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In this paper, an extended version of the method of minimizing an energy gap functional for determining the optimal source points
in the method of fundamental solutions (MFS) is applied to the 3D Laplace operator subject to the Dirichlet and Neumann
boundary conditions. As we know, the MFS is a more popular meshless method for solving boundary or initial-boundary value
problems due to its simplicity and high accuracy. However, the accuracy of the MFS depends strongly on the distribution of the
source points. Finally, some of the numerical experiments are carried out to express the simplicity and effectiveness of the
presented method.

1. Introduction

In the last decades, the fixed point results have been
improved and generalized in different directions for solving
boundary value problems (see [1–5]), even the fixed point
theorems have been extended for establishing the existence
of solutions for fractional differential equations, as well as
for integral equations (see [6, 7]). These results have been
usually obtained by analytic techniques and various fixed
point theorems. The method of a fundamental solution
(MFS) is one of the meshless numerical methods, which
was first proposed by Kupradze and Aleksidze [8] in 1964.
This method approximates the solution of a boundary value
problem (BVP) by a linear combination of fundamental solu-
tions of the governing partial differential operator, provided
that the fundamental solution is known. The MFS is a very
popular boundary meshless method due to its simplicity
and high accuracy. However, this method has a serious draw-
back that the resulting algebraic equations system may be
highly ill-conditioned when the number of source points is
increased [9], or when the distances of source points are
increased [10]. The method of minimizing an energy gap
functional is an effective and efficient way to determine the

location of source points, which was first proposed by Wang
et al. in [11] for a mixed boundary value problem of 2D
Laplace equation. In this paper, we extend the same recent
method for the 3D Laplace equation with Dirichlet and Neu-
mann boundary conditions. Finally, several numerical exam-
ples are provided to illustrate the efficiency and simplicity of
the method.

This paper is organized as follows. In the next section, the
MFS for the 3D Laplace operator is described. In Section 3,
the energy gap functional is constructed and finally, in Sec-
tions 4 and 5, the numerical algorithm and some of the
numerical experiments, respectively, are carried out for pro-
posed method.

2. Statement of Problem and the MFS

Consider the mixed boundary value problem of the 3D
Laplace equation in spherical coordinates:

Δu r, θ, φð Þ = 0, inΩ, ð1Þ

u ρ, θ, φð Þ = f θ, φð Þ, onΓD, ð2Þ
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∂u
∂n

ρ, θ, φð Þ = g θ, φð Þ, onΓN , ð3Þ

where Ω ⊂ℝ3 is a bounded simply connected domain with
the boundary ∂Ω = ΓD ∪ ΓN :

ΓD = r = ρ θ, φð Þ, 0 ≤ θ ≤ απ, 0 ≤ φ ≤ πf g, ΓN

= r = ρ θ, φð Þ, απ < θ < 2π, 0 ≤ φ ≤ πf g: ð4Þ

The function ρðθ, φÞ is used to describe the boundary
shape, the constant α ∈ ð0, 2Þ is given, and n is the outward
unit normal at ∂Ω.

In the MFS, the numerical solution of u at the field point
z = rðcos ðθÞ sin ðφÞ, sin ðθÞ sin ðφÞ, cos ðφÞÞ can be
expressed as a linear combination of the fundamental solu-
tions Uðz, sjÞ:

u zð Þ = 〠
ns

j=1
cjU z, sj

� �
, ð5Þ

where the source points

sj = Rj cos θj
� �

sin φj

� �
, sin θj

� �
sin φj

� �
, cos φj

� �� �
, 1 ≤ j ≤ ns

ð6Þ

uniformly located on the complementary set Ωc with

Rj =D + ρ θj, φj

� �
, 1 ≤ j ≤ ns, ð7Þ

and D is an unknown offset to be determined such that the
error of the numerical solution obtained by the MFS is
minimized.

The fundamental solution Uðz, sjÞ of 3D Laplace equa-
tion (1) is given by [12]

U z, sj
� �

= 1
4πr j

, r j = z − sj
�� ��: ð8Þ

By collecting nc points

zi = ρ θi, φið Þ cos θið Þ sin φið Þ, sin θið Þ sin φið Þ, cos φið Þð Þ, 1 ≤ i ≤ nc

ð9Þ

uniformly located on the boundary ∂Ω and satisfying the
boundary conditions (2) and (3) and considering (5), a linear
equation system can be achieved to determine the coefficients
cj.

3. Energy Gap Functional

To determine the optimal source points, we have the follow-
ing result which is an extension of Theorem 1 in [11] to 3D
Laplace operator.

Theorem 1. The energy gap functional with respect to the
mixed BVP (1)-(3) is given by

G =∬
ΓD

un ρ θ, φð Þ, θ, φð Þf θ, φð Þdσ

+∬
ΓN

u ρ θ, φð Þ, θ, φð Þg θ, φð Þdσ

−∭
Ω

∥∇u r, θ, φð Þ∥2ds = 0,

ð10Þ

where dσ = ∣ð∂r/∂θÞ × ð∂r/∂φÞ ∣ dθdφ and ds = ρ2 sin ðφÞdρ
dθdφ.

Proof.Multiplying both sides of Eq. (1) by u and integrating it
over domain Ω, we can derive

∭
Ω

uΔuds = 0, ð11Þ

which can be rewritten as

∭
Ω

∇· u∇uð Þ−∥∇u∥2� �
ds = 0: ð12Þ

Applying the Gaussian divergence theorem [13] on Eq.
(12) yields that

∭
Ω

∥∇u∥2ds =∬
∂Ω

u∇uð Þ · ndσ, ð13Þ

where dσ = ∣ð∂r/∂θÞ × ð∂r/∂φÞ ∣ dθdφ, and n is the outward
unit normal at ∂Ω = ΓD ∪ ΓN . Finally, by using the boundary
conditions (2) and (3) in Eq. (13), the energy gap functional
(10) can be derived, and the proof is completed.

The numerical solution u of the problem (1)-(3) in MFS
usually does not satisfy the energy gap in Eq. (10), i.e., G ≠
0. Then, we attempt to minimize the energy gap G by finding
the optimal value of D, i.e.,

min
D∈ D1,D2½ �

Gj j, ð14Þ

where ½D1,D1� is an interval of which we attempt to seek the
optimal value of D.

4. A Numerical Algorithm

Suppose that M is the number of subintervals of ½D1,D2�
which we attempt to minimize the energy gap functional ∣G
∣ in Eq. (10). Moreover, nc and ns are the number of colloca-
tion and source points, respectively. For L = 0, 1,⋯,M, we
do the following steps:

(I) Let

DL =D1 + L
D2 −D1

M
ð15Þ
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and compute

sj = DL + ρ θ j, φj

� �� �
cos θj

� �
sin

�
� φj

� �
, sin θj

� �
sin φj

� �
, cos φj

� ��
,

U zi, sj
� �

= 1
4π xci − xsj

� �2
+ yci − ysj
� �2

	

+ zci − zsj
� �2


−1/2
1 ≤ i ≤ nc, 1 ≤ j ≤ ns,

ð16Þ

where zi = ðxci , yci , zci Þ and sj = ðxsj, ysj, zsjÞ are, respec-
tively, the collocation and source points uniformly
disturbed on ∂Ω and ∂D with

∂D = DL + ρ θ, φð Þð Þ cos θð Þ sin φð Þ, sinðf
� θð Þ sin φð Þ, cos φð ÞÞ, 0 ≤ θ < 2π, 0 ≤ φ ≤ πg

ð17Þ

(II) Inserting the collocation and source points zi, sj into
Eq. (5) and enforcing it to satisfy the boundary con-
ditions (2) and (3), the following linear equations
system can be derived

Ac = b, ð18Þ

where c = ðc1, c2,⋯, cnsÞ
T , and the nc × ns matrix A is

in general ill-conditioned

The conjugate gradient method (CGM) can be used to
solve the overdetermined system (18) as follows:

(III) Let

R0 =
1
ns

〠
ns

k=1
〠
nc

j=1
a2jk

( )1/2

, ð19Þ

where ajk is the jkth component of the coefficient
matrix A

Compute
s : ,kð Þ = R0

N : ,kð Þ , ð20Þ

where Nð: ,kÞ denotes the norm of the kth column of matrix
A and let

B = AP, ð21Þ

where P = diag ðsÞ denotes the diagonal matrix with compo-
nents s1, s2,⋯, sns . Then, the following overdetermined alge-
braic system with well-conditioned coefficient matrix B can
be derived:

Bc1 = b, ð22Þ

where the all of rows or columns of matrix B have the same
norm R0.

(IV) Let

D = BTB, b1 = BTb ð23Þ

Then, the following linear equation system with the pos-
itive definite matrix D can be obtained:

Dc1 = b1: ð24Þ

(V) Solve c1 from system (24) by the CGM and denote
it by c1L and let cL = s:c1L, where s is a column
matrix s = ðs1, s2,⋯, snsÞ

T , and }:} denotes the
inner product

(VI) Compute ∣G ∣ by inserting Eq. (5) for u into Eq.
(10)

(VII) Consider the criterion of stopping and if it is
achieved, then D =DL is the optimal offset and
inserting D and c = cL, the optimal solution u can
be obtained

5. Numerical Experiments

In this section, we give two examples of mixed boundary
value problems to check the effectiveness of the presented
method. The implementation of the algorithm is based on
the MATLAB software. We denote the analytical and
numerical solutions by uana and unum, respectively. Define
the maximum error (ME) and the root-mean-square-error
(RMSE) as follows:

ME uð Þ =max uana xlð Þ − unum xlð Þj j, l = 1, 2,⋯, nc,

RMSE uð Þ = 1
nc

〠
nc

l=1
uana xlð Þ − unum xlð Þð Þ2

( )1/2

:
ð25Þ

In Tables 1 and 2, we list the minimum energy gap ∣G ∣ ,
ME, and RMSE for different values of nc with ns = 50. The
curves of errors ME and RMSE and also, the optimal value

Table 1: Comparing the accuracy with different nc for Example 2.

nc ME RMSE Minimum energy gap

50 9:2605 × 10−3 4:237 × 10−3 1:477 × 10−2

200 8:1481 × 10−4 2:5906 × 10−4 1:6706 × 10−3

450 7:3568 × 10−4 2:1993 × 10−4 1:6488 × 10−3

Table 2: Comparing the accuracy with different nc for Example 3.

nc ME RMSE Minimum of energy gap

50 1:3657 × 10−3 5:0442 × 10−4 1:634 × 10−3

200 4:5631 × 10−4 1:5347 × 10−4 3:159 × 10−4

450 3:0346 × 10−4 1:0369 × 10−4 1:864 × 10−4
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Dopt in ½D1,D2�, from the minimization problem (14) with G

given by Eq. (10) are given in Figures 1 and 2 to show the accu-
racy and efficiency of the proposed method.

Example 2. Consider the mixed boundary value problem (1)-
(3) on the unit sphere

Ω = r, θ, φð Þ ; 0 < r < 1, 0 ≤ θ < 2π, 0 ≤ φ ≤ πf g, ð26Þ

with

ΓD = 1, θ, φð Þ ; 0 ≤ θ ≤ π, 0 ≤ φ ≤ πf g,

ΓN = 1, θ, φð Þ ; π < θ < 2π, 0 ≤ φ ≤ πf g: ð27Þ

The exact solution is given by uðx1, x2, x3Þ = 1/2ðx21 + x22Þ
− x23. Here, ½D1,D2� = ½10, 15� is an interval we attempt to
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Figure 1: Determining the optimal offset in the MFS by minimizing the energy gap for Example 2.
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Figure 2: Determining the optimal offset in the MFS by minimizing the energy gap for Example 3.
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search the optimal value ofD, of whichDopt = 13 is obtained as
shown in Figure 1.

Example 3. Consider the mixed boundary value problem (1)-
(3) on the bumpy sphere

Ω = r, θ, φð Þ ; r = ρ 1 + 1
6 sin φð Þ

� �
, 0 ≤ ρ < 1, 0 ≤ θ < 2π, 0 ≤ φ ≤ π

	 

,

ð28Þ

with

ΓD = x ∈ ∂Ω ; 0 ≤ θ xð Þ ≤ π, 0 ≤ φ xð Þ ≤ πf g,

ΓN = x ∈ ∂Ω ; π < θ xð Þ < 2π, 0 ≤ φ xð Þ ≤ πf g: ð29Þ

The exact solution is given by uðx1, x2, x3Þ = x1x2 + x1x3
+ x2x3. The optimal value of D in ½D1,D2� = ½1, 5� which is
Dopt = 3:4 as shown in Figure 2.

6. Conclusion

In this study, the mixed boundary value problem, which con-
sists of determining the optimal source points in MFS, has
been investigated by minimizing an energy gap functional
for 3D Laplace operator subject to the Dirichlet and Neu-
mann boundary conditions. The method was first proposed
by Wang et al. in [11] for a mixed boundary value problem
involving the 2D Laplace equation, and we extended it for
the 3D case. Inserting the collocation and source points in
MFS and enforcing the boundary conditions yield to a system
of linear equations with general ill-conditioned coefficient
matrix which can be solved by one of the regularization
methods such as the conjugate gradient method (CGM).
Finally, the obtained numerical solutions via the MFS can
be placed in an energy gap functional until its minimum
value is obtained for the appropriate source points. Two
examples for the unit spherical and the bumpy spherical
boundaries have been considered. The numerical results
show that minimizing of an energy gap functional is a
simple and efficient method for determining source points
in the MFS.
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