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For the identi�cation of salmon adulteration with water injection, a nondestructive identi�cation method based on hyperspectral
images was proposed.�e hyperspectral images of salmon �llets in visible and near-infrared ranges (390–1050 nm) were obtained
with a system.�e original hyperspectral data were processed through the principal-component analysis (PCA). According to the
image quality and PCA parameters, a second principal-component (PC2) image was selected as the feature image, and the
wavelengths corresponding to the local extremum values of feature image weighting coe�cients were extracted as feature
wavelengths, which were 454.9, 512.3, and 569.1 nm. On this basis, the color combined with spectra at feature wavelengths, texture
combined with spectra at feature wavelengths, and color-texture combined with spectra at feature wavelengths were in-
dependently set as the input, for the modeling of salmon adulteration identi�cation based on the self-organizing feature map
(SOM) network. �e distances between neighboring neurons and feature weights of the models were analyzed to realize the
visualization of identi�cation results. �e results showed that the SOM-based model, with texture-color combined with fusion
features of spectra at feature wavelengths as the input, was evaluated to possess the best performance and identi�cation accuracy is
as high as 96.7%.

1. Introduction

Salmon is rich in nutrition, especially unsaturated fatty
acids, which can eliminate the cholesterol and lipids in
human blood, lowering the incidence of cardiovascular
disease [1]. With the rapid development of the salmon in-
dustry, the adulteration of salmon has become a serious
concern in China. Some merchants pro�t by injecting water
into salmon to increase the weight. Because of the injection,
the taste of salmon gets worse and the microbial content in
salmon exceeds the limit of the standards, resulting in the
harm to human health [2]. For the detection of salmon
quality, arti�cial evaluation and physiochemical detection
have been applied. �e former is not objective, not quan-
titative, and not safe enough, restricting the automation and
intelligence in the food processing industry. Some tradi-
tional physical and chemical detection methods have the

advantages of simplicity and low cost, but most of these
methods are destructive, time-consuming, and highly pro-
fessional [3, 4]. For the detection of water, nuclear magnetic
resonance can obtain direct information about interactions
between hydrogen protons and exchangeable protons in
proteins and hence the chemical and physical state of water,
especially in muscle and meat [5]. However, the testing
instrument is expensive and mainly used at the laboratory
testing level in food detection. �erefore, it is necessary to
explore a fast, nondestructive, and convenient detection
technique for the identi�cation of adulterated salmon and
other foods [6].

In recent years, spectrum-based nondestructive de-
tection technologies have been developed [7], as more ef-
fective alternatives to traditional detection methods. Based
on the acquisition and analysis of spectral information, the
apparent quality and composition of samples can be better
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learned. Among these spectral technologies, hyperspectral
imaging technology can derive a large amount of imaging
information at continuous spectral wavelengths and at varied
spatial dimensions. Namely, the spectral data contain three-
dimensional information, which are spectrum and image
dimensional.0e extraction and analysis of these spectral data
at feature wavelengths have shown great advantages in the
detection of food quality [8, 9]. For the samples with different
chemical compositions and structures, the absorbance,
reflectivity, and dispersion corresponding to the feature
wavelengths are different. Especially, the samples with dif-
ferent chemical compositions show unique absorbance results
at feature wavelengths due to their functional groups [10].
Accordingly, the quantitative studies on the chemical com-
positions of samples, identification and detection of food
quality, and visualization expression of detection information
can be realized through the analysis of the images and spectral
data acquired [11]. 0e hyperspectral images contain abun-
dant data information. Each pixel in a two-dimensional image
contains spectral information at thousands of wavelengths.
0e hyperspectral technology can achieve both collinearity
elimination and full information acquisition simultaneously,
which is impossible in traditional spectral methods [12].
Combining chemometrics, intelligent algorithms, and so
forth, the hyperspectral technology can visualize the inner and
outer information of the samples [13] and can non-
destructively and accurately determine the component,
content, state, and spatial distribution of the samples [14]. In
view of these merits, this technology has been widely applied
in the field of nondestructive quality detection of food such as
vegetables [15], fruits [16], seafood [17], milk [18], honey [19],
etc., [20]. In particular, the technique has received a con-
siderable attention in meat quality, safety, and authenticity.
0eir applications include quantifying the adulteration level
of minced lamb meat with pork [21], detecting horsemeat
adulteration in minced beef [22], examining gelatin adul-
teration in shrimp and crab adulteration with the imitation
crab meat mainly based on surimi [23, 24]. Because of the
huge amount of information in hyperspectral data, currently,
this detection technology usually combines with statistical
algorithms [25], on the basis of effective data dimensionality
reduction processing [26], to realize the high-efficiency
quantitative analysis and identification of products’ quality
[27, 28].

In this study, the hyperspectral images and spectral
information of water-adulterated salmon were acquired.
0en, the data dimensionality reduction was realized with
the principal-component analysis (PCA). 0e texture in-
formation, color information, and feature-wavelength
spectral data of principal-component images were extract-
ed, for the establishment of an SOM-based water-
adulterated salmon quality identification model.

2. Materials and Methods

2.1. Materials. Salmon samples, 2 cm × 1 cm × 1 cm, were
purchased from a WAL-MART supermarket in Dalian,
China. 0e samples are fresh meat without skin and bones.
Sixty samples from different salmon parts (belly and back)

were dried at 105°C to a constant weight in an oven for
water content determination. 0e water content of salmon
samples ranges from 64 to 73% approximately, and the
standard deviation was 0.048. 0en, the salmon, stored in a
refrigerator at 4°C, was transported to our laboratory.
Before the test, the salmon was injected with a certain
amount of water. It was found that the upper injection limit
was 0.6mL if water seepage, color change, and texture
change of the sample could not be observed by naked eyes.
0erefore, according to the injection amount, the salmon
samples were divided into four groups: the first was salmon
without water injection; the second was salmon with 0–
0.2mL (small amount) of water injected; the third was
salmon with 0.2–0.4mL (moderate amount) of water in-
jected; and the fourth was salmon with 0.4–0.6mL (large
amount) of water injected. One-hundred samples were
used for the model building, of which 60 samples were used
as the modeling set and 40 samples were used as the
prediction set. Each group of the modeling set included 15
samples, and these were numbered to be 1–15, 16–30,
31–45, and 46–60, respectively. Each group of the pre-
diction set included 10 samples, and these were numbered
to be P1–P10, P11–P20, P21–P30, and P31–P40,
respectively.

2.2. Hyperspectral Data Acquisition. 0e hyperspectral data
were acquired with a hyperspectral imaging system
(Sichuan Dualix Spectral Image Technology Co. Ltd.). 0e
system was mainly composed of an Image-λ-V10E-LU-
enhanced vis-near-infrared hyperspectral camera, spec-
trometer, halogen light source, and electronically con-
trolled mobile platform. 0e available spectral range was
379–1038 nm. For the acquirement of undistorted, real,
and clear hyperspectral imaging data, the experimental
parameters were set as follows: the spectral resolution was
2.8 nm, exposure time was 10ms, object distance was
50 cm, moving speed of the platform was 5mm/s, spectral
sampling points were 0.65 nm in diameter, and wave-
length was in the range of 379–1038 nm.

2.3. Hyperspectral Image Correction. To reduce the differ-
ence between the illumination and camera dark current in
different samples, we conducted the black and white board
correction before the acquisition of all spectral images
[29]. In detail, a white calibration image W (reflectivity
approaching 100%) was first obtained by scanning a
standard white calibration board. 0en, all light sources
and camera lens were closed to collect a black calibration
image D (reflectivity approaching 0%). 0e original
hyperspectral image could be corrected as follows [30]:

R �
R0 −D

W−D
× 100%, (1)

where R represents the corrected hyperspectral image; R0
stands for the original hyperspectral image;W represents the
white calibration image; and D represents the black cali-
bration image.
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2.4. Extraction of Spectral Data and Data Dimensionality
Reduction. A region with the size of 50 × 50 pixels2 in the
middle of a salmon image was selected as the region of
interest (ROI) for the extraction and analysis of spectral,
texture, and color features of this image. On this basis, the
prediction model for salmon quality detection was estab-
lished. A 3 × 3 pixels2 smoothing window was selected to
smooth the average spectral profiles with the Savitzky–Golay
(SG) method to remove high-frequency noises and to im-
prove the signal-to-noise ratio [31]. Because the amount of
data acquired by hyperspectra was large, we applied the PCA
method to reduce the dimensionality of the hyperspectral
data [32].0e eigenvalues and cumulative contribution rates
of the first six principal-component images were calculated.
According to the imaging quality of these six principal-
component images, one of the images was screened for
further analysis [33].

0e principal-component image is the linear combina-
tion of the original images at different wavelengths. 0e
coefficient of an image at a specific wavelength is the so-
called weighting coefficient. A local extremum of the
weighting coefficients indicates that the hyperspectral image
at this wavelength has a large contribution rate to the
principal-component image [34, 35], and the corresponding
wavelength will be chosen as a feature wavelength for
subsequent research.

An ENVI v4.7 system (Research System, Inc., Boulder,
CO, USA) was employed to extract the ROI and corre-
sponding average spectral profile and to analyze the prin-
cipal component of the image. MATLAB 2012a (the
MathWorks Inc., Natick, MA, USA) software was used for
the SG smoothing.

2.5. Texture Feature. Gray-level cooccurrence matrix is a
matrix function of pixel distance and angle. 0rough the
calculation of the correlation between the gray levels of
two pixels in a certain distance and direction in an image,
one can obtain the comprehensive texture information of
a hyperspectral image from aspects of direction, interval,
amplitude, and speed [36]. Suppose that f(x, y) is a
hyperspectral image of water-adulterated salmon, with the
image size of M × N and gray level of Nr, a hyperspectral
gray-level cooccurrence matrix in agreement with a
certain spatial relationship can be established as follows
[37, 38]:

P(m, n) � ρ􏼚 x1, y1( 􏼁, x2, y2( 􏼁εM × N
􏼌􏼌􏼌􏼌f x1, y1( 􏼁

� m, f x2, y2( 􏼁 � n􏼛,

(2)

where ρ(x) represents the number of elements in the set x, P
is an M × N matrix. Assuming that the distance between the
two pixels in the salmon hyperspectral image is d and the
difference between the angles between both pixels and the
horizontal axis is θ, the gray-level cooccurrence matrix
P(m, n, d, θ) with different distances and angles can be
obtained [39]. In this paper, the cooccurrence matrices in
four directions of 0°, 45°, 90°, and 135° were calculated with

the centered pixel at the distance value of one. 0e contrast
(CON), correlation (COR), entropy (ENT), energy (ENE),
and angular second-order moment (ASM) of the ROI in
these four directions were extracted, and the mean values
were calculated as the texture features for the water-
adulterated salmon identification model [40]. 0e calcula-
tion processes are presented as follows:

CON � 􏽘
M

i�0
􏽘

N

j�0
(i− j)

2
p(i, j),

CON � 􏽘
M

i�0
􏽘

N

j�0
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β2
,
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N

j�0
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j�0
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2
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M

i�0
􏽘

N

j�0
i · p(i, j),

β2 � 􏽘
M

i�0
􏽘

N

j�0
(i− α)

2
p(i, j).

(3)

2.6. Color Moment Feature. Color moment is a method to
measure the difference between images through color values.
0e image features based on color moment can well express
the distribution of color values in images. A large number of
statistical experiments have proven that the color distri-
bution information of images can be well expressed via the
corresponding low-order moments [41]. 0erefore, the first-
and second-order moments of the hyperspectral images of
salmon were extracted and used as the color features for the
water-adulterated salmon identification model:

μi �
1
N

􏽘

N

i�1
Pi, (4)

where μ is the first-order color moment of a hyperspectral
image, representing the mean value of color; Pi represents
the brightness value of a pixel i. N corresponds to the total
number of pixels of the image:

σi �
1
N

􏽘

N

j�1
Pij − μi􏼐 􏼑

2⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

, (5)

where σi represents the first-order color moment of a
hyperspectral image, reflecting the standard deviation of the
pixel values of the image.
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2.7. Modeling for the Identification of Adulteration with
Water. An identification model of salmon adulteration was
established based on the self-organizing feature mapping
(SOM). 0is model consisted of two layers of neurons: the
upper layer was the output layer and the lower layer was the
input layer. 0e input layer was actually a two-dimensional
node matrix [42]. Each node represents a neuron [43]. 0e
feature spectra (spectral values) with color moment features,
texture features, and color moment and texture features
were set as the input for modeling, respectively; each neuron
in the input layer was connected with each other neurons in
the output layer through the weight. Comparing with the
different input model, forty salmon samples were used as a
prediction set for the model which has the best performance
in identification. On the other hand, the neurons in the
output layer included four nodes, respectively, corre-
sponding to the sample without water injected, with a small
amount of water, with a moderate amount of water, and a
large amount of water. 0e topological function of this
model was the “hextop”, the distance function was the
“linkdist”, and the number of iterations was set to be 1000
times.

3. Results and Discussion

3.1. Analysis of Hyperspectral Features for the Identification of
Salmon Adulteration with Water. Figure 1(a) shows the
averaged spectral profiles of salmon samples. 0ese profiles
of salmon with different water amounts injected exhibit
similar shapes and trends. With the increasing of water
amount injected, the spectral values at different wavelengths
increased. Two obvious absorption bands at 400–600 nm
were observed, probably due to the large G (green) and B
(blue) values on the surfaces of the samples [44, 45]. Another
absorption band was observed at 900–1000 nm. According
to the literature, this band at 970 nm corresponds to the
stretching vibration of O-H, which is related to the water in
samples [46]. 0e original averaged spectral profiles con-
tained many noises, which have a great negative impact on
the spectral dimensionality reduction and features extrac-
tion accuracy [47]. Hence, SG smoothing was applied to
remove noises, and the denoised profiles are shown in
Figure 1(b). Most of the profiles were successfully smoothed,
and the waveforms were not shifted or distorted. However,
the part of noises in the ranges of 388–400 nm and 1000–
1045 nm, caused by the low accuracy of the instrument,
could not be eliminated. 0erefore, the following studies
only focused on the spectra and images in the range of
400–1000 nm.

3.2. Selection of Feature Images. After the analysis of spectral
profiles, the images in the range of 400–1000 nm were
treated with the PCA approach, and six principal compo-
nents were derived as the output at each wavelength [48].
For instance, the principal-component feature values and
contribution rates at feature wavelengths of the sample
containing 0.3mL of water are shown in Table 1. 0e ei-
genvalues PC1 and PC2 are greater than 1. 0e cumulative

contribution rates of PC1 and PC2 are 85.2% and 96.0%,
respectively. 0e cumulative contribution rate of the first
two principal-component images surpassed 90%, indicating
that these principal-component images could represent
most of the information of the sample. Figure 2 shows the
first six principal-component images of the sample. 0e first
three principal-component images are clear, and the last
three contain many noises, failing in the analysis and ex-
traction of features. However, the brightness of the first
principal-component image was too high to identify the
water amount injected. 0e second principal-component
image exhibited an obvious muscle texture, and the gray-
level values of the injection region were higher than those of
other regions. In conclusion, the image PC2 could be used
for the analysis and extraction of image features. Figure 3
shows the second principal-component images of salmon
samples with different water amounts injected. 0e gray-
level values of the injection regions were largely decreased
with the increase of water injection amount, showing that
the response to water injection in the image PC2 was in-
dicated by a lower pixel gray value. 0ereby, the image color
and texture of the injection regions changed with the dif-
ferent water amounts injected.

3.3. Selection of Feature Wavelengths. 0e weighting co-
efficients of the feature image (PC2) of salmon samples with
0, 0.2, 0.4, and 0.6mL of water injected are illustrated in
Figure 4. Local extremum values of weighting coefficients
were observed at 454.9, 512.3, and 569.1 nm, indicating that
these three wavelengths contributed more to the PC2 images
and contained most of the feature information. 0erefore,
these three wavelengths were selected as the feature wave-
lengths for spectra extraction. 0e extracted spectra served
as the input to establish the identification model of salmon
adulteration.

3.4. Modeling for Identification ofWater-Adulterated Salmon

3.4.1. Water-Adulterated Salmon Identification Model Based
on the Color Moment Features and Feature Spectra. 0e
features of the first- and second-order color moments and
spectral values at feature wavelengths (454.9, 512.3, and
569.1 nm) of 60 salmon samples were extracted and nor-
malized. 0e normalized data were used as the input for the
SOM network [49] to establish an identification model of
water-adulterated salmon. 0e clustering results were vi-
sualized and are illustrated in Figure 5(a). 0e hexagons
represent competitive neurons, and the blue ones represent
the winning neurons. 0e number of winning neurons is the
number of adulterated salmon samples, and the number
labeled in a neuron represents the number of samples in this
type. Figure 5(a) shows that the combination of features of
color moments and spectral values at feature wavelengths,
functioning as the clustering attributes of the SOM network,
divided the samples into four categories. 0e neurons 1–4
contained 18, 15, 17, and 10 samples, respectively. According
to the identification results in Table 2, we could identify that
two samples in the second category were misclassified into
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the �rst category; �ve samples in the second category were
misclassi�ed into the third category; and eight samples in the
third category were misclassi�ed into the second category.
�e total identi�cation accuracy rate was 75%.

Figure 5(b) indicates the weight distances between
neighboring neurons. �e color blocks between the neuron
nodes represent the distances between neuron weight vec-
tors. �e deeper the color is, the greater the distance is. �e
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Figure 1: Averaged spectral pro�les of salmon samples with (a) di¤erent water amounts injected and (b) di¤erent water amounts injected
after SG smoothing.

Table 1: Principal-component eigenvalues and contribution rates of the salmon sample containing 0.3mL of water.

PC Eigenvalue Contribution rate (%) Cumulative contribution rate (%)
1 57.27692 87.41 87.41
2 7.906958 12.07 99.48
3 0.288961 0.44 99.92
4 0.022441 0.03 99.95
5 0.01744 0.03 99.98
6 0.015825 0.02 100

(a) (b) (c)

(d) (e) (f )

Figure 2: �e �rst six principal-component images of the salmon sample with 0.3mL of water injected: (a) PC1, (b) PC2, (c) PC3, (d) PC4,
(e) PC5, and (f) PC6.
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block between the cluster in neuron 3 (without water in-
jected) and the cluster in neuron 2 (0.4–0.6mL of water
injected) is the deepest in color, which is consistent with the
fact that meat color changed with the increase of water
amount injected.

3.4.2. Water-Adulterated Salmon Identi�cation Model Based
on the Texture Features and Feature Spectra. �e texture
features (contrast, correlation, entropy, energy, and angular
second-order moment) and spectral values at feature
wavelengths (454.9, 512.3, and 569.1 nm) of sixty salmon
samples were extracted and normalized. Normalized eight
feature vectors were set as the input of the SOM network,

and the SOM-based identi�cation model of water-
adulterated salmon was established.

�e clustering results were visualized and are presented
in Figure 6(a). �e combination of texture features and
spectral values at feature wavelengths, functioning as the
clustering attributes of the SOM network, divided the
samples into four categories. �e neurons 1–4 contained 20,
16, 11, and 13 samples, respectively. As shown in Table 3, one
sample in the second category was misclassi�ed into the �rst
category; one sample in the third category was misclassi�ed
into the second category; two samples in the second category
and �ve samples in the fourth category were misclassi�ed
into the third category; and one sample in the third category
was misclassi�ed into the fourth category. �e total iden-
ti�cation accuracy rate was 83.3%.

Figure 6(b) indicates the weight distances between
neighboring neurons. �e neurons 2 and 4 are the closest,
indicating that the texture and spectral features di¤erence
between the cluster in neuron 2 (�rst category, without water
injected) and cluster in neuron 4 (second category, 0–0.2mL
of water injected) is the smallest. On the other hand, the
neurons 2 and 3 have the farthest distance, demonstrating
that the texture features di¤erence between the cluster in
neuron 2 and cluster in neuron 3 (fourth category, 0.4–
0.6mL of water injected) is the greatest, which is in ac-
cordance with the texture-change trend with the increase of
water amount injected.

3.4.3. Water-Adulterated Salmon Identi�cation Model Based
on the Texture Features, Color Moment Features, and Feature
Spectra. �e texture features (contrast, correlation, entropy,
energy, and angular second-order moment), color moment
features (�rst- and second-order), and spectral values at

(a) (b)

(c) (d)

Figure 3: PC2 images of the salmon samples with (a) 0, (b) 0–0.2, (c) 0.2–0.4, and (d) 0.4–0.6mL of water injected.
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feature wavelengths (454.9, 512.3, and 569.1 nm) of sixty
salmon samples were extracted and normalized. �e nor-
malized ten feature vectors were set as the input of the SOM
network, and the SOM-based identi�cation model of water-
adulterated salmon was established.

Figure 7(a) demonstrates that the combination of color
moment features, texture features, and spectral values at
feature wavelengths, functioning as the clustering attributes
of the SOM network, divided the samples into four cate-
gories. �e neurons 1–4 contained 14, 16, 15, and 15
samples, respectively. As shown in Table 4, one sample in the

second category was misclassi�ed into the �rst category and
one sample in the third category was misclassi�ed into the
second category. �e total identi�cation accuracy rate was
96.7%.

�rough the self-organizing competition of the SOM
network, the weight distances between neighboring neurons
were quanti�ed, as shown in Figure 7(b). �e neurons 2 and
4 are the closest, indicating that the texture, color moment,
and spectral features di¤erence between the cluster in
neuron 2 (�rst category, without water injected) and cluster
in neuron 4 (second category, 0–0.2mL of water injected)

Table 2: �e identi�cation results.

Clustering center Numbers of the samples Category Accuracy of identi�cation

Neuron 1 16, 22, 23, 24, 27, 28, 29, 30, 31, 32, 35, 37, 38, 39, 42,
43, 44, and 45 Second

75%Neuron 2 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, and
60 Fourth

Neuron 3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, and 22 First
Neuron 4 18, 19, 21, 25, 26, 33, 34, 36, 40, and 41 �ird

11

20 16

13

(a)

4 3

21

(b)

Figure 6: (a) Visualized clustering results and (b) weight distances between adjacent neurons of the water-adulterated salmon identi�cation
model based on texture features and feature spectra.

Table 3: Identi�cation results.

Clustering center Numbers of the samples Category Accuracy of identi�cation

Neuron 1 17, 26, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
47, 48, 54, 56, and 59 �ird

83.3%Neuron 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 20 First
Neuron 3 34, 46, 49, 50, 51, 52, 53, 55, 57, 58, and 60 Fourth
Neuron 4 16, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, and 33 Second

17

18 15

10

(a)

4 3

21

(b)

Figure 5: (a) Visualized clustering results and (b) weight distances between adjacent neurons of the identi�cation model of water-
adulterated salmon based on feature spectra and features of color moments.
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are the smallest. On the other hand, the neurons 2 and 3 have
the farthest distance, demonstrating that the features dif-
ference between the cluster in neuron 2 and cluster in
neuron 3 (fourth category, 0.4–0.6mL of water injected) is
the greatest, which is in accordance with the texture- and
color-change trend with the increase of water amount
injected.

According to the identi�cation accuracy rate, the model
based on the texture features, color moment features, and
feature spectra has the best performance in identi�cation
(Table 4). �ereby, forty salmon samples were used as the
prediction set for the model. As shown in Table 5, the ac-
curacy rate of the prediction set was 95%. Compared with
the modeling set, the accuracy of discrimination was slightly
reduced. It indicated that themodel based on the above three
features has better robustness and identi�cation accuracy.

4. Conclusions

A nondestructive detection method was developed based on
hyperspectral technology for salmon adulteration. �e
hyperspectral images of salmon samples in the wavelength
range of 390–1050 nm were acquired. Six principal-
component images of the hyperspectral images in the
wavelength range of 400–1000 nm were extracted via the
PCA approach. �e PC2 image was selected as the feature
image, and the three feature wavelengths (454.9, 512.3, and
569.1 nm) were selected according to the weight coe�cients
of the feature image (PC2).�e color moment features (�rst-
and second-order), texture features (contrast, correlation,

entropy, energy, and angular second-order moment), and
spectral values at feature wavelengths were extracted for the
establishment of SOM-based salmon adulteration identi�-
cation models. �e color moment features combined with
spectral values at feature wavelengths, texture features
combined with spectral values at feature wavelengths, and
color-texture features combined with spectral values at
feature wavelengths were separately selected as the input for
the models. �e results showed that the SOM-based model,
with color-texture features combined with spectral values at
feature wavelengths as the input, had the best performance
in prediction. �e identi�cation accuracy rates of the
modeling set and prediction set were 96.7% and 95%. On the
theoretical and experimental basis of this work, rapid
nondestructive identi�cation of salmon adulteration tech-
nique and instruments will be further developed.
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