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In the entire world, cereals and related foodstuffs are used as an important source of energy, minerals, and vitamins. Nevertheless,
their contamination with mycotoxins kept special attention due to harmful effects on human health. $e present paper was
conducted to evaluate published studies regarding the identification and characterization of mycotoxins in cereals and related
foodstuffs by liquid chromatography coupled to (tandem) mass spectrometry (LC-MS/MS) techniques. For sample preparation,
published studies based on the development of extraction and clean-up strategies including solid-phase extraction, solid-liquid
extraction, and immunoaffinity columns, as well as onmethods based onminimum clean-up (quick, easy, cheap, effective, rugged,
and safe (QuEChERS)) technology, are examined. LC-MS/MS has become the golden method for the simultaneous multi-
mycotoxin analysis, with different sample preparation approaches, due to the range of different physicochemical properties of
these toxic products. $erefore, this new strategy can be an alternative for fast, simple, and accurate determination of multiclass
mycotoxins in complex cereal samples.

1. Introduction

Most people of developed and developing countries use
cereals and cereal-based products as their primary source of
nutrients and energy [1–4]. Nevertheless, due to rich con-
tents of fat, protein, and minerals, they are providing a great
environment for fungal growth [5, 6]. Contamination of
cereals in preharvest and postharvest stages with fungi can
lead to the production of mycotoxins [7–9]. In this line,
some environmental agents such as humidity, temperature,
inadequate storage conditions, insect damage, and drought
play important roles in the level and diversity of contami-
nation by mycotoxins [10–12]. In addition, the incidence
andmycotoxins concentration in cereal-based food products
can be associated with some factors, such as physical and
chemical food characterization (pH, composition, and water
activity), production management (storage, harvesting, and

conditions of processing), and weather status (humidity and
temperature) [13–16].

$ese secondary toxic metabolites are secreted by some
important fungal genera including Aspergillus, Penicillium,
Fusarium, and Alternaria [17–22]. Naturally toxic com-
pounds with a low molecular weight and a high bio-
accumulation ability, mycotoxins, are thermally stable
[23, 24]. According to literature, among more than 400
identified secondary compounds, deoxynivalenol (DON),
ochratoxin A (OTA), zearalenone (ZEN), and aflatoxins
(AFTs) were renowned as the most studied mycotoxins and
are considered a hazard to human or animal health [25–32].

Currently, biologically modified mycotoxins, introduced
due to plant metabolism and known as “masked myco-
toxins,” have also been described such as ZEA-14-sulfate
(Z4S) and α- and β-zearalenol (α- and β-ZOL) [33–37]. $e
most common examples are 3-acetyl-deoxynivalenol (3-
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ADON) and 15-acetyl-deoxynivalenol (15- ADON) which
have been detected in Fusarium-contaminated cereals
[38–41]. Both compounds ascend from 3,15-diacetyl
deoxynivalenol [42, 43].$e occurrence of 3-ADON and 15-
ADON in cereals has been described in some studies
[44–47].

For the determination of mycotoxins in cereals and
related foodstuffs, sampling of nonhomogeneous com-
pounds and the analytical techniques are strongly important.
In this line, proper sampling techniques must be put in place
to obtain representative results. $erefore, sample selection,
sample size, and number of incremental samples must be
well recognized due to the mycotoxin heterogeneous dis-
tribution within the lots [48, 49]. Since fungal growth is
limited to certain locations in the lot and arbitrarily dis-
tributed, fungi contamination and mycotoxin production
are considered as “spot processes” [48]. According to the
Commission Regulation (EC) No. 519/2014 [50], from lots
≥50 tonnes, incremental sample number must be a mini-
mum of 100, with a total of 10 kg of aggregate samples. For
lots <50 tonnes, 3 to 100 incremental samples should be
collected, with a corresponding aggregate sample weight of 1
(minimum weight) to 10 kg. In the case of lots >500 tonnes,
the representative sample should be at least 10% of the lot.

Analysis of mycotoxin in cereals and related foodstuffs is
a decisive practice to approve food security. Several detec-
tion methods have been established, among the most
common currently used are LC-MS/MS methods. When
compared to other separation and detection techniques, LC-
MS/MS methods present very high analytical sensitivity.
Extraction procedures and suitable clean-up, providing good
recoveries and reducing matrix effects, are consequently
extremely important to analytical method development and
optimization. In this way, aqueous solvents and/or acidic
solvents are crucial for quantitative extraction of FBs or
OTA, while high organic solvents are suitable for myco-
toxins such as AFs, OTA, and ZEA [51–53]. On the other
hand, clean-up procedures towards mycotoxin analyses are
largely performed by solid-phase extraction (SPE) or
immunoaffinity columns (IAC) [54, 55]. Based on solid
samples such as cereals and related foodstuff samples, SPE
was used as a clean-up and/or concentration step following a
prior extraction procedure [56, 57]. Several SPE columns are
commercially available, with different solid phases ranging
from C18 materials (ion exchange) to more specific ad-
sorbent materials [56, 58, 59]. IAC, a method based on the
interaction between antigen and antibody, displays some
advantages, including a minimal loss of mycotoxins and a
maximal elimination of interfering substances [60–62].
Compared to SPE extraction, the utilization of IAC as a
clean-up procedure could greatly improve the specificity of
subsequent analysis [54]. Other comparable clean-up pro-
cedure includes the QuEChERS-like method, which offers
the opportunity to extend the number of analytes to be
analyzed by a less time-consuming approach [58, 63].
According to Amirahmadi et al. [64], this method involves
extraction with acetonitrile and partitioning clean-up after
the addition of a salt mixture (MgSO4 and NaCl). Re-
markably, QuEChERS is reliable with a number of

advantages, such as simplicity, minimum steps, and effec-
tiveness in cleaning-up complex samples [65].

For quantitative analysis of mycotoxin in cereal-based
food samples, chromatographic techniques showed a group
of techniques most commonly used which are highly se-
lective, sensitive, and accurate [66–69]. For mycotoxin
analysis, high-performance liquid chromatography (HPLC),
thin-layer chromatography (TLC), gas chromatography
(GC), and LC-MS/MS are commonly used chromatographic
techniques [70, 71]. HPLC-UV, HPLC-diode array (DAD),
HPLC-fluorescence detector (FLD), or mass spectrometry
(MS) detector has been used to detect AFT, OTA, DON,
ZEN, fumonisins (FUM), citrinin (CIT), and patulin (PAT).
By using Liquid chromatography techniques to mass
spectrometry (LC-MS/MS), the concurrent detection of
multiple mycotoxins in various cereals and related foodstuffs
products was established [70, 71]. TLC is cost-effective,
simple, and suitable for rapid screening of common my-
cotoxin, but the lack of automation limits its use; moreover,
GC coupled with electron capture (ECD), flame ionization
(FID), or MS detector applied for volatile mycotoxins
(trichothecenes (TCTs) and PAT) also limits its commercial
use [72, 73].

Consecutively, the present review presents an empha-
sized overview on the development, optimization, and
validation of LC-MS/MS-based methodologies towards the
analysis of mycotoxins in cereals and related products. In
addition, clean-up and extraction procedures and chro-
matographic and detection parameters, as well as the ana-
lytical method performance process, were well discussed.

2. Analytical Methods: Liquid
Chromatography-Tandem Mass
Spectrometry (LC-MS/MS)

$e basic principle of MS/MS is the selection and frag-
mentation of precursor ion and measurement of the m/z
ratio of the product ions formed [73, 74]. $ere are two
fundamentally different approaches to MS/MS: tandem
mass spectrometry in space or in time [75]. $e triple
quadrupole (QqQ) was the frequently used space instru-
ment tandem mass spectrometry in space. Equally, other
examples of tandem mass spectrometers included quad-
rupole-time-of-flight (QqToF) and Orbitrap hybrid in-
struments [76–79]. However, tandem-in-time instruments
are typically ion-trapping mass spectrometers, which
comprise 3D quadrupole ion traps (QIT) [80], linear ion
traps (LIT) [81, 82], and Fourier transform-ion cyclotron
resonance (FT-ICR) instruments [83, 84].

After extraction with acetonitrile/water, QqQ LC-MS/
MS methods were examined for the quantification of TCTs
and ZEA in cereals by using electrospray ionization (ESI)
[85] and atmospheric pressure chemical ionization (APCI)
[86, 87] interfaces.

Cavaliere et al. [88] presented their method for the
determination of 8 TCTs, three FUM, ZEA, and alpha-
zearalenol in corn samples and used ESI QqQ MS in both
polarity modes. A positive-ion mode ESI QqQ LC-MS/MS
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method for the simultaneous determination of 16 myco-
toxins on a cellulose filter was developed by Delmulle et al.
[89].

In targeted mycotoxin determination LC-MS/MS, ana-
lytical methods using a QqQ and linear ion trap (QLIT) mass
spectrometer are the most commonly used procedures [90].
$e combination of QqQ MS (QqQ/QLIT) is valuable be-
cause this instrument retains the selective reaction moni-
toring mode (SRM) [75, 91, 92]. Rapid multimethods based
on QqQ/QLIT approaches are able to analyze simulta-
neously up to 300 mycotoxins and also their metabolites or
other related food contaminants depending on the length of
the chromatographic run [92–95].

$e sustained development of mass spectrometers,
including Orbitrap-based systems as well as other instru-
ment platforms such as the QTOF, was thus driven by aims
of accelerating scan speed and increasing sensitivity
[96, 97]. $is instrument can be defined as a triple
quadrupole where the last quadrupole is substituted by an
oa-TOF or as the addition of a collision cell to a TOF
analyser and a quadrupole analyser [97]. To perform
fragmentation with higher-energy collisional dissociation
(HCD), a gas-filled quadrupole (the HCD cell) was fitted
directly after the C-trap [98]. Besides, it has been stated that
TOF and Orbitrap analyzers, with resolving power of
10,000–100,000 and 140,000–240,000 (full width at half
maximum defined at m/z), were used respectively [75].
$ese analyzers are very sensitive making easier the ana-
lytes identification giving accurate results even when we are
dealing with very low levels of analytes. Some authors have
exploited their potential in the quantitative analysis of
mycotoxins showing higher significance for Orbitrap [99].

A new generation of hybrid techniques such as the
Q-orbital ion trap (Q Exactive) instrument combines the
advantages of high-performance quadrupole selection of
precursor ions with those of high-resolution mass detection
[100, 101]. $e subsequently developed Q Exactive instru-
ment allowed precursor ion isolation on an exactive-type
mass spectrometer. For isolation of precursors, a mass fil-
tering quadrupole was utilized [101, 102]. $ereafter, for
detection, the HCD cell voltages are ramped and ions are
conveyed back into the C-trap from where they are injected
into the Orbitrap. In fact, structural information can be
obtained on compounds of interest and fragment ions can be
used for confirmation in targeted analyses [102].

Regarding identification, metabolite ions in a full scan
spectrum (MS) are subsequently isolated to generate MS/MS
spectra; data-dependent acquisition (DDA) approach is the
most common strategy [103, 104]. $ereafter, metabolite
structure is elucidated through MS/MS spectral similarity
corresponding to the standard metabolite spectral library. In
this context, Human Metabolome Database (HMDB) [105],
METLIN [106], and MassBank [107] are frequently referred
to as a spectrum-centric approach. MassBank is the first
public source of mass spectra of small chemical compounds
for life sciences (<3000Da) [107], while METLIN includes
an annotated list of known metabolite structural informa-
tion that is easily cross-correlated with its catalogue of high-
resolution Fourier transform mass spectrometry (FTMS)

spectra, MS/MS spectra, and LC/MS data [106]. Application
of DDA in analysis of mycotoxins was demonstrated in
several recent studies [108, 109]. Nevertheless, DDA suffers
from numerous limitations. For example, in one experiment,
not a limited number of ions with highest abundance de-
tected in the full MS scan are isolated and fragmented in a
product ion scan experiment [110–112]. Also, the selected
precursor ions may be derived from many adducted ions
instead of molecular ions [113, 114]. If applied to the analysis
of mycotoxin-contaminated foodstuff, these problems
would be aggravated since these metabolites habitually occur
at lower concentrations, and absolute quantification is
critical for compliance with regulatory limits [109].

Technological advances have greatly increased the
resolution, speed, and sensitivity of mass spectrometers.
$is has allowed for new types of nontargeted methods to
become more practicable, precisely data-independent
acquisition (DIA). It should be noted that the DIA ap-
proach depends on the width of the isolation window, and
many ions can be cofragmented. Consequently, the
product ion spectra are more complex compared with
targeted methods and at each segment producing one
multiplexed MS/MS spectrum derived from multiple
precursor ions [115, 116]. DIA approaches have been
established on each of the Orbitrap mass spectrometer
platforms to take benefit of their specific architectures.
Development in the area of DIA included methods such as
wide isolation window SIM scan DIA (WiSIM-DIA) on
the Orbitrap fusion mass spectrometer [117]. $is ap-
proach utilized an ultrahigh-resolution SIM scan for
quantification, complementary with classic DIA. In
proteomics, several data MS analysis methods and pro-
grams, such as DIA-Umpire [118] and Skyline [119, 120],
were used. In this line, DIA-Umpire, a comprehensive
computational workflow and open-source software for
DIA data, detects precursor and fragment chromato-
graphic features and assembles them into pseudo-MS/MS
spectra which can be identified using conventional da-
tabase searching and protein inference tools without the
need for a spectral library [119]. In the same way, Egertson
et al. [120] described the use of DIA on a Q-Exactive mass
spectrometer for the detection and quantification of
peptides in complex mixtures using the Skyline Targeted
Proteomics Environment.

$e most promising feature of DIA analysis of myco-
toxins is that the data generated is ideal for retrospective
analysis. Newly characterized mycotoxins can be identified
in archived data by high-resolution precursor mass, reten-
tion time, and multiple product ions. High-resolution MS
alone has been used to collect data that can be retrospectively
analyzed for the presence of mycotoxins [109, 120, 121]. In
this vein, Renaud et al. [109] reported the development of a
powerful LC-DIA analysis method on a Q Exactive hybrid
quadrupole-Orbitrap mass spectrometer for mycotoxin
analysis produced by Fusarium graminearum in maize. On
the contrary, Berthiller et al. [122] reported a method de-
tection limit of 0.012 g/ml for D3G in purified sample ex-
tracts, corresponding to 0.02 g/g in contaminated cereals.
$ese authors also estimated their LOD from the signal
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intensity of their standards, based on the limited ion sup-
pression they observed.$e pigment LOQ and LODwere 4.3
and 0.0005 g/kg, respectively. Good linearity for the pigment
standard curve (R2 0.999) was also observed.

In LC-MS, the majority of multimycotoxin methods
used ESI interface. In fact, positive-mode ESI is exclusively
applied to couple high-performance liquid chromatography
(HPLC) or ultrahigh-performance liquid chromatography
(UHPLC) and MS detection [73, 123–126]. $is technique
has been effectively used for the synchronized quantification
of mycotoxins with different chemical structures [54] in one
single run [89, 126]. $e LC/MS-MS technique has been
reported by many studies in multimycotoxin determination,
such as 17 different mycotoxins in barley and malt [127].

3. Current Methods Used for LC-MS/MS
Determination of Mycotoxins in Cereals and
Related Products

$e approaches include those used for screening and
quantification in both official control and research. It should
be noted that the approaches discussed mostly have been
developed for the determination of EU-regulated mycotoxins
in various food matrices to strictly respond to the EU leg-
islation [128]. Despite the interesting benefits that could
procure MS/MS as a very selective technique, its signal could
be overestimated and lost in the case of some challenging
samples leading finally to false positive results. Also, although
LC-MS is considered to be a highly sensitive analytical
technique, trace detection levels of some analytes seem im-
possible especially when compromises related to sample
preparation and LC-MS/MS conditions have to be made.
$ese methods are developed based on the QuEChERS ap-
proach [129]. $is approach was established for a very rapid
extraction and purification with regard to multipesticide
analysis. Its relevant principle relies on the partitioning of an
acetonitrile-water mixture induced by addition of inorganic
salts. In general, LC-MS/MS techniques includingQuEChERS
approach are ineffective for the AFs and OTA detection in
baby foods at the EU limits. $erefore, for these particular
metabolites, specific clean-up methods with immunoaffinity
columns (IACs) or combinations with another clean-up
technique are used [52]. $e application of immunoanalysis
for a rapid screening of mycotoxins represents an attractive
analytical method commonly used nowadays. $e main
criteria for research of such approaches include simplification
and rapidity of analysis, sensitivity improvement, and matrix
effect reduction. Immunoassays generally applied for rapid
detection of individual mycotoxins are summarized in a
review concerning immunochemical assays [52]. $e com-
mon immunomethods applied for mycotoxin detection rely
on binding of specific antibodies to a solid support (direct
competitive ELISA format) or coated antigens (indirect
competitive ELISA format). $ese formats are used in all
nonhomogenic methods: microtiter plate immunoassays and
sensors. Homorganic methods implicate the fluorescent
polarization and capillary electrophoretic immunoassays [52].

Lattanzio et al. [52] detected and quantified aflatoxins
(B1, B2, G1, and G2), ochratoxin A, fumonisins (B1, B2),
deoxynivalenol, zearalenone, T-2, and HT-2 toxins in maize.
In fact, reversed-phase liquid chromatography coupled with
electrospray ionization triple quadrupole mass spectrometry
(LC/ESI-MS/MS) was used as chromatographic mobile
phase, a linear gradient of methanol/water containing 0.5%
acetic acid and 1mM ammonium acetate. $e method
exhibited good linearity; also, matrix-coordinated calibra-
tion curves for all analytes were linear over the relevant
working range with r (coefficient of correlation) values
between 0.9980 and 0.9999 [52]. In addition, recoveries
higher than 79% were obtained for all tested mycotoxins
with relative standard deviations less than 13%. $ese au-
thors reported that method performances were quite sat-
isfactory for all tested mycotoxins at contamination levels
close to or below the relevant EU maximum permitted or
recommended levels. Limits of detection (LOD) in maize
ranged from 0.3 to 4.2 μg/kg [52]. $ese LODs are similar
with or slightly lower than those reported by other authors
using MRM detection for the analyses of the same myco-
toxins in maize or maize-based food extracts after SPE clean-
up [86, 88, 89].

On the other hand, QuEChERS procedure has been used
for the development of an LC-MS/MS assay for the deter-
mination of 17 mycotoxins in cereals for human con-
sumption and infant cereals [129]. All tested matrices gave
LOQs below the maximum levels except for AFLA B1 in
infant cereals (maximum level� 0.1 μg/kg, LOQ� 1 μg/kg).
Matrix effects were nevertheless more important in soya
(LOQ for the aflatoxins B1, B2, G1, and G2 � 2 μg/kg) and
even more in corn gluten (pet food material). Higher LOQs
were thus obtained in corn gluten (pet food ingredient) for
which no regulatory limits have been established [130].
$ese authors, also, have chosen the ESI+ mode since the
sensitivity of critical compounds with low maximum levels
(i.e., aflatoxins B1, B2, G1, and G2 and OTA) was visibly
enhanced. In contrast, an acceptable sensitivity for ZON, as
[M−H]− ion, was only obtained in the ESI-mode. At the
same time, the addition of ammonium formate to the
aqueous mobile phase clearly enhanced the sensitivity for
both type A and B TCTs detected under their ammonium
adduct [M+NH4]+, whereas formic acid in both mobile
phases increased the overall sensitivity, giving better peak
shape for the acidic compounds, i.e., FB1, FB2, and OTA
[131].

Modified QuEChERS which used acidified acetonitrile
(ACN), MgSO4, NaCl, and citrate buffer salts, combined
with dispersive solid-phase extraction (d-SPE) clean-up and
followed by LC-ESI-MS/MS method, was applied for the
determination of EU-regulated mycotoxins in several cereals
such as wheat, maize, and rice [132]. In cereals, aflatoxins,
ochratoxins, fumonisins, trichothecenes, and zearalenone
were detected and quantified. $e performance of the
method was assessed and compared to European Com-
mission (EC) Regulations, by studying the selectivity,
specificity, LOD, LOQ, linear dynamic range (LDR), matrix
effect, accuracy, precision, and uncertainty. In this context,
Fernandes et al. [132] reported a good linearity (r2> 0.9713)
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for all mycotoxins investigated, and LODs (S/N� 3) and
LOQs (S/N� 10) were below the tolerance levels of myco-
toxins set by EC. Recoveries of the extraction process, ob-
tained with different spiked concentrations, ranged from
72.9 to 120.6%, with relative standard deviations (RSD)
lower than 23.0%.

Rubert et al. [133] reported the comparison of four
different extraction techniques used in the determination of
32 mycotoxins in barley. $ese methods included
QuEChERS modification, matrix solid-phase dispersion
(MSPD: extraction MeCN/MeOH, 50/50, v/v), supported
liquid extraction (SLE: extraction MeCN/water/acetic acid,
79/20/1, v/v/v), and solid-phase extraction (SPE, previous
SLE extract). Accordingly, it has been shown that modified
QuEChERS method was faster and easier than the other
methods. Also, it enables to extract well all of the mycotoxins
(from 64.1% DON-3-G to 93.4% T-2). $ese authors vali-
dated the method according to the directive and guide on
that subject [134]. In this regard, confirmation of identity,
specificity/selectivity, linearity, lowest calibration level
(LCL), ranging between 1 and 100 μg/ kg for enniatin B
(ENB) and NIV, respectively was done. $e precision,
process efficiency, and recovery were, also, studied [135].
Remarkably, Rubert et al. [133] reported that the UHPLC-
HRMS was a robust technique for validation and routine
mycotoxin analysis. $is latter technique showed sensitivity
and selectivity to identify simultaneously 32 mycotoxins.

Rubert et al. [135] developed a method to analyze si-
multaneously 14 mycotoxins (nivalenol (NIV), deoxy-
nivalenol (DON), aflatoxin B1 (AFB1), aflatoxin B1 (AFB2),
aflatoxin G1 (AFG1), aflatoxin (AFG2), diacetoxyscirpenol
(DAS), fumonisin B1 (FB1), fumonisin B2 (FB2), ochratoxin
A (OTA), HT-2, T-2, ZEN, and beauvericin (BEA)) by LC-
MS/MS. In this study, a comparison between eight sorbents
(C18, C8, phenyl, amine-bonded phases, celite, silica, Flo-
risil®, and alumina (acidic, neutral, and basic)) using an
optimized solvent, MeCN/MeOH (50/50, v/v) 1mM am-
monium, to elute the desirable compounds, was performed.
As a result, FMs were only extracted with C18 or C8, being
the best recoveries for all mycotoxins obtained with C18
(from 72% of ZEN to 93% of deoxynivalenol (DON)) [135].
$e sensitivity was evaluated by LOD and LOQ values and
then was calculated analysing fortified flour sample. In all
these cases, LOQs were always lower than the European
maximum levels (MLs) established by EU. $e authors
commented that the precision, calculated as RSD, was be-
tween 3% and 14% for the intraday test and from 4% to 14%
for the interday test. $e recovery ranges in low and high
spiked levels were 68.8–89.6% and 72.6–87.5%, respectively,
for the intraday test and 68.7–88% and 72.8–87.6% for the
interday test at LOQ and 10 times LOQ, respectively. Similar
to matrix effects, recoveries and its repeatability were studied
in the three varieties of cereal (wheat, corn, and rice) flour by
three replicates. In all matrix tested, recoveries were satis-
factory (between 70% and 120%).

Serrano et al. [136] studied the contents of 14 myco-
toxins in samples of different cereal (rice, wheat, maize, rye,
barley, oat, spelt, and sorghum) and cereal products (snacks,
pasta, soup, biscuits, and flour) from four countries of the

Mediterranean region (Spain, Italy, Morocco, and Tunisia).
Samples were extracted with matrix solid-phase dispersion
(MSPD) and determined by liquid chromatography-tandem
mass spectrometry with a triple quadrupole mass analyser.
$e frequency of contaminated samples from Spain, Italy,
Tunisia, and Morocco was 33%, 52%, 96%, and 50%, re-
spectively. For legislated mycotoxins (AFs, FBs, DON, ZEN,
andOTA), the LOQs were lower than theMLs established by
the European Union (EC 401/2006) [137]. For fumonisins
(FBs), the levels ranged from <LOQ-184 μg/kg for FB1, and
from 121 to 176 μg/kg for FB2. $e maximum FB1 value
(184 μg/kg) was found in a wheat pasta sample from Tunisia,
and the maximum FB2 value (176 μg/kg) was found in a rice
grain sample from Morocco. $ese results were lower than
those obtained in other studies for maize, wheat, rice, and
barley products [138–140]. Recoveries of fortified cereal
samples at two spiked levels ranged between 68.7–89.6% and
72.6–87.6%; in addition, the relative standard deviations
varied from 3% to 14%. $ese values agree with EU criteria
[141]. In addition, all mycotoxins exhibited good linearity
over the working range (low concentration level at LOQ),
and the regression coefficient of calibration curves was
higher than 0.992 [136].

Otherwise, Lacina et al. [142] have performed different
extraction methods for the simultaneous analysis of 288
pesticides and 38 mycotoxins. In fact, three different ex-
tractions were carried out for wheat and other products:
aqueous acetonitrile extraction followed by a modified
QuEChERS method (method A), aqueous acetonitrile ex-
traction (method B), and pure acetonitrile extraction
(method C). In these extraction procedures, different eluent
modifiers were used for positive- and negative-mode ESI
measurements to obtain high sensitivity and very sharp
peaks. $en, it has been found that pure acetonitrile ex-
traction (method C) did not show acceptable recoveries
compared to QuEChERS approach and aqueous methanol
extraction that present satisfactory recoveries ranging from
70% to 120% with RSD less than 20% for most of the
analyte-matrix combinations. Despite the fact that
QuEChERS-like method led to lower LOQ and more co-
herent results, the recoveries were low especially for polar
analytes (DON 3-glucoside (DON-3-Glc), NIV, T2 tetraol)
due to the partitioning step. On the other hand, extraction
using QuEChERS approach was selected as the most suitable
procedure for the tested analytes [142].

Juan et al. [143] tested several solvent mixtures: MeCN/
MeOH (60/40, v/v), MeCN/MeOH (40/60, v/v), MeCN/
water (84/16, v/v), and MeCN/water (16/84, v/v) to extract
TRC and ZEN from grain cereal, flour, and bread. It has been
found that the highest recoveries and the lowest matrix
effects were shown with the MeCN/water (84/16, v/v)
mixture. Analytes were determined by LC-MS/MS and
relative recoveries obtained were higher than 70%. In this
line, the obtained recoveries ranged for wheat were 73–98%;
oat, 75–96%; barley, 73–99%; and spelt, 78–99%. In addition,
the precision (RSDs) of theses samples ranged for wheat was
2.4–11; oat, 2.8–13; barley, 2.8–15; and spelt, 2.4–12. As well,
a good linearity (r2> 0.992) was obtained and quantification
limits (2.5–25 ng/g) were below European Regulatory levels.
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Equally, sensitivity was high due to the low LOD and LOQ
[143].

By using gradient RP-LC with atmospheric pressure
chemical ionization triple quadrupole mass spectrometry
(LC-APCI-MS/MS), Berthiller et al. [86] developed a novel
method for the simultaneous determination of the Fusarium
mycotoxins. Nivalenol, deoxynivalenol, fusarenon-X, 3-
acetyl-deoxynivalenol, the sum of 3-acetyl-deoxynivalenol
and 15-acetyl-deoxynivalenol, diacetoxyscirpenol, HT-2
toxin, T-2 toxin, and zearalenone in maize have been de-
tected [86]. $e swift clean-up of maize samples was per-
formed with MycoSep® #226 columns, and the calibration
curves for all analytes are linear over the working range of
30–1000 μg/kg, respectively. Depending on the mycotoxin,
squared correlation coefficients (R2) were in the range of
0.994–0.999 and LOD ranged from 0.3 to 3.8 μg/kg.

Barthel et al. [144] analyzed fifty nine samples of barley
and barley products for 18 trichothecene mycotoxins by a
sensitive LC-MS/MS. After sample extract clean-up on
MycoSep®-226 columns, these authors confirmed that
LODs were ranged between 0.062–0.70 μg/kg. Furthermore,
the recovery was ranged between 75 and 104% for all my-
cotoxins with relative standard deviations (RSDs) between
2.1 and 17%. $e results complied with the requirements of
Commission Regulation (EC) 401/2006 [145].

Ren et al. [146] developed an analytical method for the
simultaneous quantification of 17 kinds of Aspergillus,
Fusarium, and Penicilliummycotoxin contaminants in foods
and feeds by ultrahigh-performance liquid chromatography
combined with ESI triple quadrupole tandem mass spec-
trometry (UPLC-MS/MS) under the multiple reaction
monitoring (MRM) mode and especially focused on the
optimization of extraction, clean-up. $e 10 positive ions
and 7 negative ions of mycotoxins were separated by gra-
dient elution with the retention time of 6.5 and 4min, re-
spectively. $e LOQ of selected analytes ranged from 0.01 to
0.70 μg·kg−1, which was lower than the criteria of EU, USA,
and other countries on the determination of the minimum
limiting level of various mycotoxins in foods including baby
foods and feed stuffs. In this way, Amézqueta et al. [147]
determined the OTA residue in cocoa beans by HPLC with
the LOQ value of 0.1 μg·kg−1. Meanwhile, Sugita-Konsihi
et al. [148] quantified the DON level using HPLC method
and achieved reasonable LOQ value (100 μg·kg−1). Papp et al.
[149] validated an analytical method for the determination
of AT B1, B2, G1, and G2 in corns, wheat, fish, peanut
products, rice, and sunflower seeds by HPLC with the LOD
range of 2–10 μg·kg−1. Ren et al. [146], also, reported high
correlation coefficients (r2> 0.99) of 17 mycotoxins which
were obtained within their respective linear ranges
(0.05–20 μg·kg−1 for 10 positive ions and 0.5–50 μg·kg−1 for 7
negative ions) and reasonable recoveries (70.6–119.0%) of
them were also demonstrated in different spiked levels.

In 2012, Soleimany et al. [87] developed and used a LC-
MS/MS method for simultaneous determination of afla-
toxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA),
zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB1
and FB2), T2, and HT2-toxin in cereals. One-step extraction
using solvent mixtures of acetonitrile : water : acetic acid (79 :

20 :1) without any clean-up was employed for extraction of
these mycotoxins from cereals. $e method exhibited good
linearity over the relevant working range, and R2 was be-
tween 0.950 for DON and 0.999 for AFB1. $ere was sig-
nificant difference among the LODs in the standard solution
and in matrices. LODs of mycotoxins standard solutions
were far lower than LODs in matrixes. $e LODs and LOQs
of standards and matrixes ranged between 0.01–20 ng/g and
0.02–40 ng/g, respectively, which are acceptable because they
were far below the European Regulations for correspondent
maximum levels of mycotoxins in foods. $e LODs were
lower than those reported by Sulyok et al. [53] and com-
parable to those reported by Ventura et al. [150]. Concerning
recovery values, the study by Soleimany et al. [87] showed a
range from 76.8% to 108.4% for all mycotoxins.$e recovery
results were better than those reported by Delmulle et al. [89]
(52.6–89.2%), Sulyok et al. [53] (75–108%), Spanjer et al.
[126] (46–115%), and Monbaliu et al. [151] (76–105%) for
relevant mycotoxins. RSD% for this procedure was lower
than 12.7% for all mycotoxins.

In another study, von Bargen et al. [99] described the
first application of isotopically labeled 13C2-moniliformin
for the analysis of moniliformin (MON) in cereals. $e use
of high-resolution mass spectrometry was described to be
a suitable alternative technique for the detection of this
compound. $e developed method is based on the use of
strong anion exchange columns for cleanup prior to
HPLC analysis. In fact, the recovery rate was equal to
75.3%, and the LOD and LOQ were 0.7 and 2.5 μg/kg,
respectively.

On the other hand, Sirhan et al. [152] established a new
method based on QuEChERS followed by LC-ESI-QTOF-
MS/MS to determine eight type-A and type-B trichothe-
cenes in cereal samples. $e recoveries of fortified cereal
samples ranged from 61.9% to 110.9%, and RSDs were
lower than the acceptable 12% in all the cases. $e sen-
sitivity was determined by estimating the limit of detection
(LOD) and limit of quantification (LOQ). Indeed, the
LODs of type-A and type-B trichothecenes were 6.1–8.3
and 12.5–18.7mg � kg, respectively.

Habler and Rychlik [95] developed a multimycotoxin
stable isotope dilution LC-MS/MS method for 14 fusarium
toxins. Linearity, intraday precision, interday precision, and
recoveries were ≥0.9982, 1–6%, 5–12%, and 79–117%, re-
spectively. Method accuracy was verified by analysing cer-
tified reference materials for deoxynivalenol, HT2-toxin,
and T2-toxin with deviations below 7%.$e recoveries range
between 86 and 109% for all analytes with RSDs below 7%
and between 79 and 117% for the matrix calibration with
maximal RSD of 17%.$e LODs range between 0.1 and 5 μg/
kg and the LOQs range between 0.2 and 15 μg/kg, except for
NIV and D3G, whose LODs and LOQs are 70 and 200 μg/kg
and 10 and 30 μg/kg, respectively.$e high LOD and LOQ of
NIV with 70 and 200 μg/kg, respectively, are due to the low
MS/MS sensitivity and are comparable with the limits re-
ported by Ediage et al. [153]. $e LODs and LOQs of the
ENNs and BEA using the method presented here reveal
2–100 times higher sensitivity than those previously reported
[154, 155].
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Some of the most common methods used for both
mycotoxin identification and quantification are summarized
in Table 1 in terms of chromatographic conditions (mobile
phase and gradient and analytical column), detection, and
quantification in each method for different cereal matrices.

4. Hidden Mycotoxins Characterization

Mycotoxin derivatives that are undetectable by conventional
analytical techniques are designated masked mycotoxins
[161, 162]. Chemical transformations that generate masked
mycotoxins are catalyzed by plant enzymes [38]. $e group
of masked mycotoxins comprises both extractable conju-
gated and bound (nonextractable) varieties. Bound myco-
toxins are covalently or noncovalently attached to polymeric
carbohydrate or protein matrices [38, 39]. Extractable
conjugated mycotoxins can be detected by appropriate
analytical methods when their structure is known and an-
alytical standards are available. Boundmycotoxins, however,
are not directly accessible and have to be unconventional
from the matrix by chemical or enzymatic treatment before
chemical analysis.

Among all modified mycotoxins, most occurrence data
exist for deoxynivalenol-3-β-d-glucopyranoside (D3G),
which was detected in naturally contaminated maize and
wheat for the first time in 2005 [163]. Cereal contamination
with D3G was reported to occur worldwide according to
surveys from the UK, [164], the Czech Republic [165], China
[166], and Canada [167]. Subsequent surveys showed in-
termittently high contaminations of D3G exceeding 1000 μg/
kg in naturally contaminated wheat [122]. D3G also has been
detected in oats and barley [122, 168].

D3G was noticed in wheat bread; nevertheless, the levels
were below the LOQ (100 μg/kg). Using a more sensitive
method, 80% of 116 flour, breakfast cereal, and snack
samples from the Czech market analyzed were found to be
contaminated with D3G at concentrations ranging from 5 to
72 μg/kg [164]. Interestingly, Sasanya et al. [169] reported
that some wheat samples contained significantly higher
values (up to 2.7 fold) of D3G compared to DON. $e
linearity (r2) of D3G was 0.914; recovery was 70.0%, while
LOQ and LOD were 1 and 0.5 1 g/kg, respectively [169]. On
the other hand, Berthiller et al. [162] reported a method
detection limit of 0.012 g/ml for D3G in purified sample
extracts, corresponding to 0.02 g/g in contaminated cereals.
Berthiller et al. [162] also estimated their LOD from the
signal intensity of their standards, based on the limited ion
suppression they observed. $e pigment LOQ and LOD
were 4.3 and 0.0005 g/kg, respectively. Good linearity for the
pigment standard curve (R2 0.999) was also observed [162].

Suman et al. [170] reported the development of a liquid
chromatography/linear ion trap mass spectrometry method
capable of determining D3G. Samples were extracted with a
mixture of methanol/water (80 : 20; v/v) and cleaned up
using immunoaffinity columns. Chromatographic separa-
tion was performed using a core-shell C18 column with an
aqueous acetic acid/methanol mixture as the mobile phase

under gradient conditions. $e method was in-house vali-
dated on a bread matrix as follows: matrix-matched linearity
(r2> 0.99) was recognized in the range of 10–200 μg/kg;
trueness expressed as recovery was close to 90%; good in-
termediate precision (overall RSD< 9%) and adequate LOD
and LOQ limits (4 and 11 μg/kg, respectively) were realized.
$e reliability of the method was finally demonstrated in
bread, cracker, biscuit, and minicake commodities, resulting
in relatively low levels of DON-3G, which were not higher
than 30 μg/kg [170].

Dall’Asta et al. [171] developed an LC-ESI-MS/MS
method for the simultaneous detection of the main fumo-
nisins and their hydrolyzed derivatives allowing for a
simplified sample preparation without previous clean-up.
$e method has a very low LOQ (10 μg/kg for FB1, 12 μg/kg
for FB2 and FB3, 70 μg/kg for HFB1, HFB2, and HFB3 in
maize flour) and a very good recovery for all the analytes.
$e sensitivity was good for all the considered analytes being
the LOD and LOQ values comparable with those from other
recently published LC-MS/MS methods, although those
methods required a sample purification and preconcentra-
tion step [88, 89, 172]. Bound fumonisins were found to be
present not only in thermally treated maize-based products
but also in mild processed or even raw products (pasta,
bread, cakes, crisps, and flour) and they were always present
in almost similar or even higher amounts than the free forms
[171]. Osborne fractions of maize proteins showed that
fumonisins were particularly bound to prolamins and glu-
telins [171].

Hu et al. [173] investigated free and hidden fumonisins
in raw maize and maize-based products from China. A total
of 58 samples were analyzed using LC-MS/MS. Among all
the samples, 66% were contaminated with free fumonisins
above limits of quantitation, and a higher percentage of 86%
was found for total fumonisins (free + hidden).$e response
functions for FB1, FB2, HFB1, and HFB2 showed that all the
R2 were greater than 0.99, suggesting good linearity. $e
LODs of FBs and HFBs were between 6 and 7 μg/kg, and the
LOQs were between 23 and 28 μg/kg [173]; these results
showed that the present method was about 4 times more
sensitive than that reported by Oliveira et al. [174]. In
comparison, by using isotope-labeled internal standards,
Bryła et al. [175] found LOQs of 22 μg/kg for HFBs, which
were similarly sensitive as the study of Hu et al. [173].

Andrade et al. [176] have validated multimycotoxin
method based on extraction with acidified acetonitrile and
LC-ESI+-MS/MS analysis. $e LOQs ranged from 0.5 to
121 μg/kg and proved to be suitable for the multimycotoxin
analysis in wheat, maize, and rice products. Bound/hidden
fumonisins were determined after extraction of the free
forms using the multimycotoxin method, followed by a basic
hydrolysis of the unextracted bound/hidden and solid-liquid
extraction with low temperature purification (SLE-LTP).
Recoveries for HFB1, HFB2. and HFB3 were evaluated in six
replicates fortified with the prepared standards at levels of
1.2, 1.8, and 2.5 g/kg, respectively. Recoveries were 75.6%
(RSD of 6.6%) for HFB1, 108.0% (RSD of 10.6%) for HFB2,
and 74.9% (RSD of 12.2%) for HFB3.
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Table 2 presents a well-detailed description of the ana-
lytical methodmentioned above for maskedmycotoxin from
cereals and related foodstuffs.

5. Conclusion

Cereals and related foodstuffs could be contaminated by
diverse toxin-producing fungal species that are linked to
severe and chronic toxic effects for both humans and ani-
mals. Consequently, many successful methods, such as LC-
MS/MS, have been identified in this area. LC-MS/MS
continues to play a central role in the determination of
mycotoxins in cereals and related foodstuffs unless a dras-
tically different approach to distinct complex mixtures is
advanced. In this context, smaller amounts of samples can be
processed faster than ever. To quantify free and masked
mycotoxins in cereals and related foodstuffs, separation
stayed as important as ever. $e great increases in sensitivity
and selectivity of LC-MS instruments have made a signifi-
cant contribution in qualitative and quantitative determi-
nation of mycotoxins in in cereals and related foodstuffs. In
this line, the increasing use of hybrid mass spectrometers,
incorporating mass analyzers that are capable of high mass
resolution and accurate mass measurements, mitigates some
of the problems associated with selectivity and identification,
but further technological development of LC-MS interfaces
is required to minimize matrix effects. However, main-
taining confidence in the assignment of identity and isobaric
interference are still the major limitations for LC-MS
methods used for the quantification and identification of
mycotoxins in cereals and related foodstuffs. Eventually,
interested chemists could keep continuing research and
contribute to develop and suggest new and advanced ana-
lytical techniques to ensure higher sensitivity and obtain
solutions to several issues related to mycotoxins.

Data Availability

$e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

$e authors declare no conflicts of interest.

Acknowledgments

$e Tunisian Ministry of Higher Education and Scientific
Research, Tunisia, funded this research.

References

[1] H. J. Lee and D. Ryu, “Worldwide occurrence of mycotoxins
in cereals and cereal-derived food products: public health
perspectives of their co-occurrence,” Journal of Agricultural
and Food Chemistry, vol. 65, no. 33, pp. 7034–7051, 2017.

[2] S. Mishra, K. M. Ansari, P. D. Dwivedi, H. P. Pandey, and
M. Das, “Occurrence of deoxynivalenol in cereals and ex-
posure risk assessment in Indian population,” Food Control,
vol. 30, no. 2, pp. 549–555, 2013.

[3] A. Nematollahi, M. Kamankesh, H. Hosseini, J. Ghasemi,
F. Hosseini-Esfahani, and A. Mohammadi, “Investigation
and determination of acrylamide in the main group of cereal
products using advanced microextraction method coupled
with gas chromatography-mass spectrometry,” Journal of
Cereal Science, vol. 87, pp. 157–164, 2019.

[4] A. M. Khaneghah, A. Farhadi, A. Nematollahi,
Y. Vasseghian, and Y. Fakhri, “A systematic review and
meta-analysis to investigate the concentration and preva-
lence of trichothecenes in the cereal-based food,” Trends in
Food Science & Technology, vol. 102, pp. 193–202, 2020.

[5] A. Heshmati, T. Zohrevand, A. M. Khaneghah,
A. S. Mozaffari Nejad, and A. S. Sant’Ana, “Co-occurrence of
aflatoxins and ochratoxin A in dried fruits in Iran: dietary
exposure risk assessment,” Food and Chemical Toxicology,
vol. 106, pp. 202–208, 2017.

[6] N. N. A. Kyei, D. Boakye, and S. Gabrysch, “Maternal
mycotoxin exposure and adverse pregnancy outcomes: a
systematic review,” Mycotoxin Research, vol. 36, no. 2,
pp. 243–255, 2020.

[7] S. Agriopoulou, E. Stamatelopoulou, and T. Varzakas,
“Advances in occurrence, importance, and mycotoxin
control strategies: prevention and detoxification in foods,”
Foods, vol. 9, no. 2, pp. 137–184, 2020.

[8] S. Marin, A. J. Ramos, G. Cano-Sancho, and V. Sanchis,
“Mycotoxins: occurrence, toxicology, and exposure assess-
ment,” Food and Chemical Toxicology, vol. 60, pp. 218–237,
2013.

[9] H. Kebede, H. Abbas, D. Fisher, and N. Bellaloui, “Rela-
tionship between aflatoxin contamination and physiological
responses of corn plants under drought and heat stress,”
Toxins, vol. 4, no. 11, pp. 1385–1403, 2012.

[10] H. Hussein and J. M. Brasel, “Toxicity, metabolism, and
impact of mycotoxins on humans and animals,” Toxicology,
vol. 167, no. 2, pp. 101–134, 2001.
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seventeen mycotoxins in barley and malt in the Czech Re-
public,” Food Control, vol. 47, pp. 108–113, 2015.

[128] F. Soleimany, S. Jinap, A. Faridah, and A. Khatib, “A UPLC-
MS/MS for simultaneous determination of aflatoxins,
ochratoxin A, zearalenone, DON, fumonisins, T-2 toxin and
HT-2 toxin, in cereals,” Food Control, vol. 25, no. 2,
pp. 647–653, 2012.

[129] M. I. da Costa Marinho, A. I. G. Costa, N. M. Vieira,
M. C. G. Paiva, F. C. L. de Freitas, and A. A. da Silva,
“Validation and application of a QuEChERS based method
for estimation of half-life of imidazolinone herbicides in soils

Journal of Food Quality 21



by LC-ESI-MS/MS,” Ecotoxicology and Environmental
Safety, vol. 167, pp. 212–217, 2019.

[130] A. Desmarchelier, J.-M. Oberson, P. Tella, E. Gremaud,
W. Seefelder, and P. Mottier, “Development and comparison
of two multiresidue methods for the analysis of 17 myco-
toxins in cereals by liquid chromatography electrospray
ionization tandem mass spectrometry,” Journal of Agricul-
tural and Food Chemistry, vol. 58, no. 13, pp. 7510–7519,
2010.

[131] C. Cavaliere, G. D’Ascenzo, P. Foglia, E. Pastorini,
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