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Osteopontin (OPN) regulates the immune response at multiple levels. Physiologically, it regulates the host response to infections
by driving T helper (Th) polarization and acting on both innate and adaptive immunity; pathologically, it contributes to the
development of immune-mediated and inflammatory diseases. In some cases, the mechanisms of these effects have been described,
but many aspects of the OPN function remain elusive. This is in part ascribable to the fact that OPN is a complex molecule with
several posttranslational modifications and it may act as either an immobilized protein of the extracellular matrix or a soluble
cytokine or an intracytoplasmicmolecule by binding to a wide variety of molecules including crystals of calcium phosphate, several
cell surface receptors, and intracytoplasmic molecules. This review describes the OPN structure, isoforms, and functions and its
role in regulating the crosstalk between innate and adaptive immunity in autoimmune diseases.

1. Introduction

OPN is an acidic glycoprotein that, depending on its intracellu-
lar (iOPN) or extracellular (OPN) localization, is involved in
inflammation by inducing cell adhesion and migration, reg-
ulating the differentiation of proinflammatory lymphocytes,
and inhibiting the apoptosis of inflammatory cells. It was
initially described as a bone-specific sialoprotein [1] and then
as a molecule expressed in activated T cells, consequently
being named the “early T cell activated gene” (ETA-1) [2, 3].

OPN is produced by a variety of cell types, such as B and
T cells, natural killer (NK) cells, NKT cells, macrophages,
neutrophils, dendritic cells (DC), bone cells (osteoblasts and
osteocytes), breast epithelial cells, and neurons, and high
expression is detected in the bone, lung, liver, brain, joints,
adipose tissue, and body fluids such as blood, urine, andmilk
[4–6].

1.1. OPN Gene. OPN is encoded by an 8 kb gene mapping
on chromosome 4q13 and composed of 7 exons; the first
exon is untranslated while exons 2–7 contain the coding
sequences (Figure 1). Genetic variations of the OPN gene
have been described in the 5 flanking region, exons, introns
and the 3 untranslated region (3UTR) [7–9]. Some of these
variations are associated with development and/or disease
activity of several autoimmune diseases [10–13] and some of
them influence OPN expression [14]. For instance, the four
single nucleotide polymorphisms (SNPs) +282T>C (exonVI:
rs4754), +750C>T (exon VII; rs1126616), +1083A>G (3UTR;
rs1126772), and +1239A>C (3UTR; rs9138) are associated
with three haplotypic combinations, that is, 282T-750C-
1083A-1239A (haplotype A), 282C-750T-1083A-1239C (hap-
lotype B), and 282C-750T-1083G-1239C (haplotype C), and
carriers of haplotype B and haplotype C display higher OPN
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Figure 1: Genomic, transcriptional, and protein features of OPN. The figure shows in the upper panel the genomic organization of the SPP1
gene and the relevant single nucleotide polymorphisms. OPN is transcribed with 3 splicing variants: variant a contains exons 2–7 while
variants b and c lack exons 5 and 4, respectively (middle panel). OPN transcripts have also two starting points generating a secreted or/and
intracellular form. Several posttranslational modifications are also shown (lower panel) including phosphorylation (asterisks), glycosylation,
and sulfation sites. Proteases (thrombin and matrix metalloproteinase, MMP) cleavage sites are also depicted.

serum levels and higher risk of developing several autoim-
mune diseases than haplotype A homozygotes. This effect
may be related to the higher stability of the mRNA coded by
haplotype B and haplotype C compared to that coded by hap-
lotype A [15]. Interindividual differences of OPN expression
may be also influenced by variations in the promoter region,
such as −66T>G (rs28357094) and −156G>GG (rs7687316)
SNPs, which may modulate the transcriptional activity of
the gene [15–18]. Table 1 summarizes several associations
reported between OPN SNPs and autoimmune diseases
(http://www.ncbi.nlm.nih.gov/projects/SNP/) [10, 13–16, 19–
25].

1.2. OPN Structure. The protein is composed of 314 amino
acids, rich in aspartate, glutamate, and serine residues, and
it contains functional domains for calcium binding [26].
Its molecular weight ranges from 44 to 75 kDa, depending
on alternative splicing and posttranslation modifications.
Given its composition, OPN is a highly negatively charged
protein lacking extensive secondary structure that displays
8 𝛼-helices and 6 𝛽-sheets. Besides the full-length variant,
namedOPN-a and containing all exons, two splicing variants
areOPN-b andOPN-c lacking exon 5 and exon 4, respectively
[27]. All of them use exon 2, which contains the signal

peptide, and are expected to be secreted. Another form
derives from alternative initiation of transcription, lacks the
signal peptide, and is expressed as an intracellular protein
(iOPN) (Figure 1). As both OPN and iOPN are generated
from the same mRNA, selective silencing of only one of
these isoforms is not possible. OPN deficient mice lack both
forms, while administration of OPN neutralizing antibodies
or aptamers selectively blocks only OPN [28]. Other variants
depend on several posttranslational modifications, includ-
ing phosphorylation, O-linked glycosylation, sialylation, and
tyrosine sulfation [29–34].

1.3. OPNFunctions. OPN functions as a free cytokine in body
fluids or as an immobilized extracellular matrix molecule in
mineralized tissue. Its pleiotropic effects are partly due to its
capacity to interact with multiple ligands including several
cell surface receptors, intracellular signaling molecules, cal-
cium, and heparin.

The binding sites to cell surface receptors include a
RGD (arginine–glycine–aspartate) motif interacting with
integrins 𝛼v𝛽1, 𝛼v𝛽3, 𝛼v𝛽5, 𝛼v𝛽6, 𝛼8𝛽1, and 𝛼5𝛽1 [35–37],
and a binding site for CD44, in particular for the isoform
CD44v6-v7. Moreover, thrombin cleaves OPN at a conserved
site (168RS169) and exposes a cryptic 162SVVYGLR168 motif
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Table 1: OPN gene polymorphisms associated with autoimmune diseases.

SNP rs Located Autoimmune disease References
−156 G>GG Rs7687316 Promoter MS, T1D, SLE [15, 16, 19]
−66 T>G Rs28357094 Promoter T1D, CD, SLE [10, 19, 20]
+282 T>C (8090TH)$ Rs4754 Exon VI MS, SLE, ALPS/DALD, RA, CD [10, 14, 21]
+750 C>T (+707; 9250TH)$ Rs1126616 Exon VII SLE#, PBC, MS, CD, ALPS/DALD [10, 14, 21–23, 25]
+1083 A>G (9583RD)$ Rs1126772 3UTR BD, SLE∗, MS, ALPS/DALD, CD [10, 13, 14, 16, 21, 24, 25]
+1239 A>C Rs9138 3UTR CD, TDM1, MS, SLE, ALPS/DALD [10, 13–16]
#∗A recent meta-analysis found an association only in Asian but not in European SLE patients (#) and no association with SLE patients (∗) [25].
$SNPsmay have different numbering depending on the transcript analysed and the assembly used.

interacting with the integrins 𝛼9𝛽1, 𝛼4𝛽1, and 𝛼4𝛽7 [38, 39].
The RGD and the cryptic sites are located in the N-terminal
fragment of OPN produced by thrombin cleavage (OPN-N),
whereas the CD44 binding site is located in the correspond-
ing C-terminal fragment (OPN-C).

The role ofOPN in the crosstalk between innate and adap-
tive immunity (iOPN is described later) is clearly highlighted
in the development of proinflammatory T helper (Th) type-1
and Th17 cells (Figure 2). By acting on macrophages, OPN
upregulates interleukin- (IL-) 12 production and enhances
Th1development. By acting onThcells, OPN induces produc-
tion of IL-17 by triggering𝛼v𝛽3 integrin and inhibits secretion
of IL-10 by triggeringCD44 [40]. By interactingwithCD44 in
Th cells, OPN induces hypomethylation of interferon- (IFN-)
𝛾 and IL-17a genes enhancing differentiation ofTh1 andTh17
cells. In contrast, CD44 deficiency promotes hypermethyla-
tion of IFN-𝛾 and IL-17a and hypomethylation of IL-4 gene,
leading toTh2 cell differentiation [41].

We have recently demonstrated that OPN-N and OPN-
C generated by thrombin-mediated cleavage display distinct
functions. In T cells, OPN-N promotes IL-17 secretion,
whereas OPN-C inhibits IL- 10 secretion. In monocytes,
secretion of IL-6 is induced mainly by OPN-N. In several
cell types, including vascular endothelial cells and tumor
cells, OPN-N induces migration whereas OPN-C induces
adhesion. By contrast, both fragments similarly induce IFN-𝛾
secretion in T cells and tubulogenesis in vascular endothelial
cells and inhibit activation-induced cell death in lymphocytes
[42].

Human OPN has two strong heparin-binding domains
associated with internalization signals, which suggests that
it rapidly binds to surface heparan sulfate proteoglycans to
be internalized. Interestingly, the thrombin cleavage site is
located close to one of these heparin-binding domain. Thus,
heparin binding to OPN blocks the access of thrombin and
maintains OPN in the full-length form. Furthermore, the N-
terminal of OPN is dominated by acidic, negatively charged
amino acids, whereas all of the positively charged heparin-
binding domains are on the C-terminal part [43, 44].

The biological activity of OPN can be modulated also
by cleavage mediated by several matrix metalloproteinases
(MMPs), including MMP-1, MMP-2, MMP-3, MMP-8,
MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14,
and MMP-25. These are increased in biological samples
of patients with autoimmune diseases, and the majority of
them have a detrimental role since their activity inhibit cell

adhesion and/or the migration driven by OPN [45, 46].
Human OPN contains three cleavage sites for MMPs located
between the amino acids Gly166-Leu167, Ala201-Tyr202, and
Asp210-Leu211. Interestingly, MMP-12 processes OPN into a
less-inflammatory form, or, alternatively, it generates OPN
peptides with anti-inflammatory properties [47].

Other mechanisms controlling OPN functions are post-
translational modifications, including O-linked glycosyla-
tion, sialylation, phosphorylation, and tyrosine sulfation,
which influence each other and complicate the functional
study on OPN and its variants [48]. For instance, O-
GlcNAcylation antagonizes phosphorylation in terms of
abundance, protein distribution, and activity of the protein
[49]. Moreover, reduction of sialylation may prevent OPN
from binding to cell surface receptors [31].

OPN displays substantial O-glycosylations, while the
level of N-glycosylation seems to be low. Accurate analysis of
O-glycosylation on human OPN detected multiple complex
and heterogeneous glycans and 𝛼 (2-3) sialic acids and a
novel O-glycosylation site (S146) in the SVVYGLR domain
which might regulate the interaction of OPN with integrins
[50, 51]. Additionally, steric hindrance of glycan structures
on S146 may impair the OPN cleavage mediated by MMPs.
Other O-glycosylation sites are located in the C-terminus of
OPN, which binds to CD44 andmay regulate various cellular
events, including binding interactions [52].

OPN displays 26 phosphorylation sites which may inter-
play with the O-glycosylation sites [53]. Nevertheless, one
new phosphorylation site, Y209, was detected. Interestingly,
among the identified O-glycopeptides, aa205–225, aa234–
252, and aa286–298 were also identified as phosphorylation
sites, indicating that interplay between O-glycosylation and
phosphorylation on these sites may occur in OPN.

OPN phosphorylation seems to play regulatory roles in
bone mineralization, OPN-receptor interactions, and tumor
metastasis [54].

OPN regulates bone mineralization and has diverse
effects on hydroxyapatite (HA) formation and growth
depending on the extent of phosphorylation, since phosphor-
ylated OPN can bind to Ca2+ and Mg2+ which are essential
bone components. Phosphorylated OPN from bone inhibits
hydroxyapatite mineral deposition in both cell-free systems
[55–58] and in cell cultures [59–62]. In contrast the highly
phosphorylated milk OPN promotes mineralization in solu-
tion [63]. Moreover, in OPN-KO mice, mineralization is
enhanced in bone, calcified cartilage [64], vasculature [65],
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Figure 2: OPN mediates innate-adaptive immune crosstalk. Soluble OPN (OPN) acts on macrophages upregulating interleukin- (IL-) 12
production and mediates T helper (Th) 1 development. It also acts on Th cells, inducing the production of IL-17 and inhibiting secretion of
IL-10 resulting inTh17 polarization. In conventional dendritic cell (cDC), iOPN inhibits IL-27 expression and enhances the response ofTh17
cells. In plasmacytoid DC (pDC), it enhances interferon (IFN) 𝛼 expression. iOPN has also a key role in T follicular helper (TFH) cells, since
during activation iOPN translocate into the nucleus and sustains TFH polarization. Big and empty arrows showOPN production; thin arrows
indicate OPN actions.

and kidney [66]. Bovine OPN has two thrombin cleavage
sites, thus generating three thrombin-cleaved fragments: an
N-terminal, a central, and a C-terminal fragment.These frag-
ments have distinct effects on HA formation and growth: the
central fragment is an inhibitor of HA formation, while the
C- and N-terminal fragments promote HA formation [67].

Sulphate groups of OPN have been shown to act coopera-
tively with polyaspartic acid peptides in a𝛽-sheet structure in
promoting HA formation. Accordingly, Nagata et al. showed
that sulfation of OPN is important for early formation of HA
crystals in bone, is a valuable indicator of bone formation, and
marks the osteoblastic phenotype [68].

1.4. iOPN. iOPN was initially found in rat calvarial cells
[69] showing two patterns of OPN staining: a perinuclear
staining located in the Golgi apparatus and a perimembrane
staining reminiscent of focal adhesion staining [69]. In
addition, staining was also detected in the nucleus [70]. It
was initially suggested that iOPN plays a role mainly in
innate immunity, since DCs and macrophages constitutively
express high levels of OPNmRNA but secrete relatively small
amounts of OPN. By contrast, activated T cells produce 50-
fold more OPN than macrophages [71, 72]. The function of
iOPN seems to be mainly involved in supporting signaling
through several receptors. In plasmacytoid DC (pDC), it is
involved in toll-like receptor- (TLR-) 9/TLR-7 by “anchoring”
multiple pattern-recognition receptors (PRRs) to form recep-
tor clusters. Moreover, TLR9 ligation promotes association of
iOPN and myeloid differentiation primary response gene 88
(MyD88) and enhances IFN-𝛼 expression through interferon
regulatory factor (IRF) 7 activation. In conventional DC,
iOPN inhibits IL-27 expression and enhances the response
of Th17. In macrophages, it promotes nuclear translocation
of interleukin-1 receptor-associated kinase 1 (IRAK1) and
IL-10 expression. Recent data have detected a key role of

iOPN in T follicular helper (TFH) cells, since inducible T
cell costimulator (ICOS) signaling induces iOPN interaction
with the PI3K p85𝛼 regulatory subunit, followed by translo-
cation into the nucleus and binding to B cell lymphoma-
(Bcl-) 6 (involved in TFH differentiation) protecting it
from proteasome-mediated degradation [73]. Moreover, at
perimembrane regions, iOPN colocalizes with CD44-ERM-
(ezrin-radixin-moesin-) actin complexes, and it is involved
in cell motility [74]; this activity seems to play a key role in
the osteoclast function [75, 76].

2. OPN and Autoimmune Diseases

In the past thirty years, OPN has attracted attention follow-
ing observations that high levels of OPN can be detected
in several autoimmune diseases, like systemic lupus ery-
thematosus (SLE) [77, 78], multiple sclerosis (MS) [79],
rheumatoid arthritis (RA) [80], and others [14, 81]. In line
with these observations, transgenic overexpression of OPN
in a nonautoimmune background causes accumulation of
B cells, hypergammaglobulinemia, and production of anti-
DNA antibodies, which is typical of SLE [82]. Moreover,
OPN deficient mice are relatively protected against MS [83],
RA [84], type 1 diabetes mellitus (T1DM) [85], autoimmune
uveitis [86], autoimmune hepatitis [87, 88], intestinal bowel
disease (IBD) [89], and Sjögren’s syndrome (SS) [90, 91].

The detrimental activity of OPN in autoimmune diseases
may involve its ability to promote secretion of IL-17 and IFN-
𝛾 in T cells and IL-6 in monocytes, to promote lymphocyte
adhesion and migration, to inhibit activation-induced cell
death that is involved in the switching off the immune
response and to support TFH differentiation (Figure 2).

Genetic investigations, including genome-wide associa-
tion studies (GWAS), have identified numerous, replicable,



Journal of Immunology Research 5

genetic associations between common SNPs and susceptibil-
ity to autoimmune disease, some of which are shared between
two or more diseases [92, 93]. Along with epidemiological
and clinical evidence, this suggests that some genetic risk
factors may be clustered into groups and influence entire
pathways to create risk to multiple diseases [94]. Unexpect-
edly, no GWAS identified OPN SNPs as associated to any
autoimmunedisease.Nevertheless, GWASapproach has been
enriched and complemented by genome-wide expression
profiling, in ex vivo innate (NK and monocytes) or adaptive
immune cells (CD4+ T cells, B cells) [92]. Interestingly,
genome-wide differential analysis in SLE identified distinct
inflammatory pathways involved, including OPN [95].

In this part of the manuscript, we will review the data on
SLE, MS, and RA, which display a huge literature related to
OPN. They are also mediated by distinct immunopathologic
features, since SLE is mainly mediated by antibodies and MS
byT cells, whereas RAdamage involves bone erosions. Recent
advances in other autoimmune diseases are also discussed at
the end.

2.1. Systemic Lupus Erythematosus. SLE is a complex autoim-
mune disease characterized by production of autoantibodies
(autoAbs) against nuclear, cytoplasmic, and cell surface
molecules that transcend organ-specific boundaries. Tissue
deposition of antibodies or immune complexes induces
inflammation and subsequent injury of multiple organs and
finally results in clinical manifestations of SLE, including
glomerulonephritis, dermatitis, thrombosis, vasculitis, and
arthritis [96, 97].

The first evidence of a relationship between OPN and
SLE was reported in MRLlpr/lpr mice, developing a disease
partly resembling SLE [98]. MRLlpr/lpr mice were found to
carry a loss-of-function mutation of the FAS gene, which
was followed by identification of the corresponding human
disease, which was named autoimmune lymphoproliferative
syndrome (ALPS). MRLlpr/lpr mice and ALPS patients are
characterized by accumulation of polyclonal lymphocytes
in the secondary lymphoid organs, expansion of a peculiar
subset of T cells expressing TCR𝛼𝛽 but not CD4 or CD8
(named double negative T cells) and autoimmune mani-
festations. MRLlpr/lpr mice, but not ALPS patients, produce
anti-DNA autoAbs and develop vasculitis, arthritis, and
glomerulonephritis causing fatal renal failure [99–101]. In
both MRLlpr/lpr mice and ALPS patients, the disease is due to
decreased function of the proapoptotic FAS receptor involved
in switching off the immune response. Most ALPS patients
carry an inherited or somatic loss-of-function mutation of
FAS. RareALPS patients carrymutations of FASLG coding for
FAS-ligand, or CASP10 coding for caspase 10 involved in FAS
signaling; a mutation of FASLG is carried also by MRLgld/gld

mice showing a disease similar to that displayed byMRLlpr/lpr
mice. However, a substantial proportion of ALPS patients
display a defective function of FAS in the absence of known
mutations, which is a pattern shown also by patients with
Dianzani autoimmune lymphoproliferative disease (DALD)
displaying lymphoproliferation and autoimmune manifesta-
tions but lacking DN T cell expansion [102, 103].

In mice, CD4− CD8− T cells expressed high levels of
OPN. Overexpression of OPN in MRLlpr/lpr mice induces B
cell activation and IgG and IgM production, elevated autoan-
tibodies levels (including autoAbs to double-stranded (ds)
DNA), and increased cytokine expression (TNF-𝛼, IFN-𝛾,
and IL-1𝛽) [12, 82, 97]. In MRLlpr/lpr mice, OPN upregulation
begins at the onset of the autoimmune response andpositively
correlates with the symptom severity [86], which is also
influenced by allelic differences in OPN gene [12, 104], since
development of glomerulonephritis is favored by the OPN
variant carried by MRL strain but not by the one carried by
the C3H strain. These allelic variants correlate with different
levels of antibody production, tumor necrosis factor- (TNF-)
𝛼, IL-1𝛽 and IFN-𝛾 expression, and macrophage activation
[12]. Similar findings are reported for patients with ALPS
or DALD, who show increased levels of serum OPN and an
increased risk of developing the diseases in subjects carrying
the OPN haplotype B or haplotype C causing production
of high levels of OPN. We proposed that high levels of
OPNmay contribute to the disease by inhibiting lymphocyte
apoptosis, worsening the defect due to defective FAS function
[14]. In particular, OPN directly inhibits activation-induced
lymphocyte apoptosis and promotes secretion of TIMP1 [105]
and IL-17 [106], which, in turn, inhibit both Fas-induced and
activation-induced lymphocyte apoptosis.

Increased levels of OPN have been reported also in the
sera and plasma of SLE patients [16, 84, 107], and their use has
been suggested in monitoring SLE severity [107]. In line with
these observations, a prospectic study suggested that high
plasma levels of OPNmay be predictors of poor outcome and
are associated with the presence of autoAbs anti-ds-DNA and
elevated IFN-𝛼 levels in the serum [108].Moreover, highOPN
levels in the serum and glomeruli are associated with renal
damage, possibly mediated by the OPN’s ability to support
secretion of Th1 and Th17 proinflammatory cytokines and
inflammatory cell migration and activation [107, 109, 110].

Recently a meta-analysis revealed that the OPN level
was significantly higher in SLE patients and particularly in
those with renal disease [25]. Moreover, it showed a trend
of positive correlation between OPN levels and the systemic
lupus erythematosus disease activity index (SLEDAI) [25].
The relationship between OPN and SLE has been confirmed
by genetic studies showing correlations between OPN poly-
morphisms and development of SLE and suggesting thatOPN
may participate in a complex network of gene-gene and gene-
environment interactions accounting for the SLE clinical
heterogeneity. In line with this view, OPN polymorphisms
have been correlated with specific clinical features of the
disease, such as thrombocytopenia and hemolytic anemia,
renal disease and opportunistic infections, lymphadenopathy,
and high serum levels of IgE. Moreover, a correlation has
been found with high serum levels of IFN-𝛼, which is a
key cytokine in SLE pathogenesis [16, 20, 22, 111, 112]. Some
studies have detected a predominant influence of some poly-
morphisms on SLE development in males, who account for
about 10% of SLE patients, which suggests that theOPN effect
may be highlighted in the absence of strong SLE-promoting
factors acting on females [113]. However, other reports have
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detected the same polymorphism as SLE-promoting factors
in females and particularly in the young ones [16, 111], which
may be ascribed to OPN’s role in long bone remodeling
during adolescence [114]. Other studies investigated OPN
9250C/T (rs1126616) polymorphism as SLE susceptibility
variants, in associationwithOPN levels and clinical outcome.
Authors found that the frequency of TT genotypes was higher
in SLE patients with nephritis compared to controls, suggest-
ing that theCTandTTgenotypes could be risk factors for SLE
[115]. Recently, Lee and Song conducted a meta-analysis on
the role of OPN in SLE. They found that elevated OPN levels
positively correlated with SLE activity and demonstrated
a significant association between OPN 1239C/A, 9250C/T
polymorphisms, and SLE susceptibility [25].

Interestingly, OPN in kidneys may also be secreted by
senescent myofibroblasts and drive glomerular fibrosis [116].
OPN is required for myofibroblasts differentiation, and it
regulates themolecules involved in tissue fibrosis. High levels
of glomerular OPN are associated with macrophage accumu-
lation and progressive renal injury in an antiglomerular base-
ment membrane (GBM) glomerulonephritis (GN) model
[116, 117]. OPN may modulate also angiotensin-II- (AII-)
induced inflammation, oxidative stress, and fibrosis of the
kidney [118]. Moreover, studies showed a localization of OPN
at the origin of the fibrotic lesion in Bowman’s capsule and
the OPN deposition colocalized to the fibrotic lesion [116].

OPN also has an important function in vascular inflam-
mation. It acts through modulation of the proliferation,
migration, and accumulation of smoothmuscle and endothe-
lial cells [116, 119]. Under injury conditions, OPN plays a reg-
ulating role in arterial mineral deposition and in atheroscle-
rotic lesions. OPN levels are high in human atheroscle-
rotic lesions, and in lesions of ApoE−/− mice, a model of
atherosclerosis and aneurysm formation especially associated
with macrophage and foam cells [120]. In vivo the function
of OPN in atherosclerotic plaque formation has been proven
by backcrossing ApoE−/− mice with OPN−/− mice. Double
knockout mice highlighted the role of OPN in recruiting
leukocytes, inmacrophage apoptosis, and in reduction ofAII-
induced aortic aneurysm formation andMMP-2 andMMP-9
activity.These data support the idea that OPN andMMPhave
a role in regulation and vessel rupture [120].

2.2. Multiple Sclerosis. MS is a chronic inflammatory disease
of the Central Nervous System (CNS). At onset, approxi-
mately 15% of patients display a primary progressive course
(PP), whereas the others display a relapsing-remitting (RR)
course, which mostly switches to a secondary progressive
(SP) course within 10–15 years [121]. Analysis of the transcrip-
tome has identified more than 50 genes highly overexpressed
inMS lesions, and they includedOPN [122]. HighOPN levels
have been reported in the serum, plasma, and cerebrospinal
fluid (CFS) ofMSpatients and levels are higher inRRMS than
in PP and SP MS, especially during the relapses. Moreover,
OPN is expressed in reactive astrocytes andmicroglial cells in
patients with RR-MS, particularly during the relapses [123–
128]. The high OPN levels are positively correlated with the
levels of IL-17 [129, 130].

Genetic analyses have associated variations of the OPN
gene with MS [21, 131]. In this regard, we found that the
variants of the OPN gene coding for a mRNA with increased
stability (haplotype B and haplotype C) were associated
with increased risk of MS, severe disease course, and rapid
evolution of disability [132]. Furthermore, we detected a
correlation between the 156G>GG SNP in theOPN promoter
region and timing of disability progression and switch to the
SP form [15, 132]. In Japanese patients, an OPN SNP (i.e.,
9583A>G) has been associated with age of onset of disease
[21]. However, other studies have not found associations
between OPN variants and MS development or course [131].

Experimental autoimmune encephalomyelitis (EAE), the
animal model of MS, is mediated by myelin specific autore-
active Th1 and Th17 cells. OPN deficient mice develop an
attenuated form of EAE with a single relapse and lack of
exacerbations or progression [79]. From the immunological
point of view, they show a shift toward aTh2 cytokine profile,
a reduction of proinflammatory cytokines, such as IFN-𝛾, and
TNF-𝛼, and increased numbers of apoptotic immune cells in
the CNS lesions.Moreover, daily treatment with recombinant
OPN worsened EAE in OPN+/+ mice and the effect was even
more striking in OPN deficient mice. These results suggest
that OPN influences the disease course not only by support-
ing expression of proinflammatory cytokines, but also by
inhibiting apoptosis of autoreactive immune [133]. Treatment
with IFN-𝛽 suppressed the production of IL-17 and OPN,
through activation of signal transducer and activator of
transcription (STAT)1 and suppression of STAT3 activity, and
decreased spinal cord infiltration of cells secreting OPN and
IL- 17 [130].

Proteomic studies performedonMS lesions have detected
the expression of severalmolecules of the coagulation cascade
and administration of coagulation inhibitors, such as hirudin,
decreased disease severity, and suppressed production ofTh1
and Th17 type cytokines [79, 133, 134]. These effects may
involve OPN, since thrombin cleavage unmasks the OPN
cryptic domain interacting with 𝛼4𝛽1 integrin. This plays a
key role in the recruitment of autoimmune T cells in MS
lesions and is targeted by natalizumab, a humanized mono-
clonal antibody active in the treatment of RRMS [135].More-
over, 𝛼4𝛽1-OPN interaction prevents nuclear translocation of
the transcription factor forkhead boxO3A (FOXO3A), block-
ing transcription of proapoptotic genes such as Bim, Bcl-
2 homologous antagonist killer (Bak), and Bcl-2-associated
X protein (Bax), and promotes degradation of Ik-B with
activation of NF-kB and upregulation of antiapoptotic genes
andTh1 andTh17 cytokines [136].

A modulatory effect on OPN activity may also be exerted
by OPN cleavage byMMPs whose levels are increased in sev-
eral autoimmune diseases [45]. In line with this view, MMP-
12-deficient mice develop more severe EAE than wild type
mice, and this effect disappears in OPN/MMP-12 double-
deficient mice [46, 47].

It has been reported that, after spinal cord injury, OPN
is expressed by microglia and correlated with cell infiltration.
OPNplays amajor role in attracting inflammatory cells to the
injury site [137] and, for a long time,most authors highlighted



Journal of Immunology Research 7

the role of OPN in exacerbating tissue damage after spinal
cord injury. By contrast, Hashimoto et al. observed that the
expression of Bcl-2, TNF-𝛼, IL-1𝛽, and IL-6 is downregulated
inOPNknockout spinal cord after spinal cord injury thatmay
result from a deficiency of OPN’s proinflammatory activity
[138]. Lower cytokine expression is accompanied by reduc-
tion of the number and activity of microglia/macrophages.
Moreover, KO mice showed lower Basso Mouse Scale (BMS)
scores than in wild type mice. These findings suggest that
OPN is beneficial for recovery from spinal cord injury and
plays a neuroprotective role during inflammatory response
to spinal cord injury. This is also supported by research
showing an upregulation of OPN, secreted by astrocytes and
microglial cells, during the demyelination and remyelination,
at the site of spinal cord injury [139]. A stroke model, too, in
which focal cerebral ischemia is induced by photothrombosis,
has shown a neuroprotective and regenerative function of
OPN, especially when it is cleaved by thrombin [140].

2.3. Rheumatoid Arthritis. RA is a chronic, disabling autoim-
mune disease characterized by an inflammatory attack of the
joint space, leading to the invasive growth of the synovial
tissue and progressive destruction of the articular cartilage
and bone [141]. RA patients have a shortened life span,
and they suffer cardiovascular diseases caused by accelerated
atherosclerosis which are a common cause of death in these
patients. In the diseased joints, several cytokines are highly
expressed, including OPN together with IL-1 and TNF-𝛼
[142].

The first evidence of a relationship between OPN and
RA was provided in OPN−/− mice that are protected from
joint destruction in collagen-antibody-induced arthritis, an
RA animal model (CAIA) [84]. High levels of OPN have
been reported in the plasma and synovial fluid of RA patients
[143] and have been associated with clinical severity indexes
[144]. Furthermore, OPNmRNA is highly expressed in CD4+
synovial T cells and correlates with coexpression of selected
OPN receptors, including 𝛼v and 𝛽1 integrin chains and
CD44 [145]. Moreover, OPN plasma levels decrease after
treatment with biologics or immunosuppressive drugs [145].

The effects of OPN on bone resorption are mainly
ascribed to the interaction with CD44 and 𝛼v𝛽3 integrin
expressed by osteoclasts in the site of bone erosion [146].
However, other receptors may also be involved, since block-
ing 𝛼v𝛽3 integrin by means of anti-𝛽3 antibodies or other
specific antagonists, such as SB273005 or cyclic RGD pep-
tides, inhibits bone resorption only partly in animal models
of RA [147].

Integrins 𝛼4 and 𝛽9 chains are expressed in arthritic
joints and mAbs against the cryptic domain of OPN ame-
liorate collagen-induced arthritis by decreasing infiltration
of inflammatory cells, proliferation of synovium, and devel-
opment of bone erosions [148]. In line with a role of the
cryptic domain, high levels of thrombin, OPN-N, and OPN-
C have been detected in the synovial fluid of patients
with RA. The levels of OPN-C and OPN-N correlate with
the disease’s severity, and the thrombin inhibitor hirudin
ameliorates collagen-induced arthritis [149]. Moreover, the
activity of OPN-N may be inhibited by thrombin-activatable

carboxypeptidase B (CPB), which cleaves the C-terminal
arginine from the cryptic site [150]. Interestingly, RA synovio-
cytes express a modified form of OPN, forming a complex
with fibronectin and thus exposing the cryptic domain that
promotes secretion of IL-6 in B cells [151].

In RA, OPN may play a crucial role by promoting differ-
entiation of Th17 and Th1 cells, whose levels are elevated in
rheumatoid synovium and correlate with several parameters
of inflammation in RA patients [152]. Genetic studies did
not detect univocal associations of OPN variants with RA.
Some studies did not find any association between OPN
polymorphisms and susceptibility to RA nor any correlation
between OPN levels and OPN genetic polymorphisms [153,
154]. By contrast, an Italian study associated a SNP in theOPN
promoter region (−156G>GG) with RA susceptibility [155].
These differences may be ascribed to the different influence
of other concurrent genetic or environmental factors in the
different populations of patients.

A recent prospective study, conducted in biologic-naı̈ve
patients with RA, pointed out that low OPN serum levels at
baseline predict clinical remission one year after initiating
tocilizumab treatment but not infliximab treatment [156].

OPN is also a crucial regulator involved in osteoarthritis
(OA) progression [157]. OA is the most common form of
arthritis, which mainly affects older people. OPN is highly
expressed in the joints of OA patients, and its levels correlate
with the severity of joint lesion and inflammatory status in
the OA patients [158]. Abnormal mechanical load to chon-
drocytes alters the composition and metabolism of articular
cartilage [159], which induces the release of OPN, and the
enhanced level of OPN in cartilage leads to the induction
of MMP-13 [160]. MMP-13 is thought to be involved in
the degradation of cartilage matrix components of type II
collagen and the release of proteoglycan from cartilage tissue
that promotes the development of OA [161]. Elevated levels of
OPN in cartilage also activate the transcription factor NF-𝜅B
pathway involved in the production of many inflammatory
factors, including chemokines and cytokines (e.g., IL-1, IL-
6, IL-8, CXCL1, and CCL2) in cartilage, which leads to the
spontaneous production of nitric oxide (NO), prostaglandin
E2 (PGE2), IL-1𝛽, IL-6, and IL-8.The overproduction of these
cytokines and mediators exerts injurious effects on chondro-
cyte functions which lead to an imbalance of cartilage home-
ostasis resulting in progressive articular degeneration [162].

2.4. Other Autoimmune Diseases

2.4.1. Type 1 DiabetesMellitus (T1DM). In T1DM, the autoim-
mune process is marked by the presence of antiglutamic
acid decarboxylase (GAD), anti-islet cell, or anti-insulin
antibodies, but the disease is mainly due to cell-mediated
destruction of insulin-producing pancreatic 𝛽-cells [163].
This destruction is preceded by insulitis, a massive invasion
of the islets by a mixed population of lymphocytes and
macrophages. OPNmay play a role in this inflammation since
serum levels are increased in T1DM compared to controls
and in diabetic patients correlated with high systolic and
diastolic blood pressure, body mass index, low high density
lipoprotein, diagnosis of retinopathy, and microalbuminuria
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[164, 165]. High OPN concentrations are associated with
an unfavorable metabolic profile in these patients and are
strong predictors of incipient diabetic nephropathy [164, 166].
SNPs analysis of the OPN gene showed that +1239C carriers
displayed a significantly higher risk of T1DM than +1239A
homozygotes [13]. Another SNP that can have a susceptibility
role in T1DM development is located in the position 66.
The G allele had significantly higher frequency in controls
than T1DM patients. Interestingly, case-control comparison
in males showed no significant association, whereas the
association was confirmed in females [19]. Intriguingly, a
screening of random peptide libraries with sera of young T1D
patients detected an epitope of humanOPNas an autoantigen
expressed in the somatostatin cells of human islets [167].

2.4.2. Sjögren’s Syndrome (SS). SS is an autoimmune disease
characterized by lymphocyte infiltration of exocrine glands
but can also involve the lungs, kidneys, and nervous system.
Moreover, patients with SS are predisposed to develop non-
Hodgkin’s B cell lymphoma at a substantially higher rate
than the general population. Recent studies suggested a role
for OPN in SS pathogenesis [168, 169] since OPN levels are
increased in the serumand salivary glands of patients with SS.
Transgenicmice expressing OPN under the immunoglobulin
enhancer/SV40 promoter spontaneously develop SS and dis-
play increasedOPN levels both in the salivary glands and sys-
temically. In tissues, OPN colocalizes with the inflammatory
infiltration and is associated with reduced saliva production
and increased autoantibody levels. These data have been
confirmed in both the serum and submandibular salivary
gland tissue using the well-characterized NOD/ShiLtJ mice,
developing spontaneous SS disease in a highly predictable
time frame [170]. SinceOPN transgenicmice showed elevated
OPN levels especially in B cell, B cell derived OPN has been
speculated to play a role in SS development [90], even if a role
may be played also by T cell derived OPN, and iOPN in TFH
cells [73].

2.4.3. Inflammatory BowelDiseases (IBD). IBDs are immune-
mediated diseases typically resulting from abnormal mucosal
T cell response to commensal bacteria in intestine and involve
chronic intestinal inflammation, mucosal damage, and
epithelial barrier dysfunction. Plasma concentration of OPN
is elevated in patients with ulcerative colitis (UC) and corre-
late with clinical activity [81].Moreover, Crohn’s disease (CD)
patients show elevated OPN expression in the terminal ileum
and elevated plasmaOPN levels correlatewith disease activity
[171–175]. In particular, in patients with active disease, the
plasma OPN levels were increased compared with the quies-
cent disease and reduced after infliximab treatment. Genetic
studies also found association of OPN haplotypes with CD
susceptibility, and the combined effects of certain OPN vari-
ants may modulate IL-22 secretion [10]. However, preclinical
studies showed that, in the acute phase of colitis, OPN-KO
mice showedmore extensive colonic ulcerations andmucosal
destruction than wild type mice and the clinical pheno-
type was ameliorated by delivery of OPN. By contrast, in
chronic dextran sulfate sodium- (DSS-) induced colitis, in
which a Th1 response of the lamina propria infiltrates played

a pivotal role, OPN-KO mice were protected from mucosal
inflammation and produced less serum levels of IL-12 than
wild type mice. Furthermore, neutralization of OPN was
therapeutic in these mice. These data suggest a dual function
of OPN in intestinal inflammation: during acute inflamma-
tion it activates innate immunity, reducing tissue damage and
initiating mucosal repair; during chronic inflammation, it
activates adaptiveTh1 response, reducing inflammation [176].

2.5. Targeting OPN in Autoimmune Diseases. Patients with
with RA or OA spontaneously produce anti-OPN autoAbs,
and their serum levels are inversely correlatedwithmarkers of
disease activity [177]. These data are in line with a large body
of data showing that autoAbs against inflammatory cytokines
can be detected in several inflammatory diseases and suggest-
ing that they are a physiological mechanism to counteract the
pathological effects of these cytokines [178]. In line with this
model, induction of EAE promotes the production of anti-
OPN autoAbs, and remission occurs when their titers peak.
Furthermore, DNA vaccination with a plasmid encoding
OPN before EAE induction boosts the production of these
autoAbs and ameliorates the course of the disease [179]. In
MS,we found increased levels of anti-OPNautoAbs in RRMS
patients especially in the early phases of the disease and dur-
ing the remission phase. Moreover, high levels of anti-OPN
autoAbs at diagnosis correlate with relented development of
disability in the RR MS patients treated with immunomodu-
lating therapy.

These data suggest that the use of antagonists of OPN
may be effective in the treatment of autoimmune diseases.
In line with this possibility, injection of anti-OPN antibodies
ameliorates the disease in primate and mouse RA [84].These
experiments showed that this cryptic epitope is involved in
leukocytes migration, cell adhesion, cytokine production,
and progression of arthritis [180]. Moreover, in a rat model
of antiglomerular basement membrane glomerulonephritis,
induced by immunizing mice with the nephritogenic T cell
epitope pCol(28–40) derived from 𝛼3 chain of type IV
collagen, treatment with neutralizing antibodies to OPN
inhibited development of glomerular fibrosis [117].

These results obtained in animal models have prompted
a recent study on safety, tolerability, pharmacokinetics, phar-
macodynamic, and efficacy of a monoclonal antibody against
OPN in patients with RA [180]. Patients with RAwere divided
into two random groups, that is, treated with a placebo or a
humanized IgG1monoclonal antibody (ASK8007) directed to
the cryptic site of OPN and inhibiting both RGD- and 𝛼9𝛽1
integrin-dependent cell binding to human OPN [180, 181].
Overall ASK8007 administration appeared safe and well tol-
erated up to a highest dose (20mg/kg), but it did not induce
any improvement in joint inflammation and destruction.This
can be the consequence of the clinical trial design (early time
of evaluation, low power of the study, and aggressive disease
compared to the mild preclinical one), low affinity of the
mAb for the humanOPN, or themethodology used targeting
OPN but not iOPN. To overcome this problem, silencing
OPN expression might be a good approach since mice with
collagen-induced arthritis ameliorated the inflammatory
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response and bone destruction (articular swelling and car-
tilage erosion) in the ankle joint upon inhibition of OPN
expression, by mean of lentiviral OPN short hairpin RNA
[182]. Moreover, preclinical data on experimental autoim-
mune uveitis, in which targeting of OPN has been obtained
by mean of a small interfering RNA (siRNA) [183], are
encouraging.

Results showed that plasma levels of OPN and the clinical
and histopathological scores of disease were lower in the
siRNA-treated group than that in the control group.

3. Conclusions

OPN is multifaceted protein exerting several roles in inflam-
mation, adaptive immunity, tissue repair, bone formation,
and cell signaling. These heterogeneous activities may be
ascribed to the multiple variants of OPN including those due
to transcriptional, posttranscriptional, and posttranslational
modifications.These variants may be variably involved in the
pathogenesis of different autoimmune diseases and clarifica-
tion of the role of each variants is crucial to tailor appropriate
therapeutic approaches targeting this complex molecule.
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