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,e interest in the therapeutic use of probiotic microorganisms has been increased during the last decade although the doubts
have ascended about the probiotics mainly because their beneficial effects are not fully understood, and, in many cases, their
usefulness has not been validated in clinical trials. Consequently, the notion got a considerable interest in those strains having
proven probiotic potential to be engineered for improvement in their beneficial features. ,e process of genetic engineering can
also be used for probiotic strains for the reversion of antimicrobial resistance and other modifications for their safer and effective
human applications.,e lactic acid bacilli are predominantly opposite as they already have gained attention owing to their health-
promoting benefits and their safety for human consumption; therefore, their use, especially as a delivery agent of vaccines and
drugs, is gaining attention. ,e tailoring of probiotic strains will not only improve the data regarding the probiotic potential of
these strains but also clinch the doubts concerning these probiotics. ,is article focuses on the approaches of bioengineered
probiotics and discusses the potential prospects for their therapeutic applications including immunomodulation, cognitive health,
and anticancer therapeutics.

1. Introduction

Probiotic is a Greek word; “pro” means “in favor’ and
“biotic” means “life.” Probiotics are living microbes har-
boring useful properties for the host largely through the
balancing of intestinal microbiota [1–3]. ,e therapeutic use
of probiotics has found to be helpful for both humans and
animals for prophylaxis and therapeutic purposes. Although
the intake of beneficial microorganisms by human beings for
health, food, and nutrition is practiced from centuries,
however, the precise requirement of probiotics bacteria for

the provision of positive health effects may vary from strain
to strain; the 106 live bacteria per gram or milliliter of the
food product is the lowest level that is considered sufficient
[4]. ,ere are numerous potential benefits of probiotics, for
example, metabolic modulation, inhibition of colonization
of opportunistic pathogens in the intestine, lactose in-tol-
erance reduction, and maintenance of a balance of gut
microflora. Conversely, lactic acid bacilli are responsible for
spoilage of processed meats which results in considerable
financial losses for the food-producing companies [5] as well
as responsible for infections including endocarditis,
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bacteremia, and others in susceptible patients [6]. Some
enterococci were found to harbor virulence factors including
adhesins, invasins, and hemolysins as well as antibiotic-
resistant determinants [7–9].

Although the host responses to the infectious microbes
are thoroughly studied, the major concern is to explore safe
and novel therapies using the beneficial microorganisms
[10–13]. ,e production of novel bioengineered probiotics
can be accomplished through genetic modifications which
will not only enhance the efficacy of conventional probiotics
but also lessen the pathogenic potential of these strains.
Moreover, these strains can be used for a few additional
applications such as a vaccine or drug delivery, mimicking
surface receptors, targeting specific toxins or pathogens, and
enhancement of host immune responses [14]. ,e genetic
engineering of formerly nonprobiotic strains to get probiotic
characteristics and the enhancement of probiotic properties
of established probiotic strains are the ongoing approaches
to design and develop new genetically modified probiotics
[15, 16].

Although the probiotics were primarily used for the
improvement of human health, the formulations of a few
well-characterized strains such as Bifidobacteria and lactic
acid bacteria (LAB) are also available nowadays for human
use to lower the risk of gastrointestinal infections. Further, a
strong relationship is suggested between the probiotics and
the immune-modulatory responses in humans [17]. To
design the novel probiotics with desired features, a detailed
study of the limitations of conventional probiotics is nec-
essary [18, 19]. ,e various aspects of genetically modified
(GM) probiotics have now got considerable acceptance
especially related to their potential to fill the present gaps in
their spectrum of activity as a probiotic. ,erefore, it is
anticipated that the careful design of GM probiotics with
complete attention to their biological safety has the signif-
icant potential to transform the microbial-based therapeu-
tics. In the present study, we have described the current
status and limitations of the conventional probiotics and the
need of the engineered probiotic strains. Moreover, the
utility of designer probiotics as therapeutic agents for the
treatment of various noncommunicable diseases as well as
infectious diseases through the production of antimicrobial
peptides has been discussed. Further, the safety concerns and
regulatory issues of the genetically modified probiotic strain
in the clinical settings are also described.

2. Conventional Probiotics and
Their Limitations

Gastrointestinal tract (GIT) microflora differs among in-
dividuals and contains both pathogenic and friendly bacteria
existing in a symbiotic relation. Several factors such as diet,
aging climate, medication, lifestyle, and stress can disturb
the balance situation between microbial species and can lead
to illnesses [20]. Although probiotics have numerous ben-
efits in GIT conditions, there are certain limitations as well.
,e antimicrobial substances that are released by probiotics
have a broad range, but the studies have shown that the
antibacterial activity of probiotics is limited to particular

microbes [21, 22]. So the combination of several probiotic
strains should be produced to augment the effects against
pathogens within the intestine [23]. Most probiotics are
administered as capsules or as a food component; therefore,
they should have the ability to resist both gastrointestinal
and technological stress. A wide range of activities and the
differences between the different probiotic strains are also
considered as a barrier in their efficacy [24]. Besides, the
precise constituents of probiotic formulations, dosage, and
the route of administration may vary, and their probiotic
potential can differ in certain hosts [25].

,e main concern for most probiotics is the survival of
probiotic strains in the food products during their exposure
to low pH following fermentation, oxygen concentration
during refrigeration process, and storage and their viability
during their stay in the human stomach due to the acidic
environment. ,is survival and viability of probiotics are
strain-specific; therefore, the microencapsulation proce-
dures have been effectively used for the protection of bac-
terial cells from the damages induced by their external
environment [26, 27]. Further, the challenges include the
sensory acceptance of probiotic-based foods although the
studies have described the likelihood of obtaining compa-
rable or even better results with probiotic-based products
compared with the conventional products. Moreover, the
further challenges include inoculum size, the evaluation of
viable counts of particular probiotic species especially when
multiple strains are used, the origin and diversity of pro-
biotics, and survival as well as interaction with the endog-
enous microflora and provision of health benefits to the host
[17]. ,e limitations of conventional probiotics emphasize
the need to develop a new strategy to produce GM probiotic
strains [28].

3. Mechanism of Action of Probiotics

Establishment of host-microbial relationships is imperative
for the host health and the disturbances of such interactions
in the GIT may lead to numerous pathological conditions
[29, 30]. To maintain such microbial balance within the GI
tract, the probiotics need to competitively inhibit the ad-
herence of pathogens to GI tract epithelium as well as to
synthesize or produce new novel antimicrobial substances.
Probiotics have been shown to confer direct inhibitory ef-
fects on pathogens by producing substances like bacteriocins
and acids [30]. ,e antimicrobial molecules derived from
probiotics exert their useful effects either alone or syner-
gistically to control the growth of pathogens. Moreover, the
probiotic strains such as lactobacilli are well recognized for
producing lactic, acetic, and propionic acids that decrease
the pH, therefore inhibiting a vast range of pathogenic
particularly Gram-negative bacteria [31, 32]. Further, the
probiotics inhibit the toxin release as well as inhibit the
adhesion of pathogenic bacteria within the GI tract. Bifi-
dobacteria and lactobacilli strains are capable of competing
with pathogenic microorganisms, including Bacteroides
vulgatus, Clostridium histolyticum, Listeria monocytogenes,
Yersinia enterocolitica, Staphylococcus aureus,
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enterotoxigenic E. coli, and Salmonella enterica in the gut
epithelium before any probiotic treatment [33, 34].

,e integrity of the intestinal barrier is a precondition for
an effective mucosal function to maximize the absorption
capacity and maintaining the defensive potential against the
microbial and chemical challenges. It is suggested that the
disruption of intestinal barrier integrity is generally ac-
companied by various GIT disorders including intestinal
infections, necrotizing enterocolitis, and inflammatory
bowel diseases. However, most of the studies support the fact
that probiotics are very helpful in restoration of the gut
barrier functions even after damage occurs, e.g., probiotic
strain E. coliNissle 1917 stimulates the function of junctional
barrier after disruption induced by the enteropathogenic
strain of E. coli in the T84 gut epithelial cell lines [35].
Probiotic microbes are ingested by microfold (M) cells to
communicate with follicle-associated gut epithelial cells and
dendritic cells that eventually initiate the responsesmediated
by T cells, B cells, and macrophages [36]. Another immu-
nomodulatory mechanism regulated by probiotics is the
activation of Toll-like receptors (TLRs). ,e other mecha-
nisms include the restoration of mucosal surfaces and en-
trapment of pathogens by stimulating the mucus
production. Further, specific probiotics can regulate both
local and systemic immune responses [37]. ,e overall ef-
fects of probiotics on the intestinal functions are described in
Figure 1.

4. Desired Features for Probiotics

,e initial choice of probiotic strain for genetic modifica-
tions includes analysis of the following essential criteria:
genotype and phenotype stability together with the stability
of plasmids, protein or carbohydrate utilization patterns,
bile or acid tolerance, growth as well as survival, antibiotic
resistance patterns, intestinal epithelial adhesion charac-
teristics, production of antimicrobials, ability to impede
known pathogens, and immunogenicity [38]. Furthermore,
a probiotic is additionally looked for the following features:
gastric acid resistance, resistance to pancreatic enzymes
(PE), colonization capacity, adherence to intestinal mucosal
cells, and ability to produce substances against pathogens
[39]. Probiotic encapsulation technology (PET) has emerged
as an exciting field during the past decade that tends to
stabilize the bacterial cells, therefore enhancing the viability
during the production as well as storage. Further, this
technology ensures the controlled and effective delivery of
the bacterial strains to the gut with greater viability and
protection in the acidic environment of the stomach. Hence,
probiotics may exert better health benefits to the host in their
viable state [40].

It is often recommended that the origin of the probiotics
used for a human should be a human source, although some
of the strains which are generally not confined to human
sources can also be considered to be very effective, for ex-
ample, Bifidobacterium animalis [41]. Probiotic attributes
are not associated with the genre or species of the microbe,
but with selected strains of a particular species [42].

Classification of the probiotic strains is essential to get the
knowledge about the strain and its probiotic potential [43].

,e survival of probiotic strains greatly depends on their
location; therefore, probiotic strains need to colonize and
proliferate at their specific sites. ,e adaptation of the
probiotic strains to the host’s intestine is the key step to
handle the native microbiota and colonize a specific niche.
Moreover, the probiotic strains should be acceptable by the
immune system with no cellular or humoral immunity
against that specific probiotic strain [44].

During the selection of probiotics, the key features and
efficacy should be initially evaluated as well as a basic
preliminary characterization in addition to the strain
identity, taxonomy, and risk assessment using the stan-
dardized tests in both animal models and controlled studies
within the target host. In vitro studies are commonly con-
ducted although they are not predictive of in vivo functions.
Moreover, the technological features should also be evalu-
ated to know the capacity of strains regarding growth at a
large scale and assimilation into the end product [45]. ,e
selection criteria for probiotics are explained in Table 1.

5. Recombinant Probiotics

Although antibiotic treatment is the primary choice in the
case of microbial attack, overuse, as well as misuse of an-
tibiotics, results in the development of antimicrobial resis-
tance [46]. Antibiotic treatment can remove useful
microorganisms and results in the emergence of resistant
microbial strains [47].,is has provoked the need to develop
unique antimicrobial substances that sound riskless, envi-
ronment-friendly, and active against antibiotic-resistant
microbes [48]. In the previous decade, GM probiotics have
been produced for the mucosal delivery of prophylactic and
therapeutic including enzymes, DNA, cytokines, peptides,
and allergens [49]. Oral engineered probiotics have many
certain advantages such as stability, lower delivery cost,
delivery of substances to mucosal surfaces, and increased
shelf life.

6. Applications of GM Probiotics

6.1. GM Probiotics to Produce Antimicrobial Peptides. ,e
emergence of antibiotic resistance among bacterial patho-
gens necessitates the use of alternative strategies for the
management of infections. One of the potential alternative
strategies to control multidrug-resistant pathogens includes
the use of antimicrobial peptides (AMPs) which has been
explored as an alternative method for effective control of
multidrug-resistant (MDR) pathogens [50]. Few probiotics
are known to produce various antimicrobial peptides;
therefore, the probiotics can be used to produce and deliver
these therapeutic antimicrobial peptides for the control of a
specific pathogen within the GITof the host [14]. So far, this
technique is not much successful due to several limitations
including the high cost of production, time-consuming, and
the killing of the producing cells by their antimicrobial
proteins. Moreover, the AMPs are degraded before reaching
the target sites, i.e., intestine following the oral
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administration. In the case of systemic administration, these
AMPs are rapidly identified and eliminated by the immune
system [51]. At present, different strategies are being used to
use the probiotic strains to produce different AMPs resulting
in a combination therapy so that the probiotic strains can
offer the probiotic features accompanied by the production
of the various AMPs [50].

A Lactococcus lactis strain IL1403 was engineered to
express and secrete the AMPs with a considerable activity
against the Gram-negative bacterial pathogens, i.e., Salmo-
nella and E. coli strains. ,e AMPs such as alyteserin and
A3APO were cloned into the L. lactis for the expression of
these peptides.,e resultant recombinant L. lactis strain was
induced to secrete these peptides, and their effect on the
viability and growth of Salmonella and E. coli was tested.
Both pathogens were successfully inhibited, and the host
strain, i.e., L. lactis, remained viable that showed that this
recombinant system has the potential to be used as an al-
ternative to the antibiotics to inhibit the Gram-negative
bacterial pathogens [25, 52].

6.2. Stress Tolerance. ,e ability of the probiotic strain to
tolerate more stress was one of the important factors to

genetically modify the probiotics. Heat-shock proteins such
as “GroES” and “GroEL” have been reported to play a key
role in the persistence of bacterial species at all temperatures.
,e overexpression of these chaperones, i.e., GroES and
GroEL in Lactobacillus paracasei NFBC338 was studied. ,e
expression of such genes resulted in increased solvent re-
sistance as well as improved thermotolerance in probiotic
strains. Furthermore, the parent strain (nonadapted), stress-
adapted strain, and recombinant strain were compared for
the survival following the exposure to thermal stress. ,e
engineered probiotic strains survived about 54-fold com-
pared to the nonadopted parent strain while 10-fold as
compared with the stress-adapted strains [25].

,ree major transport mechanisms or systems have been
recognized in Listeria monocytogenes that are related to
carnitine as well as betaine uptake. ,e first transport
mechanism is named as Listerial betaine transport uptake
system (BetL), in which genes that encode glycine betaine
transporter are related to salt tolerance of Listerial species.
,e expression of the BetL system into Lactobacillus sali-
varius UCC118 probiotic strain was investigated by using
another expression system, namely, a nisin-controlled sys-
tem. It was noticed that probiotic resistance to many stresses
is increased by using the BetL expression system [53]. ,ese
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Figure 1: Role of probiotics in the amelioration of gut functions. (1) ,e probiotics could protect from pathogenic microbes in a diversified
manner. (2) ,e probiotics can secrete the antimicrobial compounds and metabolites such as lactic acid, enzymes, and bacteriocins which
can alter the pH that ultimately can inhibit the growth of pathogens. (3) ,e probiotics maintain the gut mucosal barriers, i.e., the chemical
barriers such as antimicrobial peptides (AMPs), which can inhibit the invading microorganisms, and the physical barriers including cellular
junction and the mucus layer that repel the invading microorganisms. (4) ,e alliance of microbiota with the immune system allows the
maintenance of regulatory function involved in the conservation of tolerance to safer antigens and induction of protection to the pathogens.
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studies revealed promising approaches regarding the
transfer of genes from pathogens to probiotics for the im-
provement of stress tolerance. Furthermore, scientific
evaluation is quite essential to understand the benefits of
these gene products through the study of risk-benefit
analysis [54, 55].

6.3. Anticancer 7erapeutics. ,e conventional anticancer
treatments like chemotherapy and the increasing resistance
to anticancer agents have stressed the need to switch on
searching the alternative therapeutic approaches. In this
situation, engineered probiotics can overcome these limi-
tations by precisely targeting the tumor cells. Many of the
bacterial species like clostridia, when injected either inter-
nally or externally to tumor cells, resulted in increased
replication of bacteria inside tumor microenvironment and
thus were found helpful to cope with cancers [56]. Salmo-
nella typhimurium A1-R (GM tumor-targeting variant) can
also be used as a replacement of previous strategies, namely,
clostridial delivery systems for the treatment of malignant
cancers [57]. ,e easier access to genetic manipulation
strategies offers new opportunities to establish unique
technologies both in cancer therapeutics and in cancer di-
agnosis [58, 59]. Nonpathogenic strains like E. coli Nissle
1917 can target and reproduce within the tumor cells as well
as necrotic tissues [60]. ,e overall mechanisms of colo-
nization and intratumoral relocation can be affected by the
bacterial metabolome as well as by tumormicroenvironment

[61]. ,is native tropism ability for certain cancers by mi-
croorganisms is considered as ideal for the safe delivery of
new innovative therapeutic modalities which can save the
patient from the potential side effects of drug-associated
toxicity [62]. ,e approach could also help to treat primary
as well as metastatic melanomas by using cancer colonizing
facultative and obligate anaerobes such as Shigella, E. coli,
and Clostridia strains, Bifidobacterium, Salmonella, and
certain oncolytic viruses [63, 64]. Since the mechanism of
action of certain bacteria is not yet fully described, it could be
quite easy to explore the mixture of microbes for treating
various types of cancers [46].

6.4. Cognitive Health. A newly introduced probiotic group,
i.e., psychobiotics that are able to produce neuroactive
molecules such as serotonin and gamma-aminobutyric acid
usually acts upon a gut-brain axis and is helpful for im-
proving cognitive health [65]. Approximately 100 million
nerve cells (from the gastrointestinal tract to the base of the
brain) are connected through the vagus nerve; therefore, the
signals released by intestinal microorganisms can influence
several behavioral and physiological responses by these
nerve cells. 7e in vivo and in vitro analysis proposed that
intestinal microorganisms and metabolites may affect the
development of the central nervous system (CNS) and
regulate the stress responses and neural circuitry [66]. ,e
murine model of infection has been studied for under-
standing the mechanism and immune-regulatory effects of

Table 1: Selection criteria of probiotics.

Criteria Features required Features not required References

Safety

(i) Animal or human origin (i) No reported side effects

[96]

(ii) Safe use history (ii) Antibiotic-resistant determinants

(iii) Obtained from the GIT (healthy individuals) (iii) Capable of cleaving the bile acid
salts

(iv) Precise and easy diagnostic identification based on genotypic
and phenotypic characteristics (iv) Virulence factors and toxicity

(v) No infective history

Technological
fitness

(i) High productivity and high biomass amount during culturing

(i) Sensitivity to bacteriophages [100, 101]

(ii) Genetically stable
(iii) Stability and viability of the desired probiotic features during

the preparation till the distribution of probiotic products
(iv) High rates of survival in finished products during storage (in

microaerophilic and aerobic conditions)
(v) Large-scale production

(vi) Desired sensory properties

Functionality

(i) Documented and validated health effects (i) Sensitivity to enzymes and bile
salts

[102]
(ii) Adhesion to the mucosal lining (ii) Susceptibility to low pH in the

host stomach
(iii) Competitive in terms of its interaction with intestinal

microbiota
(iii) Sensitivity to bacteriocins and
acids produced by gut microflora

(iv) Ability to grow at the target site and maintain the metabolic
properties

Physiological
conditions

(i) Immunomodulation (i) Mutagenesis

[102]

(ii) Cholesterol metabolism (ii) Carcinogenesis
(iii) Lactose metabolism

(iv) Antagonistic activity towards pathogenic microbes (e.g.,
Salmonella species, Helicobacter pylori, Clostridium difficile, and

Listeria monocytogenes)
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Lactobacillus rhamnosus JB-1 bacterium [67]. ,e evidence
strongly suggests that gut microbes can affect mental health
and therefore endorses further testing to validate the rela-
tionship between intestinal microbes and human behavior as
well as neurological disorders in near future [68, 69]. Studies
about intestinal microbiota-brain communications also
suggest that the microbial-based therapeutic approaches
may help in treating mood disorders [66]. For instance, the
LAB can decrease the level of neurotoxic substances such as
indoles, amines, and ammonia [70]. A randomized, placebo-
controlled trial has shown that cognitive reactivity to sad
mood was considerably reduced after using multispecies
probiotics for a period of 4 weeks [71].

6.5. Feminine Health. Recurring UTI (urinary tract infec-
tions) among women has entailed the importance of pre-
ventive and management strategies of UTIs. Numerous
strains of probiotics have great efficiency in the prevention of
heterosexual transmission of viral infections [46, 72].
Clinical, experimental, and epidemiological studies have
shown that normal vaginal microflora plays a protecting role
or provides defense against the acquisition of microbial
vaginosis and other sexually transmitted infections [73, 74].
However, some studies disagree with the fact that probiotic
use is helpful in preventing bacterial vaginosis, STDs
(sexually transmitted diseases), and urinary tract infections
[11, 72]. ,e genitourinary and intestinal environment are
usually best because they produce antagonists at mucosal
lining but also colonize these areas and exert very potential
homeostatic effects [46, 75]. In this regard, the development
of designer microbicides for preventing sexual transmission
of HIV-1 could be the main target to control the AIDS
epidemic worldwide [75]. It was suggested that the antiviral
peptides produced by the probiotics can provide defense
against HIV infection. HIV-gp41 hemolysin A peptide has
been engineered by using E. coli strain, namely, Nissle 1917
(EcN), which is helpful in inhibiting HIV infection. ,e
secretion and growth of these antiviral peptides indicate that
genetically modified probiotics can have anti-HIV proper-
ties [76].

6.6. ImmunomodulationandCytoprotection. ,e attenuated
pathogens have been used as vaccines although the chance
of reversion back to the virulent state exists particularly
when injected into the immunocompromised subjects.
,is problem can be addressed using GM probiotics which
can effectively carry the immunogenic substances to the
mucosal cell surface [77]. Recombinant probiotic bacterial
strains could act as an ideal vector as they are inherent to
the host’s mucosal surfaces, thus facilitating the contact
between the immune system and antigen. Furthermore,
intestinal colonization by probiotic bacteria continuously
produces immunogenic molecules to activate humoral as
well as cell-mediated immune responses [78]. Some pro-
biotic bacteria have been manipulated as vaccine delivery
agents against Streptococcus pneumonia, Salmonella
Typhimurium, and Yersinia pseudotuberculosis infection
[79, 80]. ,e live attenuated vaccines for instance against

rotavirus infection have been produced; however, they
were found less effective due to a lack of strong mucosal-
associated immune response. To stimulate a potent im-
mune response, GM probiotic strain, i.e., L. paracasei
ATCC 393 pLZ15−, was developed which significantly
decreases the viral load as well as reduces the severity of
disease within the mouse model [81]. Moreover, it was
observed that GM Lactococcus lactis NZ9000 expressing
spike-protein VP8 from the rotavirus induces the for-
mation of anti-VP8 antibodies with an increased mucosal
IgA (systemic and intestinal levels) in a mouse model of
infection [82]. Besides using the heterologous antigens, the
use of cytokines can also help in immune stimulation, for
example, the oral intake of IL-10 in the case of colitis
reduces the inflammatory symptoms. Human interferon-β
(huIFN-β) is considered as immunomodulatory and thus
causes the increased secretion of IL-10 expression; huIFN-
β secreting L. plantarum NCIMB8826 also significantly
reduces microbial colitis and inflammatory process
[83, 84].

6.7. Regulation of Virulent Gene Expression. Pathogenic
microbes regulate and control the expression of virulent
genes through a specialized phenomenon called “quorum
sensing.” Disruption of this specialized sensing pathway can
assist as a sustainable choice for disease prevention [85]. E.
coli Nissle strain producing autoinducer molecule, i.e.,
cholera autoinducer 1 (CAI-1), which was previously shown
to stop the production of virulence factors in the presence of
other signaling molecules, i.e., autoinducer 2, decreased the
expression of virulence genes as well as colonization of
Vibrio cholerae in the intestine of an infant mouse model
[86].,e in vivo studies using animal models for the study of
genetically modified probiotic strains in various clinical
conditions are summarized in Table 2.

7. Safety Concerns regarding Genetically
Modified Probiotics

One of the major concerns of GM probiotic strain and their
use in the clinical settings is their safety issues; therefore, it is
necessary to screen the bacteria for its virulent traits as well
as for their potential pathogenicity [87]. Probiotics are
universally acknowledged due to their prohealth facets.
Although many side effects like immune system hyper-
activation, mutagenesis, and undesirable metabolic activities
have also been reported, few studies also reported some
intestinal side effects and increased the stimulation of the
immune system in susceptible hosts [88]. Although the
intrinsic antibiotic resistance is a desired attribute in pro-
biotic bacteria for maintaining the microbial balance within
the intestines, however, the transmission of these resistant
genes may also cause serious threats in terms of the de-
velopment of multidrug-resistant pathogenic strains
[89, 90].

,e exclusion of antibiotic-resistant genes is very es-
sential to improve the safety of the probiotic. ,e approach
was applied for a GM probiotic strain specifically
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Lactobacilluswhich is of great importance and is widely used
in industry to produce many useful metabolites [91]. ,e use
of GM bacteria requires strict security and safety measures
[90]. Since the GM probiotics have additional genes re-
sponsible for immunomodulation and antigenicity and also
have the ability to affect the metabolic pathways, the safety
testing should be precisely carried out [92, 93]. Other
concerns about GM probiotics are related to the persistence
and proliferation of these engineered probiotics in the ex-
ternal environment [94]. ,e engineered microbes have the
potential to prevent and treat different human pathological
situations; therefore, it is necessary to develop a stringent
criterion for the evaluation of the safety of these strains both
in vitro and in vivo. ,e biological containment system can
be used for the prevention of distribution of genetic content
to other microbes. Owing to the therapeutic safety of GM
probiotics, it is indispensable to assess the risk, exposure
determination, and safety issues in preventing the pop-
ulation from the unintended event of probiotic use [95–97].

8. Regulatory Concerns for Probiotic Products

It is quite important to have a special regulatory category for
the probiotic products as the probiotics are delivered to the
end-users through foods, infant formula, dietary or nutri-
tional supplements, natural health products, and medical
foods. It is imperative to know that the existing safety re-
quirements for each product category vary with the geo-
graphical area. One of the most important facts is that the
requirements for these nutritional or dietary supplements
are different compared to conventional drugs. In case of
drugs, the premarket approval for their safety is essential;
however, for the nutritional or dietary supplements, it is still
not required; for example, the dietary supplements in the
United States even in the form of capsules or pills are not
required to fulfill the same standards as implemented for the
manufacturing and quality control testing of drugs [98]. It is

recommended that the probiotic manufacturers are ac-
countable for the assurance of the safety and suitability of
probiotic products. ,e production of probiotic products in
the United States is regulated by the Food and Drug Au-
thority (FDA) to follow the good manufacturing practices
for food and dietary supplements [99]. ,e premarket ap-
proval is not required for the dietary supplements in the
United States; consequently, the end-users or the healthcare
providers are not sure about the quality standards of the
probiotic products and the safety of the product contents.
However, the companies may opt for a third-party verifi-
cation for the finished product [98, 99].

It is a need of the hour to establish the regulatory status
of probiotics products on a global level to effectively address
the probiotic issues including safety, efficacy, claims, and
labels. ,e probiotic formulations shown to confer well-
defined health benefits to the host must be allowed to de-
scribe clearly their specific health benefits with an effective
surveillance system to monitor and evaluate the adverse
events associated with these probiotic formulations and to
monitor their long-term health benefits. Moreover, the
prospects of GM probiotics targeting specific clinical con-
ditions require a stringent safety policy to avert the spread of
the strains in the environment and spreading of the genetic
modifications.

9. Conclusion and Future Prospects

,e public interest in probiotic bacteria is on the upswing,
and researchers are bringing traditional therapy into
translational approaches during the 21st century. Intestinal
microbes eventually affect all the major components of
health management including drug metabolism and iden-
tification, toxicology, and establishment of innovative
therapies. ,e combined benefits of GM probiotics, in-
cluding their direct antagonistic response against pathogenic
bacteria as well as the immunomodulatory potentials against

Table 2: Example of genetically modified probiotics microorganisms for use as designer probiotics in animal models.

Disease target Microbial strain Model Outcome Reference
Cancer Bacteroides ovatus D-6 Mice Increased levels of TNF-α-specific IgG and IgM [103]

Intestinal inflammation Bacteroides ovatus V975 Mice Decreased the symptoms of DSS-induced colitis in a mice
colitis model [103]

Clearance of infectious
agents

Bacteroides acidifaciens
JCM 10556(T) Mice Increased gut IgA levels in gnotobiotic mice [104]

IBD mainly (also eczema,
asthma, and type II diabetes)

Faecalibacterium
prausnitzii Mice Colitis and other diseases were focused in mice model [105–107]

Inflammatory bowel disease Lactococcus lactis (food
grade strain) Mice

Protection of mice from T-cell transfer-induced
enterocolitis mediated by the LL-IL-27 mediated through

mucosal delivery
[108]

Oral mucositis L. lactis sAGX0085 Hamster
Improved repair of intestinal epithelial damage possibly to
occur during radiotherapy or chemotherapy-induced

mucositis in cancer patients
[93]

Inflammatory diseases Streptococcus gordonii Mice

Demonstration of full biological activity through RFVP/
IL-RA in vitro; the recombinant strain was suggested to be
suitable for selective targeting of the mucosal surface as a

delivery system

[109]

Mainly inflammatory
diseases such as IBD Lactococcus lactis Mice Medium: good evidence from IBD animal models [110]
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cancers, pathogenic bacteria, and metabolic diseases, can be
appraised. Even though the findings regarding the
recombinant bacteria and their metabolites are inconsistent,
the recombinant probiotics are foreseen as emerging ther-
apeutics. Particularly, the combined therapeutics approach
comprising of a repertoire of antimicrobial, immunomod-
ulatory, and anti-inflammatory functions of recombinant
probiotics could be helpful to cope with the infectious as well
as metabolic disorders. ,us far, most studies have docu-
mented the benefits of engineered probiotics in animal
models; however, the reports from some clinical trials in
humans are quite encouraging. Nevertheless, the key chal-
lenges for these engineered probiotics remain the same, i.e.,
the selection of probiotic strains, optimum dose, and hor-
izontal gene transfer from GM probiotics to other bacterial
species. In brief, the GM probiotics are potent and inno-
vative alternative therapeutics for the management of in-
fections and metabolic diseases. ,e engineered probiotics
may be helpful to restore the health with ease, efficiency, and
site specificity and further research should explore human
microbiota for the development of potential engineered
strains as alternative therapeutics.
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[106] K. Simonyte Sjödin, L. Vidman, P. Rydén, and C. E. West,
“Emerging evidence of the role of gut microbiota in the
development of allergic diseases,” Current Opinion in Allergy
and Clinical Immunology, vol. 16, no. 4, pp. 390–395, 2016.

[107] H. Song, Y. Yoo, J. Hwang, Y.-C. Na, and H. S. Kim,
“Faecalibacterium prausnitzii subspecies-level dysbiosis in
the human gut microbiome underlying atopic dermatitis,”
Journal of Allergy and Clinical Immunology, vol. 137, no. 3,
pp. 852–860, 2016.

[108] M. L. Hanson, J. A. Hixon,W. Li et al., “Oral delivery of IL-27
recombinant bacteria attenuates immune colitis in mice,”
Gastroenterology, vol. 146, no. 1, pp. 210.e213–221.e213, 2014.

[109] S. Ricci, G. Macchia, P. Ruggiero et al., “In vivo mucosal
delivery of bioactive human interleukin 1 receptor antagonist
produced by Streptococcus gordonii,” BMC Biotechnology,
vol. 3, no. 1, p. 15, 2003.

[110] J. P. Motta, L. G. Bermudez-Humaran, C. Deraison et al.,
“Food-grade bacteria expressing elafin protect against in-
flammation and restore colon homeostasis,” Science Trans-
lational Medicine, vol. 4, no. 158, Article ID 158ra144, 2012.

Journal of Food Quality 11


