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As a cost-effective and nondestructive detection method, the machine vision technology has been widely applied in the detection of
potato defects. Recently, the depth camera which supports range sensing has been used for potato surface defect detection, such as
bumps and hollows. In this study, we developed a potato automatic grading system that uses a depth imaging system as a data collector
and applies a machine learning system for potato quality grading. -e depth imaging system collects 3D potato surface thickness
distribution data and stores depth images for the training and validation of the machine learning system.-emachine learning system,
which is composed of a softmax regression model and a convolutional neural network model, can grade a potato tube into six different
quality levels based on tube appearance and size.-e experimental results indicate that the softmax regressionmodel has a high accuracy
in sample size detection, with a 94.4% success rate, but a low success rate in appearance classification (only 14.5% for the lowest group).
-e convolutional neural network model, however, achieved a high success rate not only in size classification, at 94.5%, but also in
appearance classification, at 91.6%, and the overall quality grading accuracy was 86.6%.-e quality grading based on the depth imaging
technology shows its potential and advantages in nondestructive postharvesting research, especially for 3D surface shape-related fields.

1. Introduction

Potatoes, with over 18.9 million hectares planted globally
every year, are one of the most important crops in the world
[1]. After harvest, grading based on quality is important in
classifying products into different levels, improving packing
and other postharvest operations, and allowing the farmer to
obtain higher prices. During the grading process, potatoes
are separated into different homogeneous groups according
to tube-specific characteristics such as shape, mass, color,
and deformities. Potatoes are a difficult crop to grade in the
postharvest process because of their wide diversity in shape,
deformity, and mass, and the grading process thus still relies
on experienced workers nearby the conveyor system [2].
Manual grading is a tedious, expensive, and time-consuming
process, and it is often affected by a shortage of labor during
the harvest season [3]. In addition, inconsistent sorting and

grading errors often occur during the manual grading
process because workers are easily influenced by the sur-
rounding environment [4, 5].

Machine vision, as a nondestructive measurement,
provides a high level of repeatability and accuracy at a low
cost. -erefore, it draws modern manufactures’ attention to
apply the machine vision grading system in postharvesting
work [6]. Previous research has successfully detected many
key features relating to potato quality using different types of
imaging device, such as CCD camera, hyperspectral camera,
ultraviolet camera, and X-ray CT. -e machine vision
system is already capable of predicting potato physical size,
including length, width, and mass, and can detect inner and
external defects, such as green skin, sprouts, bruises, me-
chanical injury, black heart, and water core [7–16]. In recent
years, research has begun to obtain surface data in 3D space,
using methods such as a stereo vision system and a V-shaped
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mirror system [17, 18]. Another innovative method is to
equip a range-sensing device on a machine vision system,
such as a depth camera. A depth camera senses object ap-
pearance information using time of flight (TOF) and light-
coding technologies [19–23], and it has already been applied
in motion tracking, automatic driving, indoor 3D mapping,
robot navigation, gesture control, potato 3D model re-
building, and other areas [24–32].

However, in the past, potato classification algorithms
have relied largely on the image processing technology,
which cooperates tightly with hardware, such as a specific
light source. Once the hardware environment changes, the
entire algorithm which must be upgraded is difficult to
maintain. In addition, potatoes have a variety of forms and
their growth is greatly affected by the natural environment.
-erefore, the classification accuracy of a fixed classification
algorithm changes each year. -e ideal classification algo-
rithm should be able to enlarge its knowledge database by
training with a small number of manually graded products
each year to ensure classification accuracy. Machine learning
thus shows its advantages here.

Machine learning uses computational models that ex-
hibit similar characteristics to those of the neocortex, such as
neural networks, for information representation. A com-
puter could optimize a performance criterion based on
example data or experience with proper programming [33].
A key problem in image data understanding, one of the
important application fields for machine learning, is the
discovery of effective relevant information from input data.
While the performance of conventional, handcrafted fea-
tures has plateaued recently, new developments in deep
compositional architectures have led the performance level
to improve continuously. Deep models have shown out-
standing performance in many domains compared to hand-
engineered feature representations [34, 35].

Many machine learning achievements have been reported
and widely used, such as softmax regression and the con-
volutional neural network. Softmax regression, also called
multinomial logistic regression, is as generalization of logistic
regression to cases in which multiple classes must be clas-
sified. -is model is used to predict the probabilities of the
different possible outcomes of the categorically distributed
dependent variable, given a set of independent variables
(which may be real values, binary values, category values, and
so on) [36, 37]. Softmax regression was applied as a classifier
for the MNISTdigit recognition task, in which the goal was to
distinguish between 10 different numerical digits [38].

Convolutional neural networks (CNNs), as an excellent
machine learning method, are a kind of multilayer neural
network specially used for two-dimensional data (including
images and videos) [39, 40].-ese neutral networks represent
the first truly successful deep learningmethod, in whichmany
layers of the hierarchy are trained differently and successfully
in a robust way [41]. In CNNs, a small part of the images are
regarded as inputs to the lowest layer of the hierarchical
structure and information transmits through the different
layers of the network, whereby at each layer, digital filtering is
applied in order to obtain salient features of the observed data
[42]. In addition, CNNs also provide a certain degree of

translation, scaling, and rotation invariance because the local
receiving field allows processing units to access basic features,
such as directional edges or corners [41]. Currently, CNNs
have been applied in various areas of study related to machine
learning, including face detection [43, 44], document analysis
[45, 46], speech recognition [47, 48], medical examination
[49, 50], and precision agriculture [51–53].

Since potato quality classification based on the depth
imaging technology and machine learning has merely been
reported, the overall objective of this study is to develop a
system that automatically grades potato tubers of diverse size
and appearance based on machine vision, depth image
processing, and machine learning technology. -is grading
system captures sample depth images by a depth camera
system, develops a potato depth image processing algorithm,
builds the machine learning models, and evaluates the
potato quality level automatically. In addition, the results of
two different machine learning models will be compared and
analyzed to determine whether machine learning is suitable
for potato quality classification. Overall, this method re-
quires the development of fast algorithms to analyze tube
appearance and predict the sample mass with high accuracy
but less processing time and resource consumption.

2. Materials and Methods

2.1. Potato Samples. In total, 296 potatoes (Jizhangshu no. 8)
were purchased from Beijing Qinghe Agricultural Market.
By randomly choosing potatoes with diverse masses and
appearances, the reliability of our experiment could be
ensured. All potatoes were cleaned and washed individually
to remove all clay and dirt, and they were then separated into
normal (with spherical or ellipsoidal shape) and abnormal
(including bumpy, hollow, mechanical injury, and sprout)
groups by experienced farmers. Next, according to the
Chinese Official Grades and Specifications of Potatoes [54],
the potatoes were divided into three categories based on
mass: small (<100 g), medium (∈[100 g, 300 g]), and big (≥
300 g). Six classes were thus used to grade sample quality:
Abnormal Big (AB), Abnormal Medium (AM), Abnormal
Small (AS), Normal Big (NB), Normal Medium (NM), and
Normal Small (NS).

2.2. Depth Machine Vision System. -e machine vision
system design was similar to designs used in previous re-
search [32], including six main parts: one depth camera
system (Primesense Carmine 1.09), two fluorescent lamps
(Philips, 18W, 6400K), one black box, one sample holder,
and one PC with Intel i5 CPU, Windows 10 Operating
System, and 16G RAM, as shown in Figure 1.

2.3. Camera System Setting and Depth Image Preprocessing.
-e Primesense camera senses the range using the “light-
coding” technology, and the camera resolution was set to
640∗ 480 pixels, while the frequency was 30 frames per
second [55]. -e camera was installed on a black box with
60 cm above the box bottom, and its view field was 45°
vertically and 57.5° horizontally.
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-e potato and its holder were randomly placed under
the camera within the view field, after which the color image
and depth image were captured with one shot, as shown in
Figures 2(a) and 2(b). Example images for samples with
normal and abnormal features (including bumps, hollows,
mechanical injuries, and sprouts) are shown in Figure 2. -e
gray level on each pixel indicated the surface thickness (the
distance above the ground) on the potato surface area. As
seen in Figure 2(a), some deformities were difficult to
recognize in color images because of very subtle color dif-
ferences in the deformity area and normal surface area. Even
when the defect color difference was clear, such as in the case
of a mechanical injury, the depth of the injury area still could
not be sensed. However, as shown in Figure 2(b), the gray
level in the depth image gradually decreased from center
peak to boundary in the normal potato image, whereas the
gray level increased or decreased differently around a de-
formity area in abnormal potato depth images. Image en-
hancement resulted in a group of images with a clearer
thickness distribution, as seen in Figure 2(c). -is feature
indicates that depth images display variance in object surface
information in ways that color images cannot [29].

As previous research indicated [32], images from a depth
camera could not be directly used. -e original depth image
recorded the range from potato surface to camera. To cal-
culate the potato surface thickness in the raw image, a dif-
ference between the background depth image and the original
depth image must be calculated pixel by pixel, and inside
potato area, an additional holder height must be subtracted.

-e raw image included much noise and many holes,
which were caused by the absence of a reflected beam.
-erefore, each raw potato image had to be captured three
times and an average operation should be conducted pixel by
pixel to fill holes. After that, the erosion, dilation, Gauss
smoothing, and big noise clearing operations, all part of the
depth image preprocessing module, were applied individually
to create one valid potato depth image, as shown in Figure 3.

A total of 7084 depth imageswere captured in this study, and
for each potato, depth data were extracted into one image with a
resolution of 200∗ 200 pixels usingOpenCV (http://opencv.org)
to reduce the computing time in a convolutional network.

2.4. Machine Learning Models. Two machine learning
models were developed: the softmax regression (SR) model
and a convolutional neural network (CNN) model. Both were
created by the deep learning package Keras, which runs the
Tensorflow machine learning package in the background. We
trained both models using an Adam optimizer for stochastic
optimization, and the initial learning rate and stopping were
set to 0.001 and 2, respectively. -e loss function used for
optimization was a categorical cross-entropy function.

-e training image dataset classes were defined as “AB,”
“AM,” “AS,” “NB,” “NM,” and “NS” based on each potato
manual grading label. In order to improve the performance
of the network, each image was randomly augmented in each
epoch: random yes or no horizontal and vertical flip, random
rotation 0–90°, and random horizontal and vertical shifts.
For model training, 500 epochs were included and 5691
images were randomly chosen as a training dataset. Model
prediction accuracy and loss in the validation process were
performance indices.

2.4.1. Softmax Regression Model. An SR model with two
layers was developed for potato classification, including a
fully connected layer and a classification layer, as shown in
Figure 4.

Since the input depth image was two dimensional, as x
[200][200], it had to be converted into a one-dimensional
shape x[40000] by a reshape operation to fit the model data
input format. Evidence, as a key output for correct image
class determination from the fully connected layer, was
calculated by image-weighted summation, as shown in
equation (1).Wi, j is a weight element in weight matrix W; bi
is a bias element in bias array B for potato type i; i indicates
the potato type (0-AB, 1-AM, 2-AS, 3-NB, 4-NM, and 5-NS);
and j shows the pixel index of input image x for the pixel
summation. A bias array B[b0, b1,. . . b5] and a weight matrix
W were created after model training. In addition, a rectified
linear (ReLU) activation and a dropout layer (p � 0.5) were
added after the fully connected layer to avoid the problems
of the gradient blowing up and of overfitting, respectively.

Evidencei � 􏽘
j

Wi, jxj + bi. (1)

-e classification layer included a softmax activation
function, which converts the linear function output into a
six-class probability distribution, as shown in equation (2).
-en, the probability array Y[y0, y1, ..., y5] from the clas-
sification layer indicated the correct class for input images x,
as shown in equation (3):

softmax (evidence)i �
exp evidencei( 􏼁

􏽐jexp evidencej􏼐 􏼑
, (2)

Y � softmax (evidence). (3)

2.4.2. CNNModel. Our CNN structure is shown in Figure 5.
-is network has five layers of learned weights: three con-
volutional layers, one fully connected layer, and one
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Figure 1: Machine vision system: 1, computer; 2, camera system; 3,
light source; 4, potato; 5, sample holder.
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Figure 3: Depth image preprocessing flowchart. (a) -ree enhanced potato surface depth images. (b) Potato image processing module.
(c) Enhanced potato surface depth image.

(a)

(b)

(c)

Figure 2: Image comparison for potato features. (a) Color images of normal, bump, hollow, machinery injury, and sprout potatoes.
(b) Depth images of normal, bump, hollow, machinery injury, and sprout potatoes. (c) Enhanced depth images of normal, bump,
hollow, machinery injury, and sprout potatoes.
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classification layer, with approximately 10 million trainable
parameters in total. -e CNN model was an improved SR
model with three added convolutional layers and a flatten
layer used to replace the reshape layer. ReLU activation
followed each convolutional layer. Max pooling was per-
formed with a kernel size of 2∗ 2 strides to resize input data
into half its size. After the final convolutional layer, the
network was flattened to one dimension. To avoid overfitting
this model, we included a dropout (p � 0.5) in the first fully
connected layer and the last stage of the convolutional layers.

3. Results and Discussion

Another group of 1,393 images was used for the validation.
Running the validation dataset on two models took 7 and 56
seconds, respectively, for the SR and CNN models, and
Figures 6 and 7 show the learning curves. As more epochs
were processed, it was obvious that the loss for the CNN

models for both training and validation was gradually de-
creased, whereas the prediction accuracy increased until it
stabilized at 500 epochs. However, it was a little different for
the SR model, while the trends for both loss and accuracy
were the same as in the CNN model in the first 100 epochs;
after that, the model was almost stable. Ultimately, the
validation accuracy and validation loss of the SR model were
67.2% and 0.777, respectively, after 500 epochs’ training,
while these were 86.6% and 0.304, respectively, for the CNN
model.

-e confusion matrixes for both models are shown in
Figures 8 and 9, in which the classifications in the network
were defined numerically as follows: 0-AB, 1-AM, 2-AS, 3-
NB, 4-NM, and 5-NS. It was clear that the prediction ac-
curacy of the SR model was lower than that of the CNN
model because only one fully connected layer was used in the
SR model and the potato appearance gradient change
continuity was lost when an image with two-dimensional

Reshape
40,000

Fully 
connected

256
ReLU Drop 

out

Classification
6 So�max Potato

type

Input image:
200∗200∗1

Figure 4: Softmax regression model architecture.
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Figure 5: CNN model architecture.
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data was reshaped to a one-dimensional array. As a result,
the SR model was sensitive for sample size detection (94.4%
samples could be grouped into the appropriate size group),

while it had low sensitivity for appearance recognition. -e
success rates for normal potato appearance classification
were only 18.9%, 14.5%, and 19.4% for NB, NM, and NS,
respectively, because a sample would be grouped into a
higher priority class when it had the same prediction
probability for different appearance classes (abnormal ap-
pearance labels were 0, 1, and 2 and had higher priority,
whereas normal appearance labels were 3, 4, and 5 and had
lower priority). For instance, a potato (manually marked as
NB) that has a 36% chance of being classified as either AB or
NB by the SRmodel will be classified as AB because AB has a
priority 0, which is higher than the priority of 3 for the NB
class.

With the addition of convolutional layers, the CNN
model could process the two-dimensional depth image,
extract potato features, and achieve feature mapping. -e
test result in Figure 9 indicates that the CNNmodel not only
recognized sample appearance and size but also obtained a
high success rate for the six-class classifications. In total,
94.5% of potatoes were grouped into the right size classes,
which is slightly higher than previous research [16], which
has classified the tube size based on the calculated bound-
aries from three color images. In addition, deformity in
appearance was detected in 91.6% of samples, while previous
research using image processing has achieved only 88%
detection [32]. Overall, 86.6% potatoes were classified
according the correct quality level in terms of both ap-
pearance and size features. -is is slightly lower than pre-
vious results, which achieved an 89% success rate [56], but
this could be improved by extending the training dataset in
the future.

Several hardware-related problems might explain the
CNN model grading errors: unexpected noise on the image,
missing edge area, and undetected small bumps by sprouts.
Figure 10(a) shows a normal potato with unexpected noise
on the edge area. A noise area appearing on the bottom right
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edge area increased the local average gray level sharply, and
our model thus classified this normal potato as an abnormal
one. Figures 10(b) and 10(c) illustrate one potato with a
machinery injury that lost some edge area, with the surface
gradient changing sharply; hence, this AM sample was
graded to the AS class. -is edge loss problem was also
reported in previous studies [29] and was caused by beam
loss with too large incident angle. -e potato in
Figures 10(d) and 10(e) was manually graded as AB due to
some sprouts on the surface; however, these small sprouts
(less than around 5mm) could not be detected as small
bumps on the depth image, whereas they were obviously
darker in the color image.

4. Conclusion

We propose a new potato quality grading system based on a
machine vision system and machine learning models. Depth
images, which include 3D potato appearance data, were
captured and used for quality grading by a machine vision
system and machine learning models. -e results indicate that
a machine learning model with a softmax network has a high
sensitivity for sample size detection, with 94.4% accuracy, but
at a low rate of appearance classification.-emachine learning
model with a convolutional neural network achieved a high
success rate for size and appearance classification, at 94.5% and
91.6%, respectively, and abnormal defects were successfully

detected, and potatoes were correctly grouped according to
size and quality level in 86.6% of samples. -erefore, the
advantages of this potato grading system are summarized as
follows: (1) it is a cost-effective solution. Currently, many
manufacturers sell depth camera products and the price has
decreased greatly. In addition, the depth camera can be an
independent device or can be integrated with a color camera
based on the budget and experiment requirements. (2) -e
system is less affected by ambient light. -e depth camera
includes a near-infrared light source and can work stably
around other lights, such as LEDs and fluorescent lamps. (3) It
nondestructively acquires 3D appearance data. -is system
calculates sample 3D surface shape information based on the
light-coding technology and is harmless for the tube surface.
(4) It features automatic classification based on human ex-
perience. -is system is developed and trained based on
manual classification experience, and therefore, the classifi-
cation accuracy can be promoted in the future while extending
the training dataset.

-is system can capture potato surface shape information
such as bumps, hollows, and machinery injury, but it is not
sensitive enough to detect small sprouts on the surface;
however, these defects are clear in the color images.-erefore,
a 4D model combining color and 3D shape information for
the nondestructive postharvesting of potatoes may be a po-
tential solution for small sprout detection, and this method is
also expected to increase the accuracy of deformity prediction.

(a) (b) (c)

(d) (e)

Figure 10: Mistake grading samples by the CNNmodel. (a) Unexpected noise. (b) Color image of machinery injury potato. (c) Depth image
of machinery injury potato. (d) Color image of sprout potato. (e) Depth image of sprout potato.
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