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Aiming at the problems that the strategy of target bit allocation at the CTU layer has deviations from the human subjective
observation mechanism, and the update phase of parametric model has a higher complexity in the JCTVC-K0103 rate control
algorithm of ITU-T H.265/high efficiency video coding (HEVC) standard. Optimized rate control (ORC) algorithm of ITU-T
H.265/HEVC based on region of interest (ROI) is proposed. Firstly, the algorithm extracts the region of interest of video frames
based on time and space domains by using the improved Itti model. -en, the weight of target bits w is recalculated based on
space-time domains to improve the rate control accuracy, and the target bits are distributed based on ROI by the adaptive weight
algorithm once again to make the output videos more attuned with the human visual attention mechanism. Finally, the quasi-
Newton algorithm is used to update the rate distortion model, which reduces the computational complexity in the update phase of
the parametric model. -e experimental results show that the ORC algorithm can obtain a better subjective quality in the
compressed results with less bit error compared with the other two algorithms. Meanwhile, the rate distortion performance of the
ORC algorithm is better on the premise of guaranteeing rate control performance.

1. Introduction

With the improvement of videos in the aspects of clarity and
quality, the traditional video coding standard already cannot
meet the coding requirements of high resolution videos. In
order to catch up with the developed trend of high resolution
videos and the requirements of coding technology, the video
coding joint working group JCT-VC (Joint Collaborative
Team on Video Coding) has developed a new video coding
standard based on ITU-T H.264/AVC in 2010, named ITU-
T H.265/High Efficiency Video Coding (HEVC) standard
[1]. -e rates can be reduced by more than 50% of ITU-T
H.265/HEVC compared with ITU-T H.264/AVC. In the
transmission process of high-resolution videos, the higher
requirements are proposed for network bandwidth in order
to avoid compressed coding stream in the buffer of limited
bandwidth from overflow and to ensure a reasonable bit
allocation strategy to generate videos with minimum loss of
rate distortion performance. JCT-VC has proposed two

solutions to control the rates of ITU-T H.265/HEVC, the
JCTVC-H0213 rate control algorithm based on R − Q

model, and the JCTVC-K0103 rate control algorithm based
on R − λ model, which are the most representative [2]. -e
JCTVC-K0103 rate control algorithm has better rate control
effects and less fluctuation of bits compared with the
JCTVC-H0213 rate control algorithm. However, the
JCTVC-K0103 rate control algorithm does not consider the
characteristics of video content in the process of bit allo-
cation at the CTU layer, which causes the inaccurate results
of bit allocation to affect the quality of output videos and the
accuracy of the rate control algorithm. At the same time, the
gradient descent algorithm in the update phase of rate
distortion model has high computational complexity, which
increases the complexity of rate control algorithm. -ere-
fore, optimizing the JCTVC-K0103 rate control algorithm to
improve the compression performance under the premise of
guaranteeing the performance of rate control algorithm has
become a hot point in the coding area of videos.
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Aiming at the shortcomings of K0103 rate control al-
gorithm, many scholars have done a lot of research at home
and abroad, which appears in the aspects of the complexity
measurement of CTU and the computational load of
parametric model. In the aspect of the complexity mea-
surement of CTU, Guo et al. [3] proposes a method which
calculates the complexity of CTU based on the pixel sta-
tistical methods, but the bits allocated will have a large error
of video sequences with severe local motion. In [4], SATD is
taken as the measurement of complexity, which ignores the
relevant characteristics of video content. In [5], differential
histograms are adopted to measure the complexity of CTU,
which has the uncertainty of the selection for threshold in
different video sequences.-e above algorithms improve the
accuracy of complexity of CTU to a certain extent, but the
overall performance of rate control algorithms is not im-
proved obviously. In the aspect of the computational load of
parametric model, in [6], the rate distortion of the para-
metric model is improved, but the adaptability is poor when
the scenes of videos are transforming, and the computational
load is also large. In [7], the gradient descent method is
improved in the original parametric model, but with the
increment of iterations, the computational load is also in-
creasing gradually. -e above algorithms improve the
performance of the parametric model to a certain extent, but
the computational load reduced is not obvious.

-e above algorithms are improved unilaterally from the
complexity measurement of CTU and the computational
load of the parametric model. -e overall performance of
optimized rate control algorithms is not obvious. In this
paper, the rate control algorithm is optimized between the
complexity measurement of CTU and weight assignments of
bits at the CTU layer and the computational load of para-
metric model. Firstly, the improved Itti model is used to
extract ROI of video frames. -en, the complexity at the
CTU layer is calculated based on ROI, and the adaptive
weight algorithm is used to redistribute the target bits
combining with the complexity of CTU, which makes the
output videos more attuned with human visual attention
mechanism. Finally, the quasi-Newton method is used to
update the parametric model, which reduces the compu-
tational load of the update phase of the parametric model.
-erefore, the overall performance of rate control algorithm
is improved.

2. Analysis of Algorithms

2.1. JCTVC-K0103 Rate Control Algorithm. -e JCTVC-
K0103 rate control algorithm allocates reasonable number of
bits to each coding layer, given certain target rates based on
the R − λmodel, to optimize the coding performance, which
includes the following two steps specifically:

(1) Performing target bit allocation of GOP layer, image
layer, and CTU layer hierarchically according to
target bit rate

(2) -e quantization parameter QP is determined by the
R − λ − QP model according to target bit allocation
corresponding to the hierarchy

2.1.1. Target Bit Allocation at the CTU Layer. -e bit allo-
cation of each layer in the K0103 rate control algorithm is a
dynamic process. It is necessary to refer to the actual number
of bits in the current coding layer when performing the
allocation of target bits in the next layer and to ensure that
the number of target bits allocated of current coding layer is
smaller than the total number of target bits allocated. -e
implementation process of target bit allocation at the CTU
layer is as follows.

After the number of bits is allocated at the image layer,
the target bit allocation of CTU layer depends on parameter
Ri, the number of target bits per frame. And equation (1) [2]
of target bit allocation at the CTU layer is as follows:

RCTU �
Ri − Rheader − Rcompic

􏽐
NL

c�k Wc

Wk, (1)

where Rheader represents the information of data header
encoded, which includes the GOP flag bit, the frame flag bit,
and so on; Rcompic represents the actual number of bits of
CTU encoded in the current frame; NL represents the total
number of CTU in the current frame, c � [1, NL]; Wk

represents the weight of bit allocation in the kth CTU; Wc

represents the weight of bit allocation of the cth CTU.
In the process of bit allocation at the CTU layer, the

weight Wk of bit allocation of each CTU affects the com-
pressed quality of videos directly. In the K0103 rate control
algorithm, the weight allocated Wk can reflect the texture
complexity of current CTU. Generally, CTU with high
texture complexity need to be allocated more bit rates, and
the value Wk should be larger at this time; CTU with low
texture complexity need to be allocated less bit rates, and the
value Wk should be smaller at this time. -e K0103 rate
control algorithm uses the mean absolute difference (MAD)
to characterize the texture complexity of current CTU based
on this strategy [8]. Equation (2) is as follows:

MAD �
1

M · N
􏽘

M− 1

x�0
􏽘

N− 1

y�0
I(x, y) − I′(x, y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (2)

where M and N represent the width and height of current
CTU, respectively; I(x, y) represents the pixel value of
current CTU; I′(x, y) represents pixel value reconstructed
of current CTU.

According to the definition of MAD, the predicted value
of MAD is only taken as the weight of target bit allocation in
the process of target bit allocation at the CTU layer, and the
accuracy is low, which affects the compressed quality of
videos ultimately. -erefore, the weight of bit allocation at
the CTU layer needs to be adjusted.

2.1.2. Implementation of Target Bit. -e purpose of imple-
mentation of target bit is converting the value of target bit
allocation into the value of quantization parameter QP, and
the compression ratio and the final encoding rate are de-
termined by QP. After the value of quantization parameter is
determined, it is necessary to update the parameters and
adjust the relevant parameters. -e implementation process
of target bits is completed at the image layer and CTU layer,
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and the implementation ideas are same basically. -e
implementation steps of target bits at the CTU layer are as
follows:

-e K0103 rate control algorithm uses the R − D hy-
perbolic model to simulate the relationship between rate and
distortion:

D � CR
− K

, (3)

where D represents the distortion values, C and K represent
the parameters related to the characteristics of video content,
andR represents the value of target bit allocation. In the rate-
distortion optimization theory, the Lagrangian multiplier λ
represents the absolute value of tangent slope in the rate-
distortion curve, and the derivative of equation (3) is as
follows:

λ � −
zD

zR
� C · K · R

− K− 1
� α · R

β
, (4)

where α � C · K, β � − K − 1, and α and β represent the
parameters related to the characteristics of video content. A
large number of experimental studies have shown that [9]
there is a linear relationship between the quantization pa-
rameter QP and the Lagrangian multiplier λ:

QP � 4.2005 ln λ + 13.7122. (5)

Under the premise of target rates known, the QP can be
determined by adjusting α and β. In the implementation
process of target bits at the image layer or CTU layer, the
relationship between λ and the value of target bits satisfies:

λ � α · bppβ, (6)

where bpp represents the average number of bits per pixel in
the image or CTU determined by the value of target bit
allocation at the image layer or CTU layer. In the deter-
mining process of QP, λ can be determined by α and β firstly,
and the relationship between λ and QP determines the
quantization parameter QP.

After performing encoding work of the current image or
CTU, the parameters α and β are adjusted according to the
actual number of bits encoded in the current image or CTU.
-e updating methods of parameters α and β are specifically
as follows:

λcom � αold · bpp′( 􏼁
βold ,

αnew � αold + 0.1 · ln λold − ln λcom( 􏼁 · αold,

βnew � βold + 0.05 · ln λold − ln λcom( 􏼁 · ln bpp′,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where λcom represents the Lagrangian multiplier of image or
CTU encoded, λold represents the Lagrangian multiplier of
current image or CTU, αold and βold are the parameter values
of current image or CTU, bpp′ represents the average
number of bits per pixel in the image or CTU determined by
the value of target bit allocation at the current image layer or
CTU layer, and αnew and βnew represent the values updated
of parameters encoded.

-e K0103 rate control algorithm uses the gradient
descent method to update and adjust the parameters α and β.

However, the gradient descent method has a slow conver-
gence rate, which leads to higher computational complexity
for K0103 algorithm, and it is not conducive to practical
application.

3. Extraction of ROI from Videos Based on
Improved Itti Algorithm

To address the deficiencies of the Itti algorithm such as
incomplete ROI of image and the edge blur, this paper
improves the Itti algorithm to extract the ROI of video
sequences based on picture contents in both spatial and
temporal domains. First, the algorithm extracts texture and
shape features in the spatial domain and extracts motion
feature in time domain on the basis of the extraction of
brightness, color, and orientation features. -en, the nor-
malized step and the cross-scale step of Itti model are
adopted to generate six single-feature salient maps, the
brightness feature maps, the color feature maps, the ori-
entation feature maps, the texture maps, the shape feature
maps, and the motion feature maps. Finally, the information
entropy theory is used to acquire the weights of six single-
feature salient maps adaptively, and the cross-scale fusion is
carried out to extract the final ROI of video sequences.

3.1. Texture Feature. -e characteristics of human visual
system (HVS) indicate that [10] human eyes have different
attention to different regions in the image, and the texture-
rich regions or the moving objects in the image are more
likely to attract the attention of human eyes. -e texture
feature is extracted as a subfeature of the Itti model in this
paper. Chiranjeevi and Sengupta [11] propose that the
structural tensor matrix can represent the texture feature of
image well, but the problem of inaccurate positioning of
location exists. As a result of the isotropic Sobel operator
having more accurate weighted coefficients of position, the
isotropic Sobel operator is used to improve the structural
tensor matrix to extract the texture feature of video frames,
and the directional templates of isotropic Sobel operator are
shown in Figure 1.

For the image I(x, y), let Ix and Iy represent the hor-
izontal gradient and vertical gradient of image, respectively.
-en, the structural tensor matrix M of image is

M �
I11 I12

I21 I22
􏼢 􏼣, (8)

where I11 � I
2
x, I12 � I21 � IxIy, and I22 � I

2
y.

Calculating the horizontal gradient Gx and the vertical
gradient Gy of isotropic Sobel operator according to Fig-
ure 1. -e calculation equations are as follows:

Gx � Pi+1,j− 1 +
�
2

√
× Pi+1,j + Pi+1,j+1 − Pi− 1,j− 1 −

�
2

√
× Pi− 1,j

− Pi− 1,j+1,

Gy � Pi− 1,j+1 +
�
2

√
× Pi,j+1 + Pi+1,j+1 − Pi− 1,j− 1 −

�
2

√
× Pi,j− 1

− Pi+1,j− 1,

(9)
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where Gx and Gy are replaced with Ix and Iy, respectively,
and I11 � G2

x

−

, I12 � I21 � GxGy, and I22 � G
2
y. Since the

eigenvalues λ1 and λ2 can represent the overall trend of
grayscale in the window and the contrast in the direction of
eigenvector in the structural tensor matrix, the consistency T

of video frames can be calculated by λ1 and λ2:

λ1,2 �
I11 + I12 ±

���������������

I11 − I12( 􏼁
2

+ 4I212

􏽱

2
,

T � λ1 − λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

���������������

I11 − I12( 􏼁
2

+ 4I212

􏽱

.

(10)

According to the central-peripheral difference algorithm
(C-S algorithm) of the Itti model [12], the calculation for-
mula of texture feature maps T(c, s) obtained by the con-
sistency T of video frames is

T(c, s) � |T(c) Θ T(s)|, (11)

where c ∈ 2, 3, 4{ } represents the center of receptive field, s �

c + δ (δ ∈ 3, 4{ }) represents the periphery of the receptive
field, and Θ represents the difference operator among
different scale feature maps.

-e normalized function N(·) is used to perform cross-
scale fusion of six texture feature maps to form a single-
feature salient map T:

T � ⊕
4

c�2
⊕

c+4

s�c+3
N(T(c, s)). (12)

In summary, the texture feature salient map can be
obtained.

3.2. Shape Feature. Aiming at the problem that the edges of
salient maps are blur by the Itti algorithm, many scholars
have done a lot of research. Long and Wu [13] adopts the
improved Canny operator to extract the shape feature to
locate the edges of salient maps accurately, but the com-
putational load is large. In this paper, the boundary function
is used to analyze the consistency of shape. -e SUSAN
corner detection algorithm is used to extract the shape
feature of video frames based on the idea of corner point; the
corner detection algorithm has the advantages of simple
calculations, accurate positioning, and strong antinoise
ability compared with the traditional edge detection algo-
rithms and Harris corner algorithm, KLT corner algorithm,
Kitchen–Rosenfeld algorithm, and so on [14].

-e steps that the SUSAN corner detection algorithm
extracts the shape feature as follows:

(1) Firstly, defining a graphic template containing 37
pixels to slide on the video frames and determining
whether the pixel belongs to the USAN region. -e
discriminant is as follows:

c r, r0( 􏼁 �
1, I(r) − I r0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ t,

0, I(r) − I r0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> t,

⎧⎨

⎩ (13)

where r represents the length of neighborhood pixels from
the central point, r0 represents the point of central location,
and t represents the value of similarity demarcation.
In order to obtain more stable results, the similarity
calculations of pixel points are performed in the fol-
lowing equation:

c r, r0( 􏼁 � e
− I(r) − I r0( )( )/t( )

6

. (14)

(2) Calculating the total similarity n(r0),

n r0( 􏼁 � 􏽘

r∈D r0( )

c r, r0( 􏼁,
(15)

where D(r0) represents the area of graphic template
centered on r0.

(3) According to n(r0) obtained, the initial corner points
are determined by using the corner response
function:

R r0( 􏼁 �
g − n r0( 􏼁, n r0( 􏼁<g,

0, n r0( 􏼁≥g,
􏼨 (16)

where g is introduced to eliminate the effects of
noise.

(4) A final set of corner points S is obtained by the
operation of nonmaximum suppression among the
initial corner points:

S � xi, yj􏼐 􏼑􏽮 􏽯, i � 1, . . . , M; j � 1, . . . , N, (17)

–1 0 1

–1 0 1

–√2 0 √2

(a)

–1 –√2 –1

1 √2 1

0 0 0

(b)

Figure 1: -e directional templates of isotropic sobel operator. (a) Horizontal gradient direction. (b) Vertical gradient direction.
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where xi and yj represent the coordinates of corner
points, respectively, and M and N represent the
width and height of video frames, respectively.

(5) Since the boundary function can describe the border of
objects, the elements which are in the set of corner
points S mentioned are brought into the coordinate
function δ(k), and the coordinate function is convolved
with the Gaussian kernel linearly at the scale σ to obtain
the boundary function δ(σ, k) corresponding to the set
of corner points. -e boundary function δ(σ, k) is
taken as a measure of shape feature in this paper:

δ(k) � x(k) − Oa(k) − Ob􏼂 􏼃, k � 1, . . . , N,

δ(σ, k) � [x(k)∗g(σ), y(k)∗g(σ)],
(18)

where N represents the length of border, (Oa, Ob)

represents the center of regions, and g(σ) represents
the Gaussian kernel function at the scale σ.

(6) According to the C-S operation, the calculation
formula of shape feature maps obtained by the
boundary function δ(σ, k) is as follows:

δ(c, s) � |δ(c)Θ δ(s)|. (19)

(7) -e normalized function N(·) is used to perform the
cross-scale fusion of six shape feature maps to form a
single-feature salient map δ

−

:

δ � ⊕
4

c�2
⊕

c+4

s�c+3
N(δ(c, s)). (20)

In summary, the shape feature salient map can be
obtained.

3.3. Motion Feature. Aiming at the problem that the salient
maps extracted by Itti model are incomplete, a large number
of scholars have studied it. Jalink [15] proposes to improve
the integrity of salient maps by using the MoSIFT algorithm
to calculate the motion feature, but the MoSIFT algorithm
has high computational complexity, which affects the real-
time in the extracted process of salient regions. -e human
visual mechanism indicates [10] that the description of
moving objects by human eyes is localized and the de-
scription of feature points by the SURF algorithm is also
localized.-erefore, the description of motion feature by the
SURF algorithm is more attuned with the human visual
attention mechanism. -e SURF algorithm is used to im-
prove the MoSIFT algorithm to extract motion feature of
video frames based on the idea in this paper, which reduces
the computational complexity of the MoSIFTalgorithm and
obtains more stable motion feature.-e steps of the MoSIFT
algorithm are shown in Figure 2.

-e steps of extracting motion feature by the improved
MoSIFT algorithm are as follows:

(1) In the construction phase of Hessian matrix, the
SURF algorithm uses Hessian matrix to extract the
feature points. Since the elements which are in the
Hessian matrix are calculated by second-order Taylor
expansion, the computational complexity is high.
Based on the theory of linear scale space (LOG), the
derivation of function is equal to the convolution
between the function and the derivative corre-
sponding to the Gaussian function. And, the ele-
ments in the Hessian matrix are calculated by

zf(x, y)

zx
� f(x, y)∗

zG(x, y)

zx
, (21)

where f(x, y) represents a quadratic function cor-
responding to the image and G(x, y) represents a
Gaussian function corresponding to the quadratic
function.

(2) -e SURF algorithm is used for downsampling.
Compared with the SIFT algorithm, the SURF al-
gorithm keeps the size of frames unchanged and
changes the size of filter for downsampling, which
reduces the computational complexity in the process
of downsampling. Each pixel processed by Hessian
matrix is compared with 26 pixels in the two-di-
mensional image space and the neighborhood scale
space, which locates the preliminary key points and
filters out the key points with weak energy and error
location to determine the final stable SURF feature
points D(φi, θ), i � 1, . . . , 64. In the determination
stage of direction of feature points, the total points of
horizontal and vertical Harr wavelet feature in the
60-degree fan are counted in the circular neigh-
borhood of feature points, and the direction of the
longest vector is selected as the direction of feature
points by traversing the entire image. -e optical
flow D(φj, θ), j � 1, . . . , 64 corresponding to the
scale of SURF is calculated according to Figure 2.

(3) Combining the SURF feature points with the optical
flow to extract the descriptors of feature points

Enter video frames

Local extreme point in DoG space Optical flow calculation of SIFT

Multiscale pyramid

Feature points of MoSIFT

Feature descriptor of MoSIFT

Figure 2: -e flow chart of the MoSIFT algorithm.

Journal of Electrical and Computer Engineering 5



D(φk, θ), k � 1, . . . , 64, which are regarded as mo-
tion features in this paper, we get

D φk, θ( 􏼁 � ω1 · D φi, θ( 􏼁 + ω2 · D φj, θ􏼐 􏼑, (22)

where ω1 and ω2 represent weights which are con-
stants, and the motion feature are obtained by
weighting the 64-dimensional vector of SURF and
the corresponding 64-dimensional vector of optical
flow. -e specific description is that the values cal-
culated by 64-dimensional Harr wavelet feature in
SURF and the values calculated by the corresponding
64-dimensional Harr wavelet feature in optical flow
are weighted to compose the 64-dimensional feature
descriptors.

(4) According to the C-S operation, the calculation
formula of motion feature maps obtained by the
feature descriptors D(φi) is as follows:

D(c, s) � |D(c)ΘD(s)|. (23)

(5) -e normalized function N(·) is used to perform the
cross-scale fusion of six motion feature maps to form
a single feature salient map D:

D � ⊕
4

c�2
⊕

c+4

s�c+3
N(D(c, s)). (24)

In summary, the motion feature salient map can be
obtained.

3.4. Feature Fusion Based on Adaptive Weight. -e Itti al-
gorithm adopts the mean method to assign weights to each
single feature salient map, which ignores the contribution of
each feature salient map to the final salient map, which
affects the overall performance of feature salient map
merged. Shannon’s information entropy theory [16, 17] can
describe the overall statistical characteristics of source ob-
jectively, which can describe the contribution rate of the
current impact factor to the whole. -is paper determines
the adaptive weight coefficient of each single feature salient
map based on the information entropy theory, which can
improve the accuracy of video frames merged.

Let a random variable of a single feature salient map is
I(Ai), i � 1, . . . , n and its information entropy can be
represented by

H(X) � 􏽘

n

i�1
P Ai( 􏼁log2

1
P Ai( 􏼁

, (25)

where P(Ai) represents the probability when removing the
ith signal and H(X) represents the information entropy of
single feature salient map.

-e values of information entropy of the brightness
feature salient maps I

−

, the color feature salient maps C
−

, the

orientation feature salient maps O, the texture complexity
salient maps T, the shape feature salient maps δ

−

, and the
motion salient maps D obtained are calculated according to
equation (25), respectively, shorted for H1, H2, H3, H4, H5,
and H6. -e adaptive weight coefficient αi is calculated as
follows:

αi �
Hi

H
(i � [1, 6]), (26)

where H represents the sum of H1, H2, H3, H4, H5, and H6,
where 􏽐

6
i�1 Hi � 1.

-e calculation formula of the final salient map is

S � α1 × N(I) + α2 × N(C) + α3 × N(O) + α4 × N(T)

+ α5 × N(δ) + α6 × N(D).

(27)

In summary, the extraction of ROI of video frames can
be completed, which solves the problem that the Itti model
extracts the incomplete ROI and the positioning edge is blur.
In order to verify the effectiveness of the above algorithm,
three pictures from MSRA, the 208th frame of the tennis
sequences, and the 25th frame of the basketball sequences
provided by JCT-VC are used to perform experiments
comparatively for the ORC algorithm, the Itti algorithm
[18], the GBVS algorithm [19], the SR algorithm [20], the FT
algorithm [21], the CAS algorithm [22], and the LC algo-
rithm [23].

As shown in Figure 3, the ORC algorithm can extract the
ROI in the image or video frame accurately. And, the ORC
algorithm performs better in terms of the integrity of ROI
extracted and the positioning accuracy of edge in the ROI
compared with the other six algorithms, which proves the
effectiveness of the ORC algorithm.

4. Target Bit Allocation of CTU Layer Based on
Space-Time Domain

Aiming at the problem thatMAD used as the weight index of
CTU cannot measure the complexity of current CTU ac-
curately in the process of target bit allocation, many scholars
have studied it. Khoshnevisan and Salmasi [24] propose to
take the gradient as the weight index of CTU, but ignored the
contribution of influencing factors in time domain. Studies
have shown that [25] the gradient of each pixel in the frame
has a linear relationship with the bits allocated. -e bits bpp
allocated of CTU are taken as the allocated weight of the
complexity of space-time domain based on ROI, the gradient
T is used to measure the complexity of CTU, and the weight
of bit allocation ω is redistributed at the CTU layer, which
improves the accuracy of rate control algorithm. -en, the
weight of bit allocation ω of CTU layer is distributed once
again by the adaptive weight algorithm, which makes the
output videos more attuned with human visual attention
mechanism.

As a result of human eyes being sensitive to the gradient
information in the image, we take gradient T as a measure of
complexity of current CTU:
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T �
􏽐

M
i�1 􏽐

N
j�1 Ii,j − Ii+1,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Ii,j − Ii,j+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

M × N
,

(28)

where M and N represent the height and width of current
CTU, respectively, and Ii,j represents pixel value of the
component of brightness at the position (i, j) of CTU.

In equation (6), bpp represents the average number of
bits per pixel in the image or CTU determined by the value of
target bit allocation at the current image layer or the CTU
layer; we take bpp as the average number of bits per pixel in
the CTU determined by the value of target bit allocation at
the current CTU layer. -e average number of bits bpp of
current CTU is as follows:

bpp �
bppcf
NT

, (29)

where bppcf represents the total number of target bits in the
current frame and NT represents the total number of CTU in
the current frame.

As a result of the CTU of current frame and the CTU of
adjacent frame having the similar texture feature, the

complexity of current CTU is measured by the complexity of
current CTU and the complexity of CTU corresponding to
the adjacent frame. -e weight of bit ωnew allocated of
current CTU is

ωnew � bppcur × Ccur + bppnei × Cnei, (30)

where bppcur represents the average number of bits allocated
for the CTU in current frame, bppnei represents the average
number of bits allocated for the CTU in adjacent frame
corresponding to the current CTU, Ccur represents the
texture complexity obtained of current CTU according to
equation (28), and Cnei represents the texture complexity
obtained of CTU corresponding to adjacent frame according
to equation (28).

-e redistribution of weight of bits at the CTU layer can
be achieved by following the above steps.

-e human visual attention mechanism indicates that
the attentiveness of human eyes from video frames is dis-
tributed in the central regions, while the attentiveness of
human eyes from the peripheral regions of video frames is
small [10]. We adjust the weight allocated to the target bits at

Original 
picture 

SR 
algorithm 

FT 
algorithm 

LC 
algorithm 

CAS 
algorithm 

GBVS 
algorithm 

Itti 
algorithm 

ORC 
algorithm 

Figure 3: Experimental extraction results of ROI by seven algorithms.
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the CTU layer to realize the redistribution of target bits once
again based on the idea.

According to Figure 4, we determine the central coordi-
nates (x1, y1) of CTU in the current frame and the central
coordinates (x2, y2) of CTU coding in the current frame firstly,
and the Manhattan distance is used to determine the weight of
CTUα in the ROI and the weight of CTUβ in the RONI in the
current frame. -e calculation formula is as follows:

α � x1 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + y1 − y2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, CTU ∈ ROI,

β � x1 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + y1 − y2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, CTU ∈ RONI.

⎧⎨

⎩ (31)

After the weights α and β are obtained, equation (32)
designed is used to adjust the weight ωnew once again:

ωn � ωnew × 1 −
α

α + β
􏼠 􏼡. (32)

In summary, the calculation of weight of bits at the CTU
layer can be completed.-emore bits are allocated to ROI of
high texture complexity in the compressed frames, and the
less bits are allocated for RONI of low texture complexity in
the compressed frames, whichmakes the output videos more
attuned to human visual attention mechanism.

In order to verify the effectiveness of theORCalgorithm, the
25th frame of the BasketballPass sequences and the 208th frame
of the tennis sequences provided by JCT-VC are used for the
experiment. Figure 5 shows the experimental results of theORC
algorithm and the K0103 algorithm of the HM10.0 model.

(a) -e original image of the 208th frame of Tennis
sequences

(b) -e experimental result of the K0103 algorithm
(c) -e experimental result of the ORC algorithm
(d) -e 25th frame of BasketballPass sequences
(e) -e experimental result of the K0103 algorithm
(f) -e experimental result of the ORC algorithm

From the perspective of vision, the subjective quality of
video frames compressed by the ORC algorithm is better
than the subjective quality of the K0103 algorithm in the
HM10.0 model in Figure 5.-e quality of videos compressed
is improved by the ORC algorithm. To further illustrate the
effectiveness of the ORC algorithm, the enlarged details of
the 208th frame of Tennis sequences are displayed for
comparison. Figures 6 and 7 show the results of ROI and
RONI in enlarged details.

We can see that the subjective quality of ROI by the ORC
algorithm is better than the K0103 rate control algorithm
from Figure 6.-e value of QP of CTU is 29 in Figure 6(a) by
the code stream analysis software, Elecard HEVC analyzer,
and the value of QP of CTU is 28 in Figure 6(b), which
indicates that the ORC algorithm can allocate more rates to
the ROI. We can see that the subjective quality of RONI by
the K0103 rate control algorithm is better than the ORC
algorithm from Figure 7. -e value of QP of CTU is 30 in
Figure 7(a) by the code stream analysis software, and the
value of QP of CTU is 31 in Figure 7(b), which indicates that
the ORC algorithm reduces the allocation of rates to the

RONI. On the basis of above analysis, it is verified that the
ORC algorithm can redistribute the rates of RONI and ROI
in the video frames, which makes the output videos more
attuned with human visual attention mechanism.

5. Update of Parametric Model Based on Quasi-
Newton Method

Aiming at the JCTVC-K0103 rate control algorithm
adopting the gradient descent method to update the para-
metric model with the problem of slow convergence speed
and high computational load, Li et al. [26] propose to use the
Newton method to update the parametric model, which
reduces the complexity of rate control algorithm to some
extent, but the calculation load is still large and the overall
performance is improved limited in the updated phase of the
parametric model. -is paper introduces the quasi-Newton
method to update the parametric model and uses the BFGS
algorithm to update the positive definite matrix Bn ap-
proximated to the inverse of Hessian matrix, which reduces
the computational load of the parametric model.

-e quasi-Newtonmethod is used to solve the optimization
problems usually. -e basic idea is to take the optimal solution
of quadratic model as search direction, which obtains a new
iterative point xn+1, and update Bn in the each iteration. -e
iterative equation of quasi-Newton method is as follows:

xn+1 � xn − λH
(− 1)
n ∇f x

(n)
􏼐 􏼑, (33)

where xn represents the nth iterative point, xn+1 represents
the (n+ 1)th iterative point, λ represents a constant, and Hn

represents a positive definite matrix approximated to the
inverse of Hessian matrix.-e specific implementation steps
of the ORC algorithm are as follows:

(1) In the implementation process of target bits, the re-
lationship between rate and distortion is shown in
equation (3). According to equation (3), the distortion
value D1 estimated from the target bit rate and the
actual coding distortion value D2 are as follows:

D1 � C1 × R
− k1
1 , (34)

D2 � C2 × R
− k2
2 , (35)

(X2, Y2)

(X1, Y1)

Figure 4:-e schematic diagram of distance between current CTU
and central CTU.
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where C1 and k1 represent parameters related to the
characteristics of video content before the para-
metric model is updated; C2 and k2 represent pa-
rameters related to the characteristics of video
content after the parametric model is updated; R1
and R2 represent target bit rate and actual bit rate,
respectively.

(2) Taking the logarithm of equations (34) and (35),
respectively,

lnD1 � lnC1 − k1 lnR1, (36)

lnD2 � lnC2 − k2 lnR2. (37)

(a) (b)

Figure 6: -e comparison charts of ROI in detail. -e compressed result of (a) K0103 algorithm and (b) ORC algorithm.

(a) (b)

(c) (d)

(e) (f )

Figure 5: -e experimental results between the K0103 algorithm and the ORC algorithm.
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-e error e2 between the value of actual coding dis-
tortion and the value of distortion estimated by the
target bit rate from equations (36) and (37) are as
follows:

e
2

� lnD1 − lnD2( 􏼁
2
,

e
2

� lnC2 − k2 lnR2 − lnC1( 􏼁
2
,

(38)

where C � lnC2 and C1 � D1. And, taking the deriv-
ative of C and k2, respectively,

ze2

zC
� 2 · C − k2 lnR2 − lnC1( 􏼁,

ze2

zk2
� − 2 lnR2 · C − k2 lnR2 − lnC1( 􏼁.

(39)

(3) Performing the iteration by quasi-Newton method
according to equation (33), we get

C2 � C1 − 2λH
− 1
n · lnC2 − k2 lnR2 − lnC1( 􏼁, (40)

k2 � k1 + 2λH
− 1
n · lnC2 · lnR2 − k2ln

2
R2􏼐

− lnC1 lnR2􏼁.
(41)

As we can see from equation (4), α � C · k, β � − k − 1,
then

αold � C1 · k1,

βold � − k1 − 1,
􏼨 (42)

αnew � C2 · k2,

βnew � − k2 − 1,
􏼨 (43)

where αold and βold represent the parameters while
determining the quantization parameter QP and
αnew and βnew represent parameters updated. -e
parameters αnew and βnew updated can be obtained by
simultaneous equations (40)–(43).

(4) Selecting Bn as the approximation of H− 1
n according

to the following conditions of quasi-Newton
method, we get

yn � Hn · δn, (44)

where δn � xk+1 − xk and yn � gn+1 − gn, gn represents the
first derivative of target function at xn. In this paper, the
BFGS algorithm is used to calculate Bn, and the performance
and accuracy of BFGS algorithm are higher compared with
the DFP algorithm and the Broyden algorithm.-e equation
of Bk+1 is as follows:

Bk+1 � Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

, (45)

where sk � xk+1 − xk, yk � ∇f(xk+1) − ∇f(xk), and the
positive definite matrix generated satisfies the following
equation:

minB B − Bk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

s.t. B � BT,

B · sk � yk.

(46)

In summary, the updated process of α and β can be
achieved. In order to verify the performance of the improved
algorithm compared with the K0103 rate control algorithm
of the HM10.0 model, five different test sequences provided
by JCT-VC with 200 frames selected are experimented,
which are under the two configuration files of the type of low
delay LDMmain and the type of random access RAMmain.
And, the coding efficiency is measured by encoding time
saved ΔT [27, 28]. -e calculation equation of ΔT is as
follows:

ΔT �
Timepro − TimeHM10.0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

TimeHM10.0
× 100%, (47)

where Timepro represents encoding time of the algorithm in
this paper and TimeHM10.0 represents encoding time of the
K0103 rate control algorithm.

From the comparison of experimental data in Table 1, we
can see that the coding time by the algorithm in this paper is
lower than the coding time of K0103 rate control algorithm

(a) (b)

Figure 7: -e comparison charts of RONI in detail. -e compressed result of (a) K0103 algorithm and (b) ORC algorithm.
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regardless of the configuration file being LDMmain or
RAMain, which reduces the computational load in the
updated phase of the parametric model, and the algorithm in
this paper is more effective.

6. Experiment

6.1. Experimental Parameters and Evaluation Indicators.
In order to verify the validity of the algorithm in this paper,
the hardware configurations are as follows: Inter(R) Cor-
e(TM) i5-3470, the main frequency 3.2GHz, the memory
4GB; the software configurations are as follows: Microsoft
Visual Studio 2010 and OPENCV2.4.10 are used as exper-
imental platform. Simulation was performed to verify the
compression performance of the ORC algorithm in the
HM10.0 model. -e experimental data sets come from five
different levels of video sequences provided by JCT-VC. -e
configuration files are LD configuration files of the IPPP
coding structure. -e number of experimental frames is 100
frames. In order to evaluate the compression performance of
the ORC algorithm under different sequences, the compo-
nent of peak signal-to-noise ratio of brightness Y − PSNR,
the increment of the component of peak signal-to-noise
ratio of brightness ΔPSNR, the error of rate ΔBR, the peak
signal-to-noise ratio PSNR, the percentage increase of the bit
rates BDBR, and the reduction of peak signal-to-noise ratio
BDPSNR [29, 30] are used as indicators to measure the
compression performance of the algorithm in this paper.-e
equations of ΔPSNR and ΔBR are as follows:

ΔPSNR � Y − PSNRPro − Y − PSNRHM10.0,

ΔBR �
BRPro − BRTar

BRTar
× 100%,

(48)

where Y − PSNRPro represents the component of peak
signal-to-noise ratio of brightness of coded image ob-
tained by the ORC algorithm, Y − PSNRHM10.0 represents
the component of peak signal-to-noise ratio of brightness
of coded image obtained by the K0103 rate control al-
gorithm, BRPro represents the actual output rate obtained
by the ORC algorithm, and BRTar represents the target bit
rate.

6.2.Analysis ofExperimentalResults. -e performance of the
ORC algorithm in this paper is evaluated from two aspects:
compression performance and rate control accuracy. -e
experimental comparison results of the ORC algorithm, the

K0103 algorithm, and the algorithm in [31] are shown in
Tables 2 and 3, respectively, under four sets of target bit rate,
which are 500 kbps, 1Mbps, 2Mbps, and 4Mbps.

From the experimental data in Tables 2 and 3, we can see
that the range of ΔBR by the ORC algorithm is
0.000%∼0.691%, and the mean value is 0.190%. -e range of
ΔBR by the K0103 algorithm is 0.011%∼4.137%, and themean
value is 0.244%. -e range of ΔBR by the algorithm in [31] is
0.009%∼0.824%, and themean value is 0.220%.-e output bit
rates of the ORC algorithm are more in line with the target bit
rate. From the perspective of rate control accuracy, the ORC
algorithm can control the rate more accurately compared with
the K0103 algorithm and the algorithm in [31]. At the same
time, the value of Y-PSNR by the ORC algorithm is improved
by 0.065dB and 0.045 dB compared with the K0103 rate
control algorithm and the algorithm in [31], respectively. From
the analysis of compression performance, the ORC algorithm
improves the overall quality of videos while maintaining the
rate control accuracy.

In order to analyze the compression performance of the
ORC algorithm specifically, BasketballPass sequences with
complex texture and Kimono sequences with flat texture are
selected for the experiment. Figure 8 shows the comparison
results of Y-PSNR each frame among the ORC algorithm,
the K0103 algorithm, and the algorithm in [31] when
QP� 27.

We can analyze that the average value of Y-PSNR by the
ORC algorithm is larger compared with that by the K0103
algorithm and the algorithm in [31] under two sequences of
different complexities from Figure 8. -e ORC algorithm
can measure the texture complexity of video frames more
accurately, and the compression performance gets
promoted.

Table 4 shows the experimental data of PSNR in the ROI
and RONI of four different sets of video sequences with 100
frames per set under different target bit rates. As we can see
from Table 4, the average PSNR of the K0103 algorithm in
the ROI is 36.77 and the average PSNR in the RONI is 36.72.
-e average PSNR of the algorithm in [31] in the ROI is
37.07, and the average PSNR in the RONI is 36.48. -e
average PSNR of the ORC algorithm in the ROI is 37.55, and
the average PSNR in the RONI is 36.17. Compared with the
K0103 algorithm and the algorithm in [31], the average
values of PSNR increased to 0.78 dB and 0.48 dB, respec-
tively, by the ORC algorithm, which means that the ORC
algorithm has a definite advantage to improve the quality of
videos compared with the others two algorithms. At the
same time, according to the analysis of the data in Table 4, we

Table 1: -e comparison of coding time under two configuration files of LDMmain and RAMain.

Video sequences
Encoding time

LDMain RAMain
HM10.0 (t) Proposed (t) ΔT (%) HM10.0 (t) Proposed (t) ΔT (%)

NebutaFestival 117.54 115.69 1.85 104.38 101.51 2.87
Kimono 82.37 81.33 1.04 70.83 69.49 1.34
Slideshow 101.45 99.74 1.71 88.76 85.66 3.10
BasketballDrill 94.37 92.83 1.54 83.41 81.74 1.67
BlowingBubbles 36.42 35.26 1.16 28.93 26.51 2.42
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Table 2: Experimental comparison data between the ORC algorithm and the K0103 algorithm.

Target bit
rate (kbps)

HM10.0 ORC algorithm
ΔPSNR
(dB)Y-PSNR

(dB)
Actual coding bit

rate (kbps)
ΔBR
(%)

Y-PSNR
(dB)

Actual coding bit
rate (kbps)

ΔBR
(%)

2560 × 1600

Traffic

500 32.17 500.296 0.296 32.17 500.125 0.125 0.00
1000 34.41 1000.014 0.014 34.44 1000.227 0.227 0.03
2000 36.74 1999.813 0.187 36.82 2000.016 0.016 0.08
4000 38.95 4000.054 0.054 39.02 4000.108 0.108 0.07

PeopleOnStreet

500 36.83 500.301 0.301 36.88 500.136 0.136 0.05
1000 38.07 1000.065 0.065 38.12 1000.225 0.225 0.05
2000 40.24 2000.112 0.112 40.26 2000.114 0.114 0.02
4000 42.51 4000.031 0.031 42.57 4000.107 0.107 0.06

1920 × 1080

BasketballDrive

500 29.14 500.213 0.213 29.25 500.141 0.141 0.11
1000 31.41 999.784 0.216 31.48 1000.113 0.113 0.07
2000 33.57 2000.074 0.074 33.59 2000.116 0.116 0.02
4000 35.71 4000.101 0.101 35.90 4000.000 0.000 0.19

Parkscene

500 33.27 500.186 0.186 33.35 499.847 0.153 0.08
1000 35.46 1000.214 0.214 35.50 1000.218 0.218 0.04
2000 37.71 2000.103 0.103 37.77 2000.236 0.236 0.06
4000 40.35 4000.011 0.011 40.46 4000.231 0.231 0.11

1280 × 720

FourPeople

500 37.14 500.194 0.194 37.19 500.691 0.691 0.05
1000 39.93 1000.058 0.058 39.97 1000.637 0.637 0.04
2000 41.84 2000.196 0.196 41.92 2000.314 0.314 0.08
4000 43.59 4000.112 0.112 43.71 4000.105 0.105 0.12

Johnny

500 38.83 504.137 4.137 38.87 500.411 0.411 0.04
1000 41.62 999.084 0.084 41.72 999.579 0.421 0.10
2000 43.75 2000.253 0.253 43.82 2000.304 0.304 0.07
4000 46.14 4000.178 0.178 46.25 4000.225 0.225 0.11

832 × 480

BasketballDrill

500 32.13 500.129 0.129 32.15 500.117 0.117 0.02
1000 35.01 1000.095 0.095 35.05 1000.206 0.206 0.04
2000 38.26 2000.140 0.140 38.33 2000.041 0.041 0.07
4000 41.57 3999.213 0.187 41.63 4000.100 0.100 0.06

BQMall

500 29.83 500.197 0.197 29.88 500.171 0.171 0.05
1000 32.17 1000.088 0.088 32.25 1000.231 0.231 0.08
2000 35.01 2000.244 0.244 35.13 2000.036 0.036 0.12
4000 37.58 4000.185 0.185 37.65 4000.245 0.245 0.07

416 × 240

BasketballPass

500 36.84 500.050 0.050 36.90 500.045 0.045 0.06
1000 40.46 1000.188 0.188 40.48 1000.321 0.321 0.02
2000 42.97 2000.176 0.176 43.04 1999.796 0.204 0.07
4000 45.62 4000.071 0.071 45.73 4000.113 0.113 0.11

BQSquare

500 31.74 500.083 0.083 31.76 500.168 0.168 0.02
1000 34.37 1000.126 0.126 34.42 1000.112 0.112 0.05
2000 36.82 1999.765 0.235 36.85 2000.009 0.009 0.03
4000 41.13 4000.173 0.173 41.21 4000.105 0.105 0.08

Average 0.244 0.190 0.065

Table 3: Experimental comparison data between the ORC algorithm and algorithm in [31].

Target bit
rate (kbps)

Algorithm in [31] ORC algorithm
ΔPSNR
(dB)Y-PSNR

(dB)
Actual coding bit

rate (kbps)
ΔBR
(%)

Y-PSNR
(dB)

Actual coding bit
rate (kbps)

ΔBR
(%)

2560 × 1600

Traffic

500 32.16 500.294 0.294 32.17 500.125 0.125 0.01
1000 34.45 1000.018 0.018 34.44 1000.227 0.227 0.01
2000 36.78 2000.215 0.215 36.82 2000.016 0.016 0.04
4000 38.99 4000.035 0.035 39.02 4000.108 0.108 0.03

PeopleOnStreet

500 36.89 500.214 0.214 36.88 500.136 0.136 0.01
1000 38.04 1000.193 0.193 38.12 1000.225 0.225 0.08
2000 40.24 1999.245 0.756 40.26 2000.114 0.114 0.02
4000 42.53 4000.213 0.213 42.57 4000.107 0.107 0.04
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Table 3: Continued.

Target bit
rate (kbps)

Algorithm in [31] ORC algorithm
ΔPSNR
(dB)Y-PSNR

(dB)
Actual coding bit

rate (kbps)
ΔBR
(%)

Y-PSNR
(dB)

Actual coding bit
rate (kbps)

ΔBR
(%)

1920 × 1080

BasketballDrive

500 29.16 500.312 0.312 29.25 500.141 0.141 0.09
1000 31.43 1000.294 0.294 31.48 1000.113 0.113 0.05
2000 33.57 2000.183 0.183 33.59 2000.116 0.116 0.02
4000 35.81 4000.247 0.247 35.90 4000.000 0.000 0.09

Parkscene

500 33.29 500.183 0.183 33.35 499.847 0.153 0.06
1000 35.46 1000.216 0.216 35.50 1000.218 0.218 0.04
2000 37.73 1999.594 0.406 37.77 2000.236 0.236 0.04
4000 40.41 4000.214 0.214 40.46 4000.231 0.231 0.05

1280 × 720

FourPeople

500 37.15 500.204 0.204 37.19 500.691 0.691 0.04
1000 39.95 1000.157 0.157 39.97 1000.637 0.637 0.02
2000 41.88 2000.248 0.248 41.92 2000.314 0.314 0.04
4000 43.65 4000.312 0.312 43.71 4000.105 0.105 0.06

Johnny

500 38.85 504.137 4.137 38.87 500.411 0.411 0.02
1000 41.67 999.084 0.084 41.72 999.579 0.421 0.05
2000 43.75 2000.253 0.253 43.82 2000.304 0.304 0.07
4000 46.17 4000.178 0.178 46.25 4000.225 0.225 0.08

832 × 480

BasketballDrill

500 32.13 500.217 0.217 32.15 500.117 0.117 0.02
1000 35.02 1000.014 0.014 35.05 1000.206 0.206 0.03
2000 38.28 2000.178 0.178 38.33 2000.041 0.041 0.05
4000 41.60 4000.159 0.159 41.63 4000.100 0.100 0.03

BQMall

500 29.82 500.217 0.217 29.88 500.171 0.171 0.06
1000 32.18 1000.084 0.084 32.25 1000.231 0.231 0.07
2000 35.06 2000.315 0.315 35.13 2000.036 0.036 0.07
4000 37.59 4000.169 0.169 37.65 4000.245 0.245 0.06

416 × 240

BasketballPass

500 36.85 500.037 0.037 36.90 500.045 0.045 0.05
1000 40.45 999.176 0.824 40.48 1000.321 0.321 0.03
2000 42.97 2000.154 0.154 43.04 1999.796 0.204 0.07
4000 45.68 4000.013 0.013 45.73 4000.113 0.113 0.05

BQSquare

500 31.73 500.043 0.043 31.76 500.168 0.168 0.03
1000 34.39 1000.115 0.115 34.42 1000.112 0.112 0.03
2000 36.82 2000.245 0.245 36.85 2000.009 0.009 0.03
4000 41.15 4000.169 0.169 41.21 4000.105 0.105 0.06

Average 0.220 0.190 0.045

BasketballPass QP = 27
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Figure 8: Continued.
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can see that the range of PSNR by the K0103 algorithm
between ROI and RONI is 0∼0.08 dB, the range of PSNR by
the algorithm in [31] between ROI and RONI is
0.23∼1.24 dB, and the range of PSNR by the ORC algorithm
between ROI and RONI is 0.52∼2.32 dB. Compared with the
K0103 algorithm and the algorithm in [31], the ORC al-
gorithm has a larger difference of PSNR between ROI and
RONI, which indicates that the ORC algorithm canmake the
output videos more attuned with the human visual attention
mechanism.

In terms of rate distortion performance, the experi-
mental results of the ORC algorithm compared with the

K0103 algorithm and the algorithm in [31] under five cat-
egories of test sequences are shown in Tables 5 and 6.

BasketballPass QP = 27
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Figure 8: -e comparison of Y-PSNR among three algorithms. -e comparison of Y-PSNR in (a) the BasketballPass sequences, (b) the
Kimono sequences, (c) the BasketballPass sequences, and (d) the Kimono sequences.

Table 4: Experimental results among the ORC algorithm, the K0103 algorithm, and algorithm in [31].

K0103 algorithm [31] algorithm ORC algorithm
ROI RONI ROI RONI ROI RONI

BasketballDrill 1920×1080

500 29.62 29.60 29.88 29.48 30.01 29.49
1000 31.99 31.95 33.20 31.88 33.31 31.91
2000 34.01 33.95 34.91 34.19 36.24 33.93
4000 36.18 36.10 36.35 36.12 37.55 36.19

FourPeople 1280× 720

500 37.59 37.57 37.84 37.40 37.98 37.36
1000 40.39 40.39 40.62 40.24 40.71 40.21
2000 42.40 42.34 42.56 42.26 42.71 42.31
4000 44.09 44.01 45.23 43.99 36.54 36.20

BQMall 832× 480

500 30.63 30.61 30.87 30.47 32.04 30.44
1000 32.77 32.71 32.97 32.63 34.11 32.67
2000 35.63 35.55 32.77 32.51 36.99 35.59
4000 38.02 37.94 39.15 37.91 39.31 37.93

RaceHorse 416× 240

500 34.16 34.16 34.41 34.05 34.64 34.08
1000 37.33 37.31 37.57 37.25 38.77 37.27
2000 39.95 39.89 40.09 39.83 41.22 39.80
4000 43.50 43.42 44.63 43.39 45.72 43.40

Average 36.77 36.72 37.07 36.48 37.55 36.17

Table 5: Comparison of rate distortion performance by the ORC
algorithm compared with the K0103 algorithm.

Sequences BDBR (%) BDPSNR (dB)
ClassA − 25.39 0.0207
ClassB − 28.21 0.0230
ClassC − 51.63 0.0469
ClassD − 50.18 0.0547
ClassE − 33.61 0.0326
Average − 37.80 0.0356
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From the experimental comparison results in Tables 5 and
6, we can see that the increment of BDBR by the ORC al-
gorithm is reduced by 37.80% and 35.34% on average and the
loss of BDPSNR by the ORC algorithm is reduced by 0.0356dB
and 0.0329dB on average compared with the K0103 algorithm

and the algorithm in [31], respectively. -e ORC algorithm
maintains a better rate distortion performance compared with
the K0103 algorithm and the algorithm in [31].

In order to show the rate distortion performance of
the ORC algorithm more intuitively, Figure 9 shows the

Table 6: Comparison of rate distortion performance by the ORC algorithm compared with the algorithm in [31].

Sequences BDBR (%) BDPSNR (dB)
ClassA − 22.65 0.0184
ClassB − 26.31 0.0215
ClassC − 48.72 0.0436
ClassD − 47.69 0.0511
ClassE − 31.43 0.0297
Average − 35.36 0.0329
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Figure 9: Comparison of rate distortion performance among three algorithms. -e rate-distortion curve of (a, c) Johnny sequences and
(b, d) ParkScene sequences.

Journal of Electrical and Computer Engineering 15



comparison results of the rate distortion (RD) curves
among the ORC algorithm, the K0103 algorithm, and
the algorithm in [31] under the Johnny sequences
and the ParkScene sequences, which have different
resolutions.

We can see that the rate-distortion curves of the ORC
algorithm are above the rate-distortion curves of the K0103
algorithm and the algorithm in [31] from Figure 9, which
indicates that the Y-PSNR of the ORC algorithm is larger
compared with the K0103 algorithm and the algorithm in
[31] when the rates are same, and the RD performance is
more optimized. -e overall performance of the ORC al-
gorithm is better.

7. Conclusions

-is paper proposes an optimized rate control algorithm of
ITU-T H.265/high-efficiency video coding based on the
region of interest. -e algorithm improves the Itti model
based on the space-time domain firstly, which extracts the
ROI of video frames. And, the target bits of CTU layer are
redistributed based on ROI so that the output videos are
more attuned with the human visual attention mechanism.
Finally, the quasi-Newton method is used to update the
parametric model, which reduces the computational com-
plexity in the updated phase of the parametric model. -e
experimental results show that the ORC algorithm has better
compression performance and rate control accuracy than
the K0103 algorithm and the algorithm in [31], which can
obtain better compression results of videos.

Data Availability

-e datasets available for research articles come from http://
trace.eas.asu.edu/yuv/index.html and http://www.iaprtc11.
org/mediawiki/index.php/MSRA_Text_Detection_500_
Database_(MSRA-TD500).
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