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Traffic flow monitoring using magnetic wireless sensor networks in chaotic cities of developing countries represents an emergent
technology. One of the challenges facing such deployment is the development of effective detection signal-processing algorithm in
low-speed congested traffic based on the Earth’s magnetic fields. ,e proposed algorithm is the performance improvement of the
previous algorithm known as the Scanning and Decision Algorithm (SDA). ,e novel algorithm based on the moving-average
model includes an addition of a two-pass moving-average filter to improve the signal-to-noise ratio after analog-to-digital
conversion. ,e improved mathematical capabilities enable us to capture additional features of vehicular direction and clas-
sification. Other outputs of the model include vehicular detection, count, speed, and travel time index (TTI). ,e performance
evaluation of a proposed algorithm is conducted through on-site real-time experiments at the designated road segment. ,e
results indicated that the roadside magnetic sensor improved vehicular detection, count, travel time index, and classification
during low-speed congested traffic state.

1. Introduction

Wireless sensor networks (WSNs) have been deployed in
various sensing tasks in ambiguous conditions where wired
sensors are not cost effective. Wireless sensor nodes are
deployed along the designated road segment sensing traffic
flow physical condition and extract corresponding data [1].
,e physical condition represents the ambient Earth’s
magnetic field [2]. Each node operates autonomously to
extract and transmit the traffic flow data to the traffic
management center [3]. Due to the sensor’s limited on-
board resources, energy consumption trade-offs remain a
significant concern for wireless sensor network designers.

Magnet WSNs for traffic flow monitoring utilize mag-
netic sensors that capture the ambient Earth’s magnetic
fields distorted by the passing vehicles [4, 5]. ,e

programmed signal-processing algorithm processes the
distorted signal to obtain the desired data. ,e trade-off
between the signal-processing algorithm, operation dura-
tion, and the node’s total available energy is necessary [6].
,e energy trade-off in traffic flow monitoring and sensor
nodes is necessary since it has to operate continuously
generating the traffic flow data for a road segment at all times
[7]. ,e traffic flow data of interest include vehicular count,
speed, type, and TTI.

Scanning and Decision Algorithm II (SDA-II) is a signal-
processing algorithm improvement of the SDA algorithm
[4]. ,e new algorithm is based on a moving-average model
operating in the time domain. It improves the signal con-
ditioning and scanning by adding a two-pass moving-av-
erage filter, which eliminates high-frequency noises and
smoothens and thus enhances the fidelity of the captured
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signal. In congested and slow-moving traffic, the proposed
algorithm improves the process of separating distortions
caused by the nearest vehicles. ,erefore, the addition of
moving-average filters boosts and filters high-frequency
noises of the input signal and hence smoothens the signal
that simplifies the scanning and decision to generate re-
quired data.

2. Features of Related Work

In SDA, the algorithm lacked filters for eliminating high-
frequency noises of the input signal. ,e said noise may
become severe and cause errors in vehicular detection. ,e
model validation performance on the simulation platform
generated promising results. However, it underperformed in
the real-time experiment.,e algorithm used three magnetic
sensors in three directions of x, y, and z to capture ambient
Earth’s magnetic fields in their respective directions. ,is
research found that two directions are enough for the ex-
traction of desired traffic flow data; hence, the energy
consumption is minimized. ,e additional data outputs of
the vehicular count, speed, type, direction, and TTI are
desired to be extracted from the nodes. Table 1 compares
some different parameters between SDA-I and SDA-II
models.

3. Proposed Improvement of Novel Algorithm

,e SDA-II algorithm shown in Figure 1, which is an im-
provement of the SDA, composes three essential parts. First,
the conditioning state captures incoming analog signals, is
amplified up to 500 times, converts to a 16-bit sigma-delta
digital, removes high-frequency distortions, and smoothens
the signal using a moving-average filter 1 (MAF-1) [8].
Second, the scanning state uses different equations to extract
error signals, calculates energy signal, smoothens the energy
signal using a moving-average filter 2 (MAF-2), scans for
vehicular detection, and finds its highest energy level that
depicts the signature. ,ird, the decision state contains
decision-making blocks that extract vehicular traffic flow
data from the filtered signals.

,e proposed algorithm deploys twomagnetic sensors in
x and y directions [9, 10]. ,e general orientation of the
sensor is for a y-direction oriented parallel to the road
segment and x direction oriented perpendicularly to the
road. ,e subsequent sections discuss the building blocks
within the model.

3.1. Signal Conditioning. ,e input signals Bx(t) and By(t)

of Earth’s magnetic field are significantly weak. ,erefore,
they are conditioned to give digital signals x[n] and y[n].
,e 16-bit resolution digital sequences have rich data
content, which enables better performance in subsequent
processes.

3.2. Moving-Average Filter-1. ,e digital sequence passes
through the first moving-average filter (MAF-1). ,e filter
removes high-frequency noise due to the Earth’s magnetic

field spike storms and smoothens the signals. ,e filter
coefficients are calculated so as to avoid truncation har-
monics caused by small moving vehicles.,e filters carry out
a significant role in separating the harmonics when a
congested traffic flow occurs. ,e moving-average filter
mathematical formulas are given by

x[n] � 􏽘
L

k�0
bkx[n − k], (1)

y[n] � 􏽘
L

k�0
bky[n − k], (2)

where x[n] and y[n] are the filtered current sensor readings
in x and y directions, x[n − 1] and y[n − k] are the delayed
sensor readings, bk is the filter coefficient, and L is a filter
length.

3.3. Difference Equation. ,e difference equation
(Diff − Eqn) calculates the error signal from Earth’s mag-
netic signal edges. ,e Earth’s magnetic field is a compli-
cated nonlinear signal with a fundamental frequency of
7.83Hz [11] where its form changes over time due to dif-
ferent factors such as temperature drifts and magnetic
storms. ,e difference equation separates the incoming
signal from the previously delayed signal resulting in error
signals ex[n] and ey[n] in equations (3) and (4), respectively.
,e error signals indicate how the magnetic field strength
changes in the time domain.,e smaller the error, the better
the quality of the model parameters. When vehicles are
passing near the sensor node, they influence the error signals
causing distortions:

ex[n] � x[n] − x[n − 1], (3)

ey[n] � y[n] − y[n − 1]. (4)

3.4. Energy Signal. ,e energy signal Ey[n] represents the
changes in the energy level of the error signal ey[n] and,
hence, the overall changes in the captured signal. ,e
characteristic changes in energy have an impact on the
determination of vehicular detection. It is employed as a
measure of the quality of estimation. ,e smaller the Ey[n],
the better the estimation. Notice that, in SDA-II, only one
Ey[n] in the y-direction is involved and calculated as shown
in equation (5). ,e calculated Ey[n] is efficient for the
vehicular detection algorithm:

Ey[n] � ey[n]􏼐 􏼑
2
. (5)

In the signal analysis, Ey[n] is used to deduce vehicular
detection and classification after passing through the second
moving-average filter MAF-2 [12]. ,e analysis is then
performed in the time domain because of the lower pro-
cessor power demand and sensor node energy consumption
[13]. When two or three vehicles at the instant are moving
parallel to the sensor node, the false alarm detection hap-
pened. ,is effect is minimized when the multisensor nodes
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are deployed along the road link. ,e average of each traffic
parameter is then calculated based on data from each node.

3.5. Moving-Average Filter-2. ,e essential function of this
second pass filter (MAF-2) is to recondition and smoothen
the Ey[n] generating the best-approximated signal for
analysis. ,e MAF-2 formulation is shown by

Ey[n] � 􏽘

L

k�0
bkEy[n − 1], (6)

where Ey[n] is the filtered current energy signal, Ey[n − 1] is
the delayed energy signal, bk is the filter coefficient, and L is
the filter length.

3.6. Vehicle Detection and Maximum Energy. Based on the
vehicle energy signal, equation (7) calculates vehicular
detection:

Ey[n]>BTH, (7)

where Ey is the filtered energy signal and BTH is the fixed
baseline threshold.

,e value of BTH is fixed and obtained from repeated
physical experiment observations. ,e experiments showed
that the energy of the error signal Ey was typically less than
BTH unless there are distortions due to the nearby magnetic
or metallic object. ,e Earth’s magnetic spike storms cause
distortions that may exceed BTH but most of them occur in a
very short time; therefore, they are not encountered as
desired vehicular distortions. ,e SDA-II sampling is more
than 2MHz; therefore, the error signal would become very
small if no detection occurred. Hence, the BTH fixed at 1 nT2

controls the detection mechanism. Once the vehicle de-
tected, the vehicular count block increases its value [14].

Maximum energy EyMax in equation (8) represents the
highest energy level attained by a passing vehicle. In this
study, it is used to indicate the vehicular type:

EyMax � maxEnergy Ey[n]􏼐 􏼑, (8)

where max Energy is the function used to mark the maxi-
mum energy magnitude of a passing vehicle.

3.7. Vehicle Direction. ,e direction block activates direc-
tion flag dirF for forward or opposite vehicular directions.
,e error signal ex[n] sign marks the direction either
positive or negative depending on the direction of travel:

ex[n] Forward direction
−ex[n] Opposite direction

3.8. Timer Block. ,e timer block generates vehicular
travelled time (TT) which is considered as the time used by
the passing vehicle at the sensor observability zone. TT is an
important variable because it is used in the calculation of
vehicular speed and travel time index (TTI).

3.9. Instantaneous Speed and Travel Time Index. To calculate
speed, it is assumed that the sensor observability zone length
(L in meter) is constant and proportional to the vehicular
size [15] when a vehicle travels across the sensor observ-
ability zone length and spends time (TT in mill-sec).
,erefore, the vehicular speed across the observability length
is given by

Table 1: Comparisons between SDA-I and SDA-II.

No. Parameter SDA-I SDA-II
1 Signal input x, y, and z directions X and y directions
2 Signal filters — MAF-1, MAF-2
3 Energy consumption 100% Reduced by 6–8%
4 Reset AMR Not implemented Implemented
5 Baseline signal Adaptive Fixed
6 Data output Count, speed, TTI Count, TTI, type
7 Operational blocks Scanning, decision Conditioning, scanning, decision
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Figure 1: SDA-II algorithm.
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v(t) �
L

TT
. (9)

As ⟶ 0, we take the derivative on both sides, resulting
in an instantaneous speed of the passing vehicle:

v(t) � dv(t) �
dL

dTT
, (10)

where v(t) is the instantaneous speed, dL changes in dis-
tance, and dTT changes in time.

,e travel time index TTI is the ratio between the actual
travelled time (TT) to the travel time at free-flow speed tff .
Alternatively, TTI is the ratio between the free-flow speeds to
the actual vehicular speed as in equation (11), accounting for
both recurring and incident delays such as traffic accidents.
It determines how long it will take to travel during a peak
hour and uses both main and arterial travel rates:

TTI �
TT
tff

�
vff

dv
, (11)

where TT is the actual travelled time and tff is the travel time
at free-flow speed vff .

3.10. Vehicular Type. SDA-II uses the maximum energy
signal EyMax of a passing vehicle to determine its type
(Classification) from smaller saloon cars to buses, trucks,
and lorries. ,ere are seven fundamental types stored in the
reference vehicular signatures (Ref − types) database.
However, the study of vehicular signatures and classification
is considered as an area for further research. ,e algorithm
updates Ref − types list when the new energy signal range is
determined:

Type 1: EyM< 10
Type 2: 10<EyM≤ 20
Type 3: 20<EyM≤ 30
Type 4: 30<EyM≤ 40
Type 5: 40<EyM≤ 50
Type 6: 50<EyM≤ 60
Type 7: 60<EyM≤ 70

,e experiment setup is shown in Figure 2. A vehicle is
passing near the sensor node at an average speed. Four main
factors that influence the vehicular magnetic signal include

(i) Vehicle position from the sensor node
(ii) Temperature drifts
(iii) Geographical location
(iv) Magnetic spike storms

,e MAF-1 suppresses small harmonics and leaves high
harmonics.

3.11. Reset Anisotropic Magnetoresistors (AMRs). ,e Reset
AMR block sets/resets the AMR sensor by a 1 kHz pulse just
after detection is completed. ,e pulse recovers the sensor
strongly remagnetized . ,e Earth’s magnetic variations due
to temperature drifts have lesser magnitude; hence, they are

neglected. Variations due to sensor location away from the
vehicle receive an enormous impact on the captured mag-
netic field; therefore, they are considered as an area for
further research. ,is research considers vehicles travelling
in the closest lane to the sensor node location. Filters help to
eliminate the problem due to minute magnetic varia-
tions.,erefore, this block demagnetized the AMR sensor
and is reenabled to perform high sensitivity measurement
again

4. SDA-II Finite State-Flow Machine

,e finite state-flow machine in Figure 3 illustrates how the
SDA-II model operates. ,is is parametric modelling that
consists of three main states:

Conditioning
Scanning
Decision

,e conditioning state accepts the incoming analog
signals Bx(t) and By(t), is amplified, converts to digital
sequences x[n] and y[n], filters the noise, and smoothens
and creates delayed signals x[n − 1] and y[n − 1]. Both
delayed and current signals are fed to the scanning state,
where the error signals ex[n] and ey[n] are generated by the
difference equations.,e error signal ex[n] is used to deduce
the travelling direction of the detected vehicle. ,e energy
signal Ey[n] is generated and passed through MAF-2. ,e
max energy EyMax represents the vehicular signature. ,e
vehicular detection is activated by generating a 2-bit de-
tection flag dF. ,e dF has the following outcomes:

Decision_00: no vehicular detected
Decision_01: vehicular just detected
Decision_11: vehicular detection is active
Decision_10: vehicle at the end of the detection

At Decision_10, the algorithm generates data outputs
(TTI, type, and count) and initializes timer and a magnetic
sensor.

5. Experiment

Data collection to evaluate SDA-II was conducted through
on-site real-time experiments at the designated road segment
with two wireless sensor nodes and a single sink node
(KiliNode). KiliNode is a sensor node designed at the Uni-
versity of Dar es Salaam, integrated with powerful features
such as a 16-bit PIC24fj128G006 MCU, a 16-bit Sigma-delta
ADC, a 120 nTresolution AMR sensor, a CC2520 transceiver
unit, a 0.6W solar panel, and a 100F supercapacitor [16]. ,e
data outputs were captured in different setups, with/without
passing vehicles, at various speeds, and during normal or
congested conditions. ,e vehicular manual count and type
identification were used to evaluate the algorithm.

5.1. Experiment Setup. Figure 2 shows the experiment
setups, where two sensor nodes are localized on the sides of
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Sensor node 1 Sensor node 2

(a)

Sensor node 1

(b)

(c)

Sink node

(d)

Figure 2: On-site real-time experiment setups. ,e two sensors communicate with the sink node wirelessly which is situated at 100m away.
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Figure 3: SDA-II Finite state-flow machine.
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the road segment communicating wirelessly with a sink
node. ,ey transmit traffic flow information to the sink
node (gateway). Figure 2(a) shows a wide-view of sensor
nodes, depending on the size of the passing vehicle. Each
node sensed its nearest lane. Figure 2(b) shows a close view
at the sensor node. Each node is installed 1 m away from
the vehicle and 1 m above the ground. Figure 2(c) shows
the sensor node hardware based on KiliNode and
Figure 2(d) shows the sink node interfaced to a computer
for storing real-time traffic flow data. ,e sensor nodes
transmit traffic flow data wirelessly to the sink node. A
small saloon car is used to validate the operation in various
scenarios.

5.2. Experiment Observation. ,ere were various experi-
mental observations on data collected, used to plot the
subsequence graphs.

Figure 4 depicts Earth’s magnetic fields before and after
being filtered by a MAF-1 when no vehicle is passing by.,e
truncation of high frequencies from the filtered signal is
evident.

Figure 5 depicts Earth’s magnetic field energy signal
when no vehicle is passing by. ,e error signal is filtered by
MAF-2. No filtered Ey[n] greater than the baseline threshold
is detected.

Figure 6 depicts distorted Earth’s magnetic field when a
vehicle is passing by. ,e distorted signal shows that there is
a vehicle passing.

Figure 7 depicts Ey[n] of a passing vehicle. It shows
vehicular detection marking its start and end, EyMax, and
travel time observed by the sensor node.

,e anatomy of the graph in Figure 7 illustrates the
vehicular signatures that inter and leave the sensor zone.,e
sensor measured the travelled time TT and the maximum
energy level EyMax of the vehicle.

6. Performance Evaluation of SDA-II

,e energy consumption in SDA-II was dramatically
minimized by 6–8%. ,is is achieved by the following two
improvements: reduced number of sensing units to two in x-
y directions and reduced computational activities by
implementing lightweight moving-average filters. Hence,
the sensor node operation depends on energy harvesting.
Magnetic field sensitivity increased due to the introduction
of the set/reset magnetic sensor. ,e introduction of
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moving-average filters minimized errors in vehicular
detection.

7. Conclusion

,is research proposes a novel vehicular traffic flow algo-
rithm (SDA-II) based on magnetic WSNs. ,e work vali-
dated the vehicular detection by magnetic wireless sensor
nodes installed on the roadside. ,e validation was per-
formed by various real-time experiments. ,e proposed
signal-processing algorithm captured the input signal and
processed and generated vehicular traffic flow data. ,e
novel algorithm is based on the time-domain moving-av-
erage model. Moving-average filters improved the SDA-II
operations, especially during the low congested conditions.
,e research suggested that future work should be carried
out in the frequency domain at the expense of high pro-
cessing power and energy requirements. In general, when
the vehicle is moving along the road, it disturbs the ambient
Earth’s magnetic field and its characteristic frequency
resulting in frequency distortions. ,e frequency-domain
analysis assumed to clearly show the distorted frequencies
and power spectrum, which corresponds to the vehicular
type. Frequency-domain analysis has additional advantages
over time-domain analysis, due to the constraints such as
processing power, huge memory, and digital signal pro-
cessor requirement. ,erefore, it is considered for further
research.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.
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