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Position control in electrical drives is a challenging problemwhich is complicated by sensor noise and unknown disturbances.&is
paper proposes a new cascade sensorless speed control technique for induction motor drives suitable for electric vehicle ap-
plications using the full-order adaptive Luenberger observer that is insensitive to measurement noise and parametric variation.
&e adaptive speed law is obtained by the Lyapunov method using the estimated currents and fluxes. &is technique ensures the
stability of the induction motor considered as nonlinear dynamic system. Since the Luenberger observer works on deterministic
environment, and it is most effective when sensor noise is limited, the present study aims to design a robust observer insensitive to
measurement noise and parametric variation integrated in a cascade structure. &e observer allows the filtering of the measured
currents. To highlight the advantages of the new scheme, a comparative study and spectrum analysis will be presented. &e
proposed structure is verified using MATLAB/Simulink.

1. Introduction

Motor drive technology is a very complex and multidisci-
plinary field, and it has gone through a dynamic evolution
over the last several decades by way of many inventions in
power electronics (semiconductor devices, converters, and
PWM techniques), electrical machines, and advanced
control and simulation techniques.

Due to its robustness and rugged structure, the induction
motor (IM) is widely used in industrial applications espe-
cially for electric and hybrid electric vehicles.

Control techniques of IMs can be divided into two main
categories: scalar and vector controls. Scalar control is based
on the steady-state model of the IM. Although this control is
simple, easy to implement, and offers a good satisfactory
steady-state response, this control is not suitable for ap-
plications requiring high dynamic performance. Vector (or
field-oriented) control offers good satisfactory performance
in terms of both steady-state and transient response. It al-
lows separated control in a DC motor, which has drawbacks
caused by the brushes [1, 2].

Vector control is based on having speed measurement.
However, physical sensors have shortcomings that can de-
grade the control system. Indeed, sensor cost can substan-
tially raise the total cost of a control system; sensors (and
their associated wiring) reduce the reliability of the control
system. Also, sensors can induce significant errors such as
stochastic noise, cyclical errors, and limited responsiveness
[3]. &is has generated interest in sensorless control.

Sensorless control has received considerable attention
during the last decades, both in research context and also in
application domain on real processes. &is technique en-
sures reduced hardware complexity, lower cost, reduced size
of the drive machine, elimination of the sensor cables, better
noise immunity, increased reliability, and lower mainte-
nance requirements [1, 3, 4].

&ere are a great variety of rotor speed estimation
techniques in the literature. &ey can be classified into two
main categories: (a) signal injection method and (b) state-
observer methods. &e first category suffers from compu-
tational complexity and the requirement of external hard-
ware for signal injection. &ose in the second category are
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based on mathematical models of the IM and are simple and
robust against disturbances [2]. &ese techniques include
open-loop estimators, the Kalman filter, the Luenberger
observer, and Model Reference Adaptive System [5, 6].

Authors of [7] combined MRAS and sliding mode for
indirect vector control to improve the dynamic performance
of the speed estimation, while authors of [8] designed a
hybrid observer based on current sliding mode for low speed
and flux linkage sliding mode for high speed and optimized
using Adaptive Neural Fuzzy Interference System (ANFIS)
and fuzzy PID. &is system has advantages of robustness,
and noise reduction is possible through the minimization of
torque ripple and high precision of speed. &e extended
Kalman filter is tested in [9] under noisy current mea-
surement for direct vector control.

&e observer combines sensed signals with other
knowledge of the control system to produce observed signals
that are more accurate, less expensive to produce, and more
reliable than sensed signals [3]. &is observed state is used as
a feedback signal in the control section.

Many techniques can be used to reduce noise sensitivity:
reducing the observer bandwidth, filtering the observed
disturbance, or modifying the observer compensator
structure. As discussed in [10], lowering observer bandwidth
will reduce noise susceptibility, but it also reduces the ability
of the observer to improve the system. For example,

reducing observer bandwidth reduces the accuracy of the
observed disturbance signal.

In this paper, the adaptive full-order Luenberger ob-
server is used to estimate stator currents and rotor fluxes.
&e observed states are then used to estimate the rotor speed
based on the Lyapunov theory.

To reduce the noise measurements sensitivity of the
Luenberger observer, a robust reduced-order observer is
developed. It improves the response of the Luenberger
observer in the presence of measurements noise.

&erefore, the paper is structured as follows: after the
Introduction section, the mathematical dynamic model is
described; then the Luenberger observer design and stability
are detailed. &e design of the reduced observer is shown
followed by simulations results and conclusion.

2. Mathematical Model and Control
Technique of IM Drives

2.1. Dynamic Model. &e mathematical dynamic model of
the IM consists of the differential equations describing the
electromagnetic relationships of the stator and rotor as well
as the equation of motion [1].

In this paper, the Γ-model is used. It consists of using
only one leakage inductance LL instead of stator and rotor
leakage inductances Lsl and Lrl used in the T-model. &e
following equations describe the dynamic model of the IM:
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(1)

2.2. Vector Control. As mentioned before, the vector control
is based on imitating the DC motor behavior, which allows
the separated control of the flux and the torque by adjusting,
respectively, the direct and quadrature component of the
stator current.

&is technique is based on orientation of the dq-refer-
ence in such a way to eliminate the quadrature component.
&us, for the Rotor Field-Oriented Control (RFOC), the
quadrature component of the flux is considered zero
Φrq � 0, so the flux will be carried out entirely on the direct
component Φr � Φrd [11].

&is control allows the determination of the stator
voltages in the dq-reference frame, which attacks the three-
phase voltage source inverter (VSI) illustrated in Figure 1. It
is composed of three arms, each has two complementary
switches based on IGBT transistor. &e control of these
switches is ensured by different modulation techniques, of
which the PWM is the simplest to implement. As shown in
Figure 2, the switches’ states are determined from the ref-
erence voltage and the high-frequency carrier [12]. &us,
Figure 3 presents the control structure. Indeed, the vector
control allows the calculation of stator voltages, which are
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used as reference voltages for the modulation technique.
&is allows the generation of the VSI switch states. And then,
the inverter voltage output supplies the machine.

Different studies have analyzed the harmful impact of
dead times on system performance. As known, this dead
time is introduced to avoid the simultaneous conduction of
two power devices (IGBT) in the same arm of the inverter.
&is solution causes system performance degradation
(voltage output drop, disturbances and distortions of the
signal, appearance of undesirable harmonic components,
and reduction of the fundamental of the voltage). However,
various dead time compensation methods are discussed in
the literature. Some researches proposed different tech-
niques to implement, without any changes at the hardware
level; only the software part is slightly modified.

In some cases, as presented in [13], it is recommended to
add an observer to the system to compensate the voltage
magnitude, which has been affected due to dead times.

Authors of [14] propose a dead-time compensation
method for a vector-controlled induction motor. &is
method includes the effect of dead time, turn-on/off time of
switching devices, and voltage drops of switching devices
and freewheeling diodes. It allows improvement of the
system response and suppression of the current distortion in
the motor. &en, the dead-time effect is eliminated.

Dead-time effects can be also greatly reduced using the
proposed method in [15]. &is method is tested for the
sensorless vector control applications, and it has been
verified that the speed error, under different dead time
durations, can be reduced. Only slight modification of the

controller software is required, and thus no additional
hardware is needed in this method. &ey used a simple
equation to calculate the real output voltage, and therefore
the proposed method can effectively improve the controller
performance without degrading its operating speed.

Moreover, it was verified in [16] that the compensation
method improves the current waveform and improves the
stability of the motor operation.

3. Sensorless Vector Control Using
Adaptive Observer

3.1.%e Full-OrderObserver Luenberger Observer: Design and
Stability. Based on the dynamic model of the induction
motor, the full-order Luenberger observer is described by
the following state presentation:

_􏽢x(t) � A · 􏽢x(t) + B · u(t) + L · (y − 􏽢y),

􏽢y(t) � C · 􏽢x(t).
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y � isx isy􏼐 􏼑
T
.

&e observer gain matrix is L �
L1I + L2J

L3I + L4J
􏼠 􏼡.

To determine the gain matrix L, the pole-placement
method is used. &is technique allows the determination of
the observer dynamics. It consists in calculating the full-
order observer eigenvalues which are the characteristic
polynomial roots. &ey are given by
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.

In the same manner, the IM eigenvalues are given as
follows:
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DIM � − a1a6 + a3a4

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

.

&e poles of the observer and the motor must satisfy the
equation λLO � KLλIM, where KL > 1 [17]. &us, the iden-
tification of both characteristic polynomials (3) and KL ∗(4)

leads to the following results:

Vdc

S1 S2 S3

S′1 S′2 S′3

va
vb
vc

Figure 1: Voltage source inverter structure.

Reference signal Carrier signal

Switch state

Figure 2: Pulse-width modulation principle.
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&e poles of the observer are chosen to accelerate its
convergence. But they must stay slow in comparison to the
measurement noise, so the constant KL is usually set small.

3.2. Rotor Speed Estimation. To determine the rotor speed
adaptive mechanism, the Lyapunov theorem is used. &is
technique is suitable for determining the stability of nonlinear
dynamic systems such as IM drives. &e main idea is to in-
troduce a generalized energy function called the Lyapunov
function,which is zero at the equilibriumandpositive elsewhere.
&e equilibrium will be stable if we can show that the Lyapunov
function decreases along the trajectories of the system [18].&us,
the Lyapunov function is defined as follows [17]:
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where e � X − 􏽢X is the estimation error.
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&en, the adaptive law is obtained as
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3.3. Noise in the Luenberger Observer. &e Luenberger ob-
servers are most effective when the sensor produces limited
noise. Indeed, they often can exacerbate sensor noise, which
is frequently a problem in motion control systems. &is
noise comes from two major sources: electromagnetic in-
terference (EMI) generated by power converters that is then
transmitted to the control section and resolution limitations
in sensors. EMI can be reduced through appropriate wiring
practices and through the selection of components that limit
noise generation, whereas resolution noise from sensors is
more difficult to address [19, 20].

In this study, the position sensor is not used. However,
the noise could be transmitted via the observer. In fact, the
speed estimation is based on the current measurements.
Figure 4 shows the structure of the designed observer in the
presence of the measurements noise. To improve the system
performance, a reduced-order observer is designed.

3.4. Design of the Reduced-Order Observer. &e reduced-
order observer aims to filter the measured currents before
reaching the Luenberger observer as can be explained in
Figure 5.

&e actual reduced observer tracks only a subset of the
state vector contrary to the first observer referred to as an
identity observer as it tracks the entire state vector. It takes
the following form [21]:

_􏽢xe(t) � Ae · 􏽢xe(t) + Be · u(t) + K · (y − 􏽢y),

􏽢y(t) � Ce · 􏽢xe(t),

⎧⎨

⎩ (9)

where the state vector is given by

􏽢xe �
􏽢Φs
􏽢Φr

􏼠 􏼡 �
􏽢Φsx + j 􏽢Φsy
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􏼠 􏼡.

And the state matrix is

Ae �
− Rse((1/LMe) + (1/LLe)) Rse/LLe

Rre/LLe − (Rre/LLe) + jpω􏼠 􏼡.

&e input and the output matrices are Be �
1
0􏼠 􏼡,

Ce � (1/LMe) + (1/LLe) − (1/LLe)( 􏼁.
&e observer gain matrix is

K � Re · k �
Rse 0
0 Rre

􏼠 􏼡
ksx + jksy

krx + jkry
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Figure 3: Induction machine control.
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&e estimated fluxes are
d􏽢Φs/dt � us − Rse((1 + ks)

􏽢is − ksis)

d􏽢Φr/dt � jpω 􏽢Φr − Rre
􏽢ir

􏼨 .

&e estimated currents are
􏽢is � ( 􏽢Φs/LMe) − ( 􏽢Φr − 􏽢Φs/LLe)
􏽢ir � kr(

􏽢is − is) + ( 􏽢Φr − 􏽢Φs/LLe)
􏼨 .

As the observer poles are the eigenvalues of the matrix
(Ae − RekCe), then the characteristic polynomial of the
observer is given by

P(s) � s
2

+ c1s + c2 � s
2

− p1 + p2( 􏼁s + p1p2, (10)

where p1 and p2 are the characteristic polynomial roots.
&e determination of the gain matrix k in the observer is

the same mathematical problem as the problem of deter-
mining the feedback matrix in the pole-placement problem.
&e selection of the observer poles is a compromise between
sensitivity to measurement errors and rapid recovery of
initial errors. A fast observer will converge quickly, but it will
also be sensitive to measurement errors. &e resolution is

based on Ackermann’s formula k � R− 1
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Figure 4: Structure of the full-order Luenberger observer in the presence of sensor noise.
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Figure 5: Proposed structure using the reduced-order observer.
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where Θ �
Ce

CeAe

􏼠 􏼡 is the observability matrix of system
(9). &is matrix is invertible when the system is observable.
&en, the gain matrix is given by

k �
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Components of the gain matrix are obtained by iden-
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To summarize, the actual study combines the full-order
Luenberger observer and the reduced-order observer to
accurize the response system. &e proposed structure allows
a noise immunity, and it is insensitive to parametric vari-
ations. Figure 6 describes the bloc diagram used to verify the
proposed structure.

4. Simulation Results

&e proposed structure is verified usingMATLAB/Simulink.
&e induction motor parameters are shown in Table 1.

&e following simulations are carried out under a
parametric variation of the stator resistance (+20% of the
rated value). &e rated load torque is applied at 3 s and
removed at 7 s. &e speed is kept constant at 600 rpm.

By integrating measurement noise, increasing the stator
resistance, and applying the load torque, the system response
is influenced. In fact, speed oscillations around the final
value appear smaller when the reduced-order observer is

used (Figure 7(a)). &is leads to an error that exceeds 75%
when only the Luenberger observer is used. &e integration
of the filter reduces this error to 20% (Figure 7(b)). &e
electromagnetic torque (Figure 7(c)) and q-axis stator
current (Figure 7(d)) are affected too, especially when the
rated load torque is applied.

Even though the stator resistance is increased, the re-
duced-order observer maintains the flux orientation
(Figures 8(a) and 8(b)), and the error is negligible contrary
to the use of Luenberger observer only where the error
reaches 25% (Figure 8(d)).

&e reduced-order observer allows α-axis rotor flux
(Figure 9(a)) and the stator currents (Figure 9(b)) to keep their
sinusoidal forms despite the disturbances caused by the noise
measurements, while the Luenberger observer alone does not
manage to reject these disturbances, which distort signals.

Spectrum analysis shows how the reduced-order ob-
server decreases THD and increases the fundamental am-
plitude for both current (Figures 10 and 11) and torque
(Figures 12 and 13).
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Figure 6: Sensorless vector control using a cascade structure of the full-order Luenberger and the reduced-order observers.

Table 1: Induction motor parameters.

T-model Γ-model Units
Stator resistance RT

s 6.8 Stator resistance Rs 6.8 Ω
Rotor resistance RT

r 5.43 Rotor resistance Rr 6.77 Ω
Stator inductances LT

s � M + Lsl 0.3973 Magnetizing inductance LM 0.3973 H
Rotor inductances LT

r � M + Lrl 0.3558 Leakage inductance LL 0.0463 H
Mutual inductance M 0.3558

Rs � RT
s ; Rr � RT

r /k2
c; LM � M/kc;

LL � (Lsl/kc) + (Lrl/k2c); kc � M/(M + Lsl)

H
Total inertia J 2.10− 2 kg.m2

Friction coefficient F 2, 5.10− 4 Nm.s.rad− 1

Pole pairs number P 2
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As known, the system control is sensitive to the load torque
disturbance, the parametric variation, and noise measure-
ments. All these parameters affect the system response.

Indeed, the stator resistance and the load torque affect
especially the flux orientation, while the noise measurements
disturb the speed and torque responses.

According to the simulations, the reduced-order ob-
server designed is insensitive to the parametric variation and
allows filtering the noise measurements, which reduces the
total harmonic distortion (THD).

To not restrict the study to medium speed and to validate
the proposed structure for a wide range of speeds, the
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Figure 8: (a) d-axis rotor flux. (b) q-axis rotor flux. (c) d-axis stator current. (d) Flux error.
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Figure 9: (a) α-axis rotor flux. (b) Stator current.
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following simulations show the obtained results at low
speed.

As can be noticed in Figure 14(a), the estimated speed
follows the reference when the filter is used, while with the
Luenberger observer alone, ripples are very great. &e same

effect is observed for the electromagnetic torque in
Figure 14(b). Also, the flux orientation is no longer main-
tained (Figure 14(c)), and the flux error is bigger
(Figure 14(d)).&e disturbances appear for both α-axis rotor
flux and d-axis stator current in Figure 15.
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Figure 12: Spectrum analysis of electromagnetic torque using only
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5. Conclusion

&e purpose of this study is to design a robust reduced-order
observer insensitive to the parametric variation and noise

measurements for IM drives. &e control system involves a
cascade structure that combines two observers. &e full-
order adaptive Luenberger observer ensures the sensorless
vector control of the induction motor. It allows the
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estimation of stator current and rotor flux used to design the
rotor speed adaptive mechanism. &e stability is proved by
the Lyapunov criteria. &is observer is more effective when
the noise measurement is limited. To accurize the system
response in the presence of this disturbances including the
parametric variation, the flux reduced-order observer is
inserted between the measured currents and the full-order
observer. It allows the filtering of stator current. &e esti-
mated current technique is enhanced using a new technique
to avoid the impact of the noise in the observer. &e
spectrum analysis of stator current and electromagnetic
torque were presented using the Luenberger and the re-
duced-order observer. &e actual structure is insensitive to
noise measurements and parametric variation.

Nomenclature

is, us: Stator current and voltage
Φs, Φr: Stator and rotor flux
ω: Rotor speed
vp, va,b,c: Carrier and reference three-phase voltage
Vdc: DC bus voltage
S1,2,3, S1,2,3′ : Switch states
Te, Tl: Electromagnetic torque and load torque
Xe: Filter parameter
􏽢X: Estimated parameter
X∗: Reference
s: Laplace variable
R(X): Real part of X
I(X): Imaginary part of X.
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