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Background. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, severely distressing clinical syndrome characterized
by bladder pain and pressure perceptions. The origin and pathophysiology of IC/BPS are currently unclear, making it difficult to
diagnose and formulate successful treatments. Our study is aimed at investigating the role of immune-related genes in the
diagnosis, progression, and therapy of IC/BPS. Method. The gene expression datasets GSE11783, GSE11839, GSE28242, and
GSE57560 were retrieved from the GEO database for further analysis. Immune-related IC/BPS differentially expressed genes
(DEGs) were identified by limma. Three distinct machine learning approaches, least absolute shrinkage and selection operator
(LASSO), support vector machine–recursive feature elimination (SVM-RFE), and random forest (RF), were used to find the
immune-related IC characteristic genes. Nomogram and receiving operator curves (ROC) were plotted to measure
characteristic effectiveness. Using the CMap database and the molecular docking approach, potential small-molecule medicines
were found and verified. Consensus cluster analysis was also performed to separate the IC/BPS samples into immunological
subtypes. Results. A total of 24 immune-related IC/BPS-DEGs were identified. When compared to the normal control group,
the IC/BPS cohort had significantly more immune cell infiltration. Integrative machine learning methods discovered 5 IC/BPS
characteristic genes (RASGRP1, PPBP, RBP4, CR2, and PROS2) that may predict IC/BPS diagnosis and immune cell
infiltration. Furthermore, two immunological subgroups with substantial variations in immune cell infiltration across IC/BPS
samples were identified, which were named cluster1 and cluster2, with the hallmark genes having greater expression in
cluster2. Finally, bumetanide was shown to have the potential to be a medication for the treatment of IC/BPS, and it
performed well in terms of its molecular binding with RASGRP1. Conclusion. We found and validated 5 immune-related IC/
BPS genes (RASGRP1, PPBP, RBP4, CR2, and PROS2) and 2 IC/BPS immune subtypes. In addition, bumetanide was
discovered to be a potential drug for treating IC/BPS, which may provide new insight into the diagnosis and immune therapy
of IC/BPS patients.

1. Introduction

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a
chronic inflammatory disorder that has a high degree of het-
erogeneity. It is frequently accompanied by severe pelvic pain
and symptoms of the lower urinary tract, and it has a negative
impact on the quality of life for millions of people [1]. The
European Society for the Study of Interstitial Cystitis (ESSIC)

defines IC as an unpleasant urinary bladder feeling that lasts
for more than six months and is accompanied by at least
one lower urinary tract symptom that lasts for more than six
weeks. It is estimated that 7.9 million women and 2 million
men in the United States alone are affected by IC, which
results in an annual cost of more than 750 million US dollars
[2, 3]. However, despite the significant social and economic
implications of IC/BPS, the unavailability of IC/BPS etiology
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and pathophysiology complicates the process of its diagnosis
and treatment [4]. Because oral medicines for IC/BPS are often
ineffectual, the major goal of current treatment is to reduce the
severity of the condition’s symptoms [5]. Approximately 10%
of IC/BPS complicated cases need invasive surgical therapy,
such as improved bladder capacity through ileal cystoplasty
and urinary bladder diversion surgeries [6, 7], which certainly
increases the physical and emotional impact on patients.
Therefore, the development of novel molecular biomarkers
for IC/BPS diagnosis and therapy is urgently required.

Evidence from epidemiology showed that chronic inflam-
matory responses and the immune system both play an
important part in the development of IC/BPS [8]. Previous
studies have demonstrated aberrant activity of numerous
immune cells in the IC tissue samples [9] as well as higher levels
of proinflammatory in urine and serum samples of IC patients
[10]. Although there is yet no adequate evidence to indicate
that IC is an autoimmune illness, the aberrant immunological
state of IC has been clearly documented in various research
[11–13]. Previous bioinformatics studies using single-cell
RNA sequencing found that local adaptive immune responses
are a hallmark of IC [6], and Gamper et al. [14] reported that
immune-related pathways and immune cell infiltration were
involved in the initiation and progression of IC/BPS, highlight-
ing the pivotal role of immune mechanisms in the disease.
Therefore, in this study, we integrated three different machine
learning algorithms, including LASSO, SVM-RFE, and RF, to
identify immune-related IC/BPS characteristic genes that
might aid in the assessment of immune state in IC/BPS patients
and facilitate their diagnosis. Moreover, we proposed novel
immune subtypes of IC/BPS samples containing high and
low immune infiltration. Finally, the CMap database was used
to identify small-molecule medicines for treating IC/BPS based
on immune-related IC/BPS signature genes; further molecular
docking also corroborated the proposed mechanism of action.

2. Materials and Methods

2.1. Study Cohorts. The GEO database was searched for IC/BPS
and used to download four independent public datasets
(GSE11783, GSE11839, GSE28242, and GSE57560); the
detailed dataset information is shown in Supplementary
Table 1. Because of the differences in sequencing platforms,
methods, and experimental designs that exist between these
previously mentioned datasets, the combat function was
utilized to eliminate batch effects that existed between
samples. This function was based on the SVA package that is
included in the R programming language. In the end, a meta-
GEO cohort consisting of 37 IC samples and 20 normal
control samples was produced for the sake of further
investigation. Principal component analysis (PCA) was used
to visualize the performance of debatching. Integrative gene
expression profiles from all GEO datasets were used to
establish a coexpression network and identify immune-related
IC/BPS characteristic genes.

2.2. Analysis of Immune-Related IC/BPS-DEGs. Firstly, to
identify IC/BPS differentially expressed genes (DEGs), a dif-
ferential analysis was performed between 37 IC/BPS samples

and 20 normal control samples using the R package limma
(the cutoff score was set asp < 0:05 and absolute ðlog 2 FCÞ
> 1:0) and was conducted to select IC/BPS differentially
expressed genes (DEGs). Following that, we obtained the
immune gene list from the ImmPort database [15]. Subse-
quently, we found the genes intersecting between immune-
related genes and IC/BPS-DEGs; these matched genes were
designated immune-related IC/BPS-DEGs.

2.3. Gene Functional Enrichment Analysis and Gene Set
Variation Analysis (GSVA). The functional enrichment analy-
sis of the preceding gene list was performed primarily using
the R package ClusterProfiler. Genes were uploaded to the
Gene Ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) databases to elucidate essential molecu-
lar processes and biological pathways further [16, 17]. In
addition, we assessed the biological importance of the IC char-
acteristic genes using the R package GSVA based on the fifty
hallmark gene sets from the molecular characteristic database
MSigDB [18].

2.4. Construction of Protein-Protein Interaction (PPI) Network
and Identification of Hub Genes. In order to investigate how
the expression of protein-coding genes is interacted with each
other, immune-related IC/BPS-DEGs were uploaded to the
STRING database [19]. The PPI network was then constructed
with the cutoff score set at 0.400. Subsequently, the information
on gene interactions was analyzed based on the Molecular
Complex Detection (MCODE) tools in Cytoscape; hub
modules (genes) in the PPI network were found by applying
the criteria of degree cutoff = 2, node score cutoff = 0:2, and
K − Core = 2.

2.5. Identification and Validation of Potential Signature
Genes. In order to select immune-related IC/BPS character-
istic genes, the LASSO, RF, and SVM-RFE machine learning
techniques were used. It generates a more refined model by
generating a penalty function, which compresses certain
regression coefficients and requires the total of absolute
values of coefficients to be smaller than a set value. The
LASSO regression model is a compressed estimate model.
LASSO analysis was implemented based on the R package
glmnet [20]. A random forest is a classifier consisting of
numerous decision trees, and the mode of the category out-
put determines its output category by the individual tree
[19]. The mean decrease accuracy of each gene was ranked
using recursive feature elimination in the RF model; the
top 10 genes were recognized as signature genes. In this
study, the RF model was developed using the R package ran-
dom forest. SVM-RFE is a novel method for pattern recogni-
tion that adopts the principle of structural risk minimization
(SRM), accounts for training error and generalizability, and
demonstrates distinctive advantages in solving small sam-
ples, high-dimensional nonlinearity, local minima, and other
pattern recognition problems. In this research, the SVM-
RFE method was implemented using the R package kernlab
[21]. In addition, the ROC curve was generated to assess the
precision of the prediction findings.
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Nomogram was plotted via R package rms to evaluate
the characteristic value of immune-related IC/BPS charac-
teristic genes. Furthermore, we used a calibration curve to
estimate the accuracy and robustness of the nomogram
prediction.

2.6. Consensus Clustering. On the basis of the gene expres-
sion profile of the immune-related IC/BPS-DEGs, consensus
clustering, a resampling-based technique, was used to iden-
tify further clusters. The procedure was carried out using
the ConsensusClusterPlus R program. The best number of
clusters was estimated using CDF curve, consensus score
matrix, Nbclust, and PAC score in a synthetic manner.

2.7. Potential Small-Molecule Drug Identification and
Molecular Docking Verification. Connectivity Map (CMap)
is an expression profile database that utilizes cellular
responses to perturbations to identify possible functional
linkages between diseases, genes, and therapeutics [22]. We
uploaded immune-related IC signature genes to the CMap
database in order to identify possible small-molecule medi-
cines for the treatment of IC/BPS. From the PubChem data-
base, the molecular findings of the active components were
acquired. Subsequently, AutoDock Vina was used to con-
duct molecular docking of possible small-molecule medicine
active components and IC/BPS main target proteins; the
accuracy of IC/BPS medications was determined by the
amount of binding free energy and displayed using PyMOL.

2.8. Statistical Analysis. All statistical analyses, data process-
ing, and figure plotting are carried out in R 4.1.1 software.
Correlation analysis was carried out using the R program
ggplot2 and the Pearson correlation coefficient. To compare
continuous variables, the Wilcoxon rank sum test or T-test
was utilized. The R package pROC was used to predict
binary classification variables. p < 0:05 was considered statis-
tically significant.

3. Results

3.1. Identification of Immune-Related Differentially
Expressed Genes in IC/BPS. In accordance with our method-
ological approach, we initially obtained and integrated four
distinct public datasets (GSE11783, GSE11839, GSE28242,
and GSE57560). After data preprocessing and batch effect
removal across samples (Figure 1(a)), we merged a meta-
GEO cohort encompassing 15,401 gene expression profiles
from 20 normal control and 37 IC/BPS samples. To further
investigate the functions of immune-related genes in IC/BPS
patients, the infiltration of 28 immune cells was analyzed
using single-sample gene set enrichment analysis (ssGSEA).
Immune cell infiltration was significantly different between
the IC/BPS and the control groups, with the IC/BPS group
exhibiting a much greater immune cell infiltration abun-
dance than the normal one (Figure 1(b)). The differential
analysis of the gene expression differences revealed 117
DEGs, comprising 55 upregulated and 62 downregulated
genes (Figures 1(c) and 1(d)). The intersection of 117 IC/
BPS-DEGs and 1,793 immune-related genes retrieved from
the ImmPort database was then used to identify a total of

24 immune-related IC/BPS-DEGs (Supplementary
Table 2). In addition, functional enrichment analysis
demonstrated that these immune-related IC-DEGs were
intimately associated with immune biological processes and
pathways, including cytokine-cytokine receptor interaction,
IL-7 signaling, and chemokine signaling pathways
(Figures 1(f) and 1(g)).

3.2. Hub Immune-Related IC/BPS-DEG Identification via
PPI Network. First, we investigated the PPI network of
immune-related IC-DEGs using the STRING database
(Figure 2(a)), and then, we imported the generated PPI net-
work into the Cytoscape software, which reveals the interac-
tion relationship of hub immune-related IC-DEGs, with
nodes of hub genes arranged by degree value (Figures 2(b)
and 2(c)). Furthermore, the MCODE analysis revealed
which modules were the most active. The majority of these
hub genes were shown to be involved in the IL-17 signaling
pathway, cytokine-cytokine receptor interaction, T cell
receptor signaling pathway, cytokine activity, and chemo-
kine receptor binding. This resulting data implies that these
hub genes are critical in the immunological response.

3.3. IC/BPS Characteristic Genes Selected via Integrative
Machine Learning Algorithms. Three machine learning algo-
rithms (including LASSO, SVM-RFE, and random forest)
were then integrated to select IC/BPS characteristic genes
for subsequent characteristic value evaluation and nomo-
gram construction. Following tenfold cross-validation that
identified seven signature genes, the optimal value of lambda
for the LASSO regression technique was found to be 0.53.
(Figures 3(a) and 3(b)). For the SVM-RFE algorithm, the
classifier showed the minimum error when N = 10
(Figure 3(c)). We also established a random forest model
and determined the mean decrease accuracy for each gene;
as a result, we chose the 10 most significant genes as signa-
ture genes (Figure 3(d)). Finally, the Venn diagram showed
the five most important IC/BPS characteristic genes
(RASGRP1, PPBP, RBP4, CR2, and PROS2) shared by these
three machine learning algorithms (Figure 3(e)).

The nomogram was developed in order to offer clini-
cians a quantitative tool for risk prediction in IC/BPS
patients. Every IC/BPS characteristic gene expression corre-
sponds to a point in the nomogram. The sum of IC/BPS
characteristic gene points was used to get the overall number
of points representing the risk prediction percentage
Figure 4(a). In addition, the calibration curve was produced
to test the stability of the nomogram’s prediction findings
(Figure 4(b)). Moreover, ROC curves were built to deter-
mine the reliability and robustness of IC/BPS characteristic
genes in diagnosing IC/BPS, with the AUC score and 95%
confidence interval (CI) obtained for each gene. All the IC/
BPS characteristic genes performed high characteristic value
in predicting IC/BPS, CR2 (AUC: 0.749, 95% CI: 0.601-
0.885), PPBP (AUC: 0.758, 95% CI: 0.611-0.891), PROK2
(AUC: 0.781, 95% CI: 0.639-0.911), RASGRP1 (AUC:
0.762, 95% CI: 0.628-0.877), and RBP4 (AUC: 0.732, 95%
CI: 0.584-0.859) (Figures 4(c)–4(g)). Except for RBP4, which
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Figure 1: Identification of immune-related IIC-DEGs based on the combined GEO datasets. (a) The upper PCA plot performs the
combined gene expression datasets of GSE11783, GSE11839, GSE28242, and GSE57560. The lower PCA plot performs the combined
gene expression datasets of GSE11783, GSE11839, GSE28242, and GSE57560 after removing batch effects. (b) Abundance of 28
infiltrated immune cells evaluated by ssGSEA for IC cohort and normal control cohort. (c) The heatmap performs the differentially
expressed genes between the IC cohort and normal control cohort. (d) The volcano plot shows the detailed information of the IC-DEGs.
(e) The Venn diagram performs the intersection genes between IC-DEGs and immune-related genes. (f) GO enrichment analysis based
on the immune-related IC-DEGs. (g) KEGG enrichment analysis based on the immune-related IC-DEGs.
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is significantly expressed in the control group, all genes are
strongly expressed in the ICI group (Figure 4(h)).

3.4. Immune Status of IC/BPS Patients. To comprehensively
evaluate the immune condition in IC/BPS samples, we assessed
the immunological characteristics of IC/BPS based on the infil-
tration of immune cells. As shown in Figure 5(a), both adaptive
and innate infiltrating immune cells were significantly enriched
in the IC/BPS cohort relative to the normal control group. In
addition, correlation analysis showed impressive relationships
between 28 immune cells that had penetrated the tissue
(Figure 5(b)). Furthermore, the logistic regression model
revealed that the majority of immune cells were positively asso-
ciated with the diagnosis of IC (Figure 5(c)). Moreover, as
anticipated, four of the five IC/BPS characteristic genes
(RASGRP1, PROK2, PPBP, and CR2) demonstrated direct

positive interactions with immune cell infiltration, whereas
only RBP4 demonstrated a negative correlation (Figure 5(e)),
consistent with the low expression of RBP4 in the IC/BPS
group (Figure 4(h)). Finally, the radar plot visualized the scores
of infiltrated immune cells in which interestingly, we found
that central memory CD4 T cells, plasmacytoid dendritic cells,
and monocytes performed the highest scores in both cohorts
(Figure 5(d)). These results reveal that IC/BPS signature genes
may regulate immunological characteristics throughout the
development and progression of the IC/BPS process.

3.5. Development of Immune Subtypes Based on Immune-
Related IC/BPS-DEGs. To further investigate the immuno-
logical characteristics of IC/BPS, we conducted the consen-
sus cluster analysis on 37 IC/BPS cases based on the gene
expression patterns of the immune-related IC/BPS-DEGs.
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Figure 2: Construction of protein-protein interaction network and identification of hub immune-related IC-DEGs. (a) Protein-protein
interaction network of 24 immune-related IC-DEGs. (b) Left: identification and visualization of 19 hub based on the Molecular Complex
Detection (MCODE) tools in Cytoscape. Right: MCODE analysis showed the most active modules. (c) The bar plot shows the degree
value of the 19 hub genes. (d) GO enrichment analysis based of the 19 hub genes. (e) KEGG enrichment analysis based of the 19 hub genes.
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We subsequently classified the IC/BPS samples into cluster1
and cluster2 immunological subtypes (Figures 6(a)–6(c)).
PCA was utilized to illustrate the substantial distinctions
between these two groups (Figure 6(d)). The ideal number
(k = 2) of clusters was calculated by integrating the CDF
curve, consensus score matrix, Nbclust, and PAC score
(Figures 6(e) and 6(f)). As shown in Figure 6(h), immune-
related IC/BPS-DEGs exhibited substantial subtype hetero-
geneity. In addition, the heatmap revealed the difference in
infiltrating immune cells estimated by the ssGSEA method,
with cluster2 displaying an abundance of immune cells
(Figure 6(g)).

We found that all of the gene characteristics of IC/BPS,
except RBP4, were strongly expressed in the cluster2 subtype.
This may be associated with the fact that there is a negative
correlation between RBP4 and the number of immune cell
infiltration (Figure 7(a)). In addition, we discovered that the
majority of immune checkpoint inhibitor (ICI) genes were
significantly elevated in the cluster2 subtype (Figure 7(b)),
which is consistent with the greater amount of immune cell
infiltration in the cluster2 subtype (Figure 7(c)). Based on the
GSVA algorithm, the cluster2 subtype had significant immu-
nological activation (G2M-checkpoint, MYC targets, PI3K-
AKT-mTOR signaling pathway, and inflammatory response),
Figure 5(d). In conclusion, IC/BPS samples were separated into
two distinct immune subtypes. Cluster1 was found to have a
low immune-infiltrating subtype, while cluster2 was found to
have a high immune-infiltrating subtype.

3.6. Identification and Validation of Small-Molecule Drugs.
Using the CMap database, prospective small-molecule med-
icines for IC/BPS therapy were predicted based on immune-
related IC/BPS characteristic genes. Figure 8(b) depicts the
exact chemical structures of these five molecules. Subse-
quently, we performed molecular docking between small-
molecule drugs and five immune-related IC/BPS characteris-
tic genes based on AutoDock Vina software. The binding
free energy indicates the degree of conformational stability.
Lower binding free energy indicates more conformational
stability. When the binding free energy is less than zero,
the ligand spontaneously attaches to the receptor [23].
Figure 8(a) reveals that the binding free energy of bumeta-
nide and RASGRP1 is -7.4, showing that bumetanide’s active
component has a high affinity for RASGRP1. As shown in
Figures 9(a)–9(c), the putative docking targets for small-
molecule drugs were displayed. Results indicated that
bumetanide performs its biological activity most likely by
binding to RASGRP1 and establishing hydrogen bonds with
five amino acid positions near the active site: LYS469,
ARG473, HIS470, ARG223, and LYS219 (Figure 9(a)).

4. Discussion

Interstitial cystitis/bladder pain syndrome IC/BPS is a devas-
tating illness that is characterized by severe pelvic pain and
symptoms affecting the urinary system. Because of the com-
plex nature of its disease process, IC/BPS does not have any
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Figure 4: Establishment of nomogram and assessment of characteristic value. (a) Nomogram was constructed for diagnosing IC. (b)
Calibration curve was plotted to evaluate the stability of the prediction results of the nomogram. (c–g) ROC curve was established to
estimate the reliability and robustness of IC characteristic genes in the diagnosis of IC. (h) The box plot performs the expression of IC
characteristic genes.
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Figure 5: Immune status of IC. (a) The violin plot shows that both adaptive and innate infiltrated immune cells performed abundant
enrichment in the IC cohort compared with the normal control cohort. (b) Correlation analysis revealed the remarkable interactions
between 28 infiltrated immune cells. (c) The logistic regression model also showed that most of the immune cells were positively
correlated with the diagnosis of IC. (d) The radar plot visualized the scores of infiltrated immune cells. (e) Correlation analysis of
infiltrated immune cells and IC characteristic genes. ∗ represents p < 0:05, ∗∗ represents p < 0:01, and ∗∗∗ represents p < 0:001.

16 Journal of Immunology Research



Cluster

Cluster

1

0.8

0.6

0.4

0.2

0

Cluster 1
Cluster 2

(a)

Consensus CDF

5
6
7

1.0

0.8

0.8 1.0

0.6

0.6

CD
F

0.4

0.4

0.2

0.2

0.0

0.0
Consensus index

2
3
4

(b)

Delta area

0.1

2 3 4 5 6 7

k

0.2

0.3

Re
la

tiv
e c

ha
ng

e i
n 

ar
ea

 u
nd

er
 C

D
F 

cu
rv

e

0.4

0.5

(c)

Cluster plot

2.5

0.0

–2.5D
im

2 
(1

4%
)

–5.0

–7.5

–4 0
Dim1 (42%)

4 8

Cluster
1
2

(d)

Figure 6: Continued.

17Journal of Immunology Research



800

Optimal number of clusters

600
To

ta
l w

ith
in

 su
m

 o
f s

qu
ar

e

400

Number of clusters k

1 2 3 4 5 6 7 8 9 10

(e)

Cluster dendrogram

20

15

10

H
ei

gh
t

5

0

G
SM

29
82

13

G
SM

13
84

76
1

G
SM

29
82

14

G
SM

13
84

77
0

G
SM

29
82

06

G
SM

29
82

05

G
SM

29
82

07

G
SM

29
82

08

G
SM

13
84

75
9

G
SM

69
91

45

G
SM

13
84

76
9

G
SM

13
84

76
8

G
SM

29
82

11

G
SM

13
84

76
5

G
SM

13
84

76
7

G
SM

13
84

76
4

G
SM

13
84

76
6

G
SM

13
84

76
3

G
SM

69
91

41

G
SM

13
84

75
8

G
SM

29
91

01

G
SM

29
91

02

G
SM

69
91

42

G
SM

29
91

03

G
SM

69
91

43

G
SM

69
91

44

G
SM

69
91

46

G
SM

13
84

76
2

G
SM

13
84

76
0

G
SM

29
91

04

G
SM

29
91

06

G
SM

69
91

47

G
SM

29
91

05

G
SM

40
25

41

G
SM

69
91

40

G
SM

29
82

10

G
SM

29
82

09

(f)

Figure 6: Continued.

18 Journal of Immunology Research



Activated.B.cell

Eosinophil

Monocyte

Type.2.T.helper.cell

Type.17.T.helper.cell

Type.1.T.helper.cell

T.follicular.helper.cell

Regulatory.T.cell

Plasmacytoid.dendritic.cell

Neutrophil

Natural.killer.cell

Natural.killer.T.cell

Memory.B.cell

MDSC

Mast.cell

Macrophage

Immature.dendritic.cell

Immature..B.cell

Gamma.delta.T.cell

Efector.memory.CD4.T.cell

Efector.memory.CD8.T.cell

Central.memory.CD8.T.cell

Central.memory.CD4.T.cell

CD56dim.natural.killer.cell

CD56bright.natural.killer.cell

Activated.CD4.T.cell

Activated.CD8.T.cell

Activated.dendritic.cell

Type

TypeType

2

1

0

–1

–2

Cluster 1
Cluster 2

(g)

Figure 6: Continued.

19Journal of Immunology Research



reliable characteristic biomarkers or therapeutic methods
[24–26]. Previous studies have shown that abnormal immu-
nity is a significant histological feature in IC/BPS [27]; both

innate and adaptive immune mechanisms may influence the
pathogenesis and progression of IC/BPS [11, 12, 28]. There-
fore, exploring the roles of infiltrated immune cells and
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immune-related genes during the progression of IC/BPS is
important.

Our study combined the gene expression profiles of 37
IC/BPS samples and 20 normal control samples by integrat-
ing publicly available datasets (GSE11783, GSE11839,
GSE28242, and GSE57560) obtained from the GEO data-
base. The differential analysis then identified 55 upregulated
DEGs and 62 downregulated DEGs in the IC/BPS cohort.
The differential analysis found that the IC/BPS cohort had
62 DEGs that had decreased in expression and 55 DEGs that
had increased in expression. Five immune-related IC/BPS
characteristic genes were chosen for further study based on
the PPI network and three different machine learning tech-
niques (RASGRP1, PPBP, RBP4, CR2, and PROS2). In order
to examine the characteristic value of these genes in IC/BPS,
a nomogram and ROC curves were also constructed. The
results showed that each of these genes could predict the
development of IC/BPS accurately. In addition, GO and
KEGG enrichment analysis uncovered evidence that these
genes are associated with antimicrobial humoral response,
cytokine-cytokine receptor interaction, and the IL-17 signal-
ing pathway. These results align with those obtained in a
prior investigation of IC/BPS, suggesting a direct connection
between the distinctive genes and the immunological infil-
tration seen in IC/BPS [29–32].

It is believed that aberrant expression of RASGRP1 plays
an important part in the development of autoimmunity.
According to Baars et al. [33], dysregulation of RASGRP1
often takes place in activated T cells and may, in a dose-
dependent way, affect TCR-induced signaling as well as thy-
mocyte selection. The immune response hypothesis of IC/
BPS etiology [27], which is partly explained by this finding,
suggests that RASGRP1 may have potential significance to
the immunological environment of IC/BPS. It is currently
known that PPBP, which is an activator of neutrophils that
is released by the megakaryocyte lineage, may be found
expressing in a variety of cell types, which suggests that it
may have a possible function in the establishment of IC/
BPS immunological characteristics [34]. The expression of
RBP4 is negatively linked with infiltrating macrophages, T
cells, B cells, neutrophils, and dendritic cells [35], which is
consistent with our results. Additional evidence demon-
strates that RBP4 is an essential regulator of immune micro-
environment homeostasis. Furthermore, CR2 is often
present on B cells, follicular dendritic cells, and a fraction
of T cells, which may affect B cell activity on many levels
[36, 37], thereby modulating the immunological response
to IC/BPS.

Peng et al. [6] have established that the immunological
milieu of IC/BPS encompasses diverse innate and adaptive
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(b–f) Chemical structure depiction of the potential small-molecule drugs. (b) Azathioprine, (c) bumetanide (d) dibenzoylmethane, (e)
mercaptopurine, and (f) propylthiouracil.

23Journal of Immunology Research



immune cells. This adds to the growing body of evidence
suggesting that inflammation and immunity play a signifi-
cant role in the evolution of IC/BPS. In our research, the
ssGSEA algorithm was used to determine the number of
immune cells that had been infiltrated, with the goal of
doing an extensive evaluation of the immune cell infiltration
that occurs in individuals who have IC/BPS. Innate and
adaptive immune cell infiltration was significantly higher
in the IC/BPS samples compared to the normal control sam-
ples. Moreover, the logistical model uncovered the charac-
teristic value of infiltrating immune cells in predicting IC/
BPS. Furthermore, the majority of the gene characteristics
of IC/BPS have substantial positive correlations with the
immune cells that have invaded the tissue, suggesting that
these genes may influence immune activation as the condi-
tion of IC/BPS progresses.

As mentioned above, we found five potential small-
molecular compounds that can effectively reverse the altered
expression of the immune-related IC/BPS characteristic

genes and improve IC/BPS through AutoDock Vina soft-
ware. Among the five compounds, azathioprine is a syn-
thetic purine and has a steroid-sparing effect [38].
Dibenzoylmethane is a beta-diketone analog of curcumin
and is used in the treatment of diabetes-induced renal injury
through its anti-inflammatory and antioxidant effects [39].
Mercaptopurine is an analog of the natural purines and
has been widely used in the immunosuppressive therapy in
interstitial lung disease [40]. As an effective inhibitor of thy-
roid iodide peroxidase, propylthiouracil can catalyze the bio-
synthesis of thyroid hormone from the initial step and have
been extensively used for patients with hyperthyroidism
[41]. Nevertheless, previous reports have not performed
the effectiveness of these drugs in treating IC/BPS.

The previous study has shown that fibrosis, a typical
pathological hallmark of many chronic inflammatory ill-
nesses, plays a vital role in the course of IC/BPS, a disease
classified as a chronic inflammatory disease [42]. As a result,
developing effective therapeutics for bladder tissue fibrosis
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Figure 9: Docking diagram of potential small-molecule drugs with targets. (a) bumetanide-RASGRP1. (b) dibenzoylmethane-RASGRP1. (c)
dibenzoylmethane-RBP4.
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could be a feasible therapeutic target for IC/BPS [43].
Because bumetanide is an inhibitor of a member of the sol-
ute carrier family, it is a loop diuretic that is safe to use for
the treatment of hypervolemia and has very minimal side
effects. This finding may make its utilization in antifibrotic
therapy more feasible [44–46]. It was demonstrated in an
in vitro experiment by Zuo et al. [47] that bumetanide could
inhibit collagen biosynthesis in fibroblasts by targeting the
interaction of CRTH2 and LARP6, resulting in the treatment
of organ fibrosis, suggesting that bumetanide may alleviate
symptoms of IC/BPS patients by inhibiting bladder fibrosis.
The molecular docking method was applied to bumetanide
and the IC/BPS signature gene RASGRP1, where the low
binding free energy performed good affinity between ligand
and binding sites, suggesting that bumetanide may be a
potent inhibitor.

To further investigate the immune cell infiltration of IC/
BPS, we conducted a consensus cluster analysis of IC sam-
ples based on the immune-related IC/BPS-DEGs, dividing
all IC/BPS samples into two immunological subtypes. We
discovered that cluster2 (high immune-infiltrating subtype)
exhibits a much greater quantity of immune cell infiltration
and upregulation of ICI-related genes than cluster1 (low
immune-infiltrating subtype). In addition, the functional
enrichment analysis suggested that cluster2 has more immu-
nological activation. Consequently, our findings suggest that
the immunological subtype we suggested partly represents
the immune landscape of IC/BPS, which may provide sub-
stantial insight into the early identification and successful
treatment of these individuals. Despite the fact that our find-
ings were based solely on machine learning algorithms and
bioinformatics validation, we systematically explored the
immune landscape of IC/BPS for the first time, identified
and validated the characteristic value of immune-related
IC/BPS signature genes, selected and verified potential
small-molecule drugs, and proposed the IC/BPS immune
subtypes. Future research will use more prospective studies
to investigate the probable characteristic and therapeutic rel-
evance of immune-related IC/BPS characteristic genes and
possible small-molecule medicines.
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