𝑘 − 1)𝑄 + 𝐴
∗

(𝑋 − 𝑄 + 𝐶
1
)
𝑞

𝐴. (14)

Let 𝑌 = 𝑋 − 𝑄. Then (12) eventually becomes

𝑌 = (𝑘 − 1)𝑄 + 𝐴
∗

(�̂� + 𝐶
1
)
𝑞

𝐴. (15)

Apparently, (12) is equivalent to (15) when 𝑋 = 𝑌 + 𝑄.
Thus, we can obtain the following conclusion.

Lemma 10. Suppose that 𝑄 ≥ 𝐶, 𝑘 > 1; then 𝑋 is a positive
definite solution of (12) if and only if 𝑌 = 𝑋 − 𝑄 is a positive
definite solution of (15).

Theorem 11. Equation (12) with 𝑄 ≥ 𝐶 and 𝑘 > 1 always has
a unique positive definite solution.

Proof. According to Lemma 10, we first consider (15). Define
𝐺
1
by 𝐺
1
(𝑌) = (𝑘 − 1)𝑄 + 𝐴

∗

(�̂� + 𝐶
1
)
𝑞

𝐴 and 𝑓
1
(𝑌) =

(�̂� + 𝐶
1
)
𝑞. Now we will prove that the operator 𝐺

1
satisfies

the conditions of Theorem 7.
For all𝑋,𝑌 ∈ 𝑃(𝑛) with𝑋 ≥ 𝑌, by Lemma 6, we have the

following:
(1) 𝐺
1
: 𝑃(𝑛) → 𝑃(𝑛);

(2) 𝑓
1
(𝑋) = (𝑋 + 𝐶

1
)
𝑞

≥ (�̂� + 𝐶
1
)
𝑞

= 𝑓
1
(𝑌);

(3) for all 𝑡 ∈ (0, 1), we have

𝑓
1
(𝑡𝑌) = (𝑡𝑌 + 𝐶

1
)
𝑞

= 𝑡
𝑞

(�̂� + 𝑡
−1

𝐶
1
)
𝑞

≥ 𝑡
𝑞

(�̂� + 𝐶
1
)
𝑞

= 𝑡
𝑞

𝑓
1
(𝑌) .

(16)

Hence, the operator 𝑓
1
is increasing and 𝛼-concave. From

Theorem 7 we get that the operator 𝐺
1
has a unique fixed

point𝑌 in 𝑃(𝑛), which is the unique positive definite solution
of (15). According to Lemma 10, (12) has a unique positive
definite solution.

Now we consider the following iterative method for (15)
and (12). Let

𝑌
𝑛+1

= (𝑘 − 1)𝑄 + 𝐴
∗

(�̂�
𝑛
+ 𝐶
1
)
𝑞

𝐴,

𝑛 = 0, 1, 2, . . . ,

(17)

𝑋
𝑛+1

= 𝑘𝑄 + 𝐴
∗

(𝑋
𝑛
− 𝐶)
𝑞

𝐴, 𝑛 = 0, 1, 2, . . . . (18)

For the matrix sequence {𝑋
𝑛
} defined by (18), we have the

following theorem.

Theorem 12. Suppose that 𝑄 ≥ 𝐶, 𝑘 > 1; then for arbitrary
initial matrix𝑋

0
∈ 𝑆
1
(𝑛), the matrix sequence {𝑋

𝑛
} defined by

(18) converges to the unique positive definite solution𝑋 of (12).

Proof. We first consider the matrix sequence {𝑌
𝑛
} defined by

(17). Let𝑌 = 𝑋−𝑄,𝑌
0
= 𝑋
0
−𝑄; then𝑌 is the unique positive

definite solution of (15). For 𝑌 and 𝑌
0
, there exists a positive

number 0 < 𝛼 ≤ 1 satisfying

𝛼𝑌 ≤ 𝑌
0
≤ 𝛼
−1

𝑌. (19)

We will use mathematical induction to prove the following
inequality:

𝛼
𝑞
𝑛

𝑌 ≤ 𝑌
𝑛
≤ (𝛼
−1

)
𝑞
𝑛

𝑌, 𝑛 = 0, 1, 2, . . . . (20)

From (19) it follows that inequality (20) holds for 𝑛 = 0.
Assume that (20) is true for 𝑛 = 𝑘. That is,

𝛼
𝑞
𝑘

𝑌 ≤ 𝑌
𝑘
≤ (𝛼
−1

)
𝑞
𝑘

𝑌. (21)

Now we need to prove (20) is true for 𝑛 = 𝑘 + 1. From (21),
we get that

𝛼
𝑞
𝑘

�̂� + 𝐶
1
≤ 𝑌
𝑘
+ 𝐶
1
≤ (𝛼
−1

)
𝑞
𝑘

𝑌
𝑘
+ 𝐶
1
,

(𝛼
𝑞
𝑘

�̂� + 𝐶
1
)

𝑞

≤ (𝑌
𝑘
+ 𝐶
1
)
𝑞

≤ [(𝛼
−1

)
𝑞
𝑘

�̂� + 𝐶
1
]

𝑞

,

(𝑘 − 1)𝑄 + 𝐴
∗

(𝛼
𝑞
𝑘

�̂� + 𝐶
1
)

𝑞

𝐴

≤ (𝑘 − 1)𝑄 + 𝐴
∗

(𝑌
𝑘
+ 𝐶
1
)
𝑞

𝐴

≤ (𝑘 − 1)𝑄 + 𝐴
∗

[(𝛼
−1

)
𝑞
𝑘

�̂� + 𝐶
1
]

𝑞

𝐴.

(22)

That is,

(𝑘 − 1)𝑄 + 𝐴
∗

(𝛼
𝑞
𝑘

�̂� + 𝐶
1
)

𝑞

𝐴 ≤ 𝑌
𝑘+1

≤ (𝑘 − 1)𝑄 + 𝐴
∗

[(𝛼
−1

)
𝑞
𝑘

�̂� + 𝐶
1
]

𝑞

𝐴.

(23)
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Table 1

errtol 𝑞 err(𝑋) 𝑛 Iteration solution𝑋

1 × 10
−5

1/3 9.4202 × 10
−6 11 (

2.13388783159709 −0.00086471161567

−0.00086471161567 0.53349253880560

) × 10
3

1/2 5.2724 × 10
−6 19 (

2.28733182761235 −0.13190912090591

−0.13190912090591 0.47447253811381

) × 10
4

1 × 10
−10

1/3 3.7231 × 10
−11 22 (

2.13391707124142 −0.00086517759943

−0.00086517759943 0.53349925037736

) × 10
3

1/2 7.6719 × 10
−11 35 (

2.28735583246287 −0.13191055029808

−0.13191055029808 0.47447745556329

) × 10
4

From 0 < 𝛼 ≤ 1 it follows that 0 < 𝛼
𝑞
𝑘+1

≤ 1, (𝛼−1)𝑞
𝑘+1

≥ 1.
Then

(𝑘 − 1)𝑄 + 𝐴
∗

(𝛼
𝑞
𝑘

�̂� + 𝐶
1
)

𝑞

𝐴

≥ 𝛼
𝑞
𝑘+1

(𝑘 − 1)𝑄 + 𝐴
∗

(𝛼
𝑞
𝑘

�̂� + 𝛼
𝑞
𝑘

𝐶
1
)

𝑞

𝐴

= 𝛼
𝑞
𝑘+1

[(𝑘 − 1)𝑄 + 𝐴
∗

(�̂� + 𝐶
1
)
𝑞

𝐴] ,

(𝑘 − 1)𝑄 + 𝐴
∗

[(𝛼
−1

)
𝑞
𝑘

�̂� + 𝐶
1
]

𝑞

𝐴

≤ (𝛼
−1

)
𝑞
𝑘+1

(𝑘 − 1)𝑄

+ 𝐴
∗

[(𝛼
−1

)
𝑞
𝑘

�̂� + (𝛼
−1

)
𝑞
𝑘

𝐶
1
]

𝑞

𝐴

= (𝛼
−1

)
𝑞
𝑘+1

[(𝑘 − 1)𝑄 + 𝐴
∗

(�̂� + 𝐶
1
)
𝑞

𝐴] .

(24)

Therefore

𝛼
𝑞
𝑘+1

[(𝑘 − 1)𝑄 + 𝐴
∗

(�̂� + 𝐶
1
)
𝑞

𝐴] ≤ 𝑌
𝑘+1

≤ (𝛼
−1

)
𝑞
𝑘+1

[(𝑘 − 1)𝑄 + 𝐴
∗

(�̂� + 𝐶
1
)
𝑞

𝐴] .

(25)

That is,

𝛼
𝑞
𝑘+1

𝑌 ≤ 𝑌
𝑘+1

≤ (𝛼
−1

)
𝑞
𝑘+1

𝑌. (26)

Hence we get that inequality (20) holds for any positive
integer 𝑛. Let 𝑛 → ∞; we have

𝛼
𝑞
𝑛

→ 1, (𝛼
−1

)
𝑞
𝑛

→ 1. (27)

Therefore, from Lemma 5 it follows that

𝑌
𝑛
→ 𝑌. (28)

Since𝑋
𝑛
= 𝑌
𝑛
+ 𝑄,𝑋 = 𝑌 + 𝑄, we have

𝑋
𝑛
→ 𝑋. (29)

5. Numerical Examples

We now present some numerical examples to illustrate our
results. All computations were performed using MATLAB,
version 7.01. In this section, we will use err(𝑋) = ‖𝑋 − 𝑘𝑄 −

𝐴
∗

(𝑋 − 𝐶)
𝑞

𝐴‖
1
/‖𝑋‖
1
to denote the relative iteration error,

errtol to denote the stopping criterion, and 𝑛 to denote the
iteration number.

Example 13. Consider (12) with 𝑘 = 2 and

𝐴 =

(
(
(
(
(

(

3 −2

2 0

−8 3

7 2

−5 1

7 6

)
)
)
)
)

)

,

𝑄 = (

23 −2

−2 15
) ,

𝐶 =

(
(
(
(
(

(

9 −1 2 0 4 1

−1 8 −1 −1 3 −2

2 −1 6 1 −1 2

0 −1 1 7 0 −2

4 3 −1 0 8 0

1 −2 2 −2 0 5

)
)
)
)
)

)

.

(30)

Then the matrices 𝑄 and 𝐶 satisfy 𝑄 > 𝐶. Consider the
iterative method (18) with several values of 𝑞 and several
values of the stopping criterion. The experiment data are
listed in Table 1.

MATLAB function𝑚-file is shown in Algorithm 1.



Journal of Mathematics 5

[Gaofixedpoint.m]
function [X, counter, err]=Gaofixedpoint(A, Q, C, k, q, errtol)
% Solving X = kQ + A∧∗(Xhat − C)∧q∗A, with Xhat = kronecker(I,X)
% Input:matrices 𝐴 {𝑚, 𝑛}, 𝑄 {𝑛, 𝑛}, 𝐶 {𝑚,𝑚}, k > 1, 0 < q < 1, errtol
% Output: solution 𝑋 {𝑛, 𝑛}, iteration counter, final equation relative error
[m, n] = size (A); [p, w] = size (Q); [r, s] = size (C); % Input size etc checks
if floor (m/n) ∼= m/n ‖ n ∼= p ‖ n ∼= w ‖ r ∼= m ‖ s ∼= m ‖ k

<= 1 . . . ‖ q <= 0 ‖ q>= 1,
error (’incompatible inputs’),
return,

end
I = eye (m/n); X = k∗Q; counter = 0; err = 10000; % Initialize
while err >= errtol % Iterate
X = k∗Q + A’∗(kron(I, X) − C)∧q∗A; % update X
S = X − k∗Q − A’∗(kron(I, X) − C)∧q∗A; % form error matrix S
err = norm(S, 1)/norm(X, 1); % relative iteration error
counter = counter + 1; % Iteration counter

end
X = (X + X’)/2; %make sure X is symmetric
S = X − k∗Q − A’∗(kron(I, X) − C)∧q∗A; % form final error matrix S
err = norm(S, 1)/norm(X, 1);

Algorithm 1
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