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/e traditional power load identification is greatly restricted in application because of its high cost and low efficiency. In this
paper, the similarity model is established to realize the noninvasive load identification of power by determining the feature
database for the equipment. Firstly, the wavelet decomposition method and the wavelet threshold processing method are used to
remove abnormal points and reduce noise of the original data, respectively. Secondly, the transient and steady-state characteristics
of electrical equipment (active power and reactive power, harmonic current, and voltage-current trajectory) are extracted, and the
feature database for the equipment is established. /irdly, the feature similarity is defined to describe the similarity degree of any
two devices under a certain feature, and the similarity model of automatic recognition of a single device is established. Finally, the
device identification and calculation of power consumption are carried out for the part of data in annex 2 of question A in the 6th
“teddy cup” data mining challenge competition.

1. Introduction

With the emergence of various new types of power load
components in an endless stream, users put forward higher
requirements on the reliability, safety, economy, and sta-
bility of power system. Smart grid emphasizes bidirectional
interaction with users and encourages users to participate in
power management through demand response, which is
inseparable from detailed control of load operation infor-
mation. Since the traditional invasive load monitoring
system costs a lot in time and investment and has a certain
impact on the reliability of the system, it is necessary to
develop an economical and effective noninvasive load
monitoring and identification system. Hence, strengthening
the monitoring of building power consumption is of great
practical significance for energy conservation and smart
grid.

Noninvasive load monitoring technology has attracted
much attention from power companies and scientific re-
search institutions since it was proposed. It is worth noting
that Hart [1] established the first noninvasive appliance load

monitoring system (NIALM) to develop a monitoring tool
that does not affect the target or affect the target as little as
possible. It can provide power companies with specific
power consumption data of different electrical equipment. Li
and Yu [2] further carried out research on noninvasive load
monitoring and determined characteristic parameters based
on fuzzy clustering results of steady-state load characteristics
of electrical appliances, so as to realize noninvasive load
monitoring based on differential evolution algorithm. Liang
et al. [3, 4] researched on a series of studies in the field of load
characteristics and comprehensively introduced the basic
concept, system structure, feature method, decomposition
framework, system simulation application, and other aspects
of noninvasive load monitoring. Cai et al. [5] calculated the
similarity between the transient waveform and the fixed
characteristic template in the electrical load characteristic
database, established the electrical load characteristic
membership matrix based on similarity, and determined the
characteristic type of electrical load. Zheng et al. [6] studied
the microcharacteristics of noninvasive load monitoring,
established the household load characteristics database, and
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analyzed the load characteristics and extraction methods
contained in the fundamental wave and multiple harmonics
of current, voltage, and power but lacked of the specific
methods to complete the noninvasive identification of
electrical load of users. Huang et al. [7] employed instan-
taneous current and power waveforms to take the decom-
posed current waveforms as the characteristic values of two
similar loads, which could realize the accurate identification
of electrical appliances with similar current waveforms. Wu
et al. [8] decomposed the sampling current to obtain the
independent current generated by the start-up of electrical
appliances and established the load identification algorithm
of entropy value discrimination to realize the decomposition
and recognition of electrical loads. In practice, the research
on nonintrusive power load monitoring and decomposition
mainly focuses on the optimization and improvement of
electrical load feature extraction and load identification
algorithm.

Noninvasive power load decomposition and moni-
toring refers installing a sensor at the entrance to the grid
users, and the device monitors the power consumption
and working condition of each or each type of electrical
equipment by collecting and analyzing the total power or
total current. Hence, power companies can understand the
power consumption rules and usage patterns of each or
every type of electrical equipment in the user’s home, as
shown in Figure 1. /e monitoring data of household
power load provides a scientific basis for the prediction of
load usage in power system and ensures the correctness of
decision-making [9]. /is paper takes the title A in the 6th
“teddy cup” data mining challenge competition as the
research background. Firstly, the transient and steady-
state characteristics of the electrical equipment are
extracted from the original data, the equipment feature
database is established, and finally, the similarity model is
established to realize the noninvasive load detection of
power. /e data are available at the teddy cup data mining
challenge website.

/e data used to support the findings of this study are
available at the teddy cup datamining challengewebsite (http://
www.5iai.com/bdrace/tzjingsai/20170921/1253.html#sHref).

2. Data Processing and Establishment of
Feature Database

2.1.DataPreprocessing. Table 1 shows the known equipment
data and parameters.

2.1.1. Abnormal Points Processing. In this paper, the wavelet
decomposition Wk value method is adopted to detect and
distinguish abnormal points and mutation points [10]. /e
specific algorithm is as follows:

Step 1. /e fitting residuals et and t � 1, 2, . . . were
decomposed online based on two wavelet scale.
Step 2. /e modulus of wavelet decomposition coeffi-
cient at two scales was calculated, and the difference
value was calculated to obtain Ek.

Step 3. Detection of abnormal points and mutation
points.

/e active power data of YD1-YD11 were tested by the
above outlier test method. Figure 2 shows the abnormal
point test results of equipment YD4 in the period from 60
seconds to 290 seconds.

2.1.2. Noise Reduction Processing. We perform data noise
reduction through wavelet threshold process [11].

Wavelet noise reduction is to separate signal from noise
by using the difference of noise in the time and frequency
domain, so as to obtain more ideal noise reduction effect.

Let signal S(n) is the polluted noise of X(t), and its basic
model can be expressed as

S(t) � X(t) + σe(t), (1)

where e(t) is noise and σ is noise intensity.
After wavelet noise reduction, the processed data is

obtained and then the waveform is drawn by MATLAB.
Based on length, a sampling period of YD1’s cycle data is
taken as an example here to give the signal after noise re-
duction, which is shown in Figure 3.

2.2. Establishment of Feature Database

2.2.1. Transient Feature Extraction. Transient characteristics
refer to the characteristics shown when the working state of
electrical appliances changes. As shown in Figure 4, the
transient power waveform of electrical appliances’ start-up is
a typical load mark.

/e following part is the analysis of the implementation
methods and load characteristics of transient characteristics,
which contains four noninvasive load monitoring: mean
current and root-mean-square, transition time of transient
and multiple of impulse power (current) [12].
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Central air conditioning
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Electric water heater 

Energy saving lamp 

Air conditioner

Electric arc furnace

Electromotor

Figure 1: Schematic diagram of noninvasive power load moni-
toring and decomposition system.
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(1) Mean and Root-Mean-Square. To calculate the mean
value of signal i(t), it is necessary to integrate the signal
waveform in a period of time:

〈i(t)〉 � 1
T

􏽚
T

0
x(t)dt, (2)

where T is the integral time.

(2) Root-Mean-Square. Root-mean-square represents the
fluctuation based on mean value of signal. /e root-mean-
square of signal i(t) is used to represent the voltage of al-
ternating current’s waveform, which is defined as

irms �

����������

1
T

􏽚
T

0
i(t)dt

􏽳

. (3)

(3) Transition Time. Set the start time of the transient process as
tton and the end time of the transient process as ttoff ; then the
transition time Δt can be calculated by the following equation:

Δt � ttoff − tton. (4)

(4) Multiple of Impulse Power (Current). /e formula for
calculating the multiple KP of impulse power (current) is as
follows:

Table 1: Electrical equipment and working parameters.

Device ID Device type Working parameter
YD1 Oxon fan 220V, 60W
YD2 Midea microwave 220V, input: 1150W, output: 700W
YD3 Joyang hot pot 220V, 1800W
YD4 /inkPad laptop 20V, 3.25A/4.5 A
YD5 Incandescent lamp 220V, 40W
YD6 Energy saving lamp 220V, 5W
YD7 FUJI laser printer 220∼240V, 50∼60Hz, 4.6 A
YD8 Water dispenser 220V, heating: 430W, refrigeration: 70W, /e total: 500W
YD9 Wall-hanging air conditioner 220V, 2600W
YD10 Pentium hair dryer 220V, 50Hz, 1400W
YD11 Skyworth television 220V, 50Hz, 150W
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Figure 2: Abnormal points detection map.
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Figure 3: Wavelet noise reduction map (the upper and lower are the original signal and the signal is processed using a layered threshold).
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Kp �
Ppeak − Ps1

Ps2 − Ps1
, (5)

where Ppeak is the maximum power in the process of
transient switching, PS1 is the steady-state average power
before the input of electrical appliances, and PS2 is the
steady-state average power after the input of electrical ap-
pliances. Applying the above introduction and the single-
state data provided in Annex 1, the obtained characteristics
database of transient state is as follows.

As can be seen from Table 2, the change form of elec-
tricity load from the opening state to the stable state is
various. /e pure resistive load enters into the steady state
directly from the start, while other loads contain pulse
current and the starting time and pulse size are different.
And the switching transient state of different load is dif-
ferent, so the transient characteristic can be used to dis-
tinguish the electrical equipment.

2.2.2. Steady-State Feature Extraction. /e steady-state
characteristics refer to the characteristics of the electrical
appliances in a stable operation state. In other words, the
steady-state characteristics are the results of some charac-
teristics analysis differences between the two stable opera-
tion states [13]. /is paper will use V-I trajectory, power
characteristic, and harmonic matrix.

(1) V-I Trajectory. /e shape features adopted by V-I tra-
jectory method mainly include the current span, trajectory
area, absolute area, standard deviation of instantaneous
resistance, curvature, slope, total area, left and right areas,
asymmetry, intersection point, etc. [14]. In order to avoid the
influence of voltage and current amplitude differences of
different loads on the size of V-I trajectory, it is necessary to
normalize the two parameters before comparing the shape
features. Using the frequency data provided in annex 1, take
the normalized voltage as the abscissa and the normalized

current as the ordinate to draw the V-I trajectory curve of
some equipment, which is shown in Figures 5 and 6.

As can be seen from the above figure, for resistive loads,
such as Joyang hot pot, V-I trajectory is a straight line, while for
a load with high harmonic content, such as Midea microwave,
V-I trajectory contains at least one intersection point. /e two
kinds of trajectories differ significantly, so the V-I trajectory
can be used as a distinguishing feature of electrical equipment.

(1) Current span itc, which is defined as

itc � max(I) − min(I), (6)

where I is the current sequence and max(I) and
min(I) represent the maximum and minimum
values of the current sequence.

(2) /e trajectory area of the normalized V-I trajectory
curve
/e normalized sequence value Vm

′ is obtained from
voltage sequence Vm, which is defined as

Vm
′ �

Vm

max(V)
, (7)

where max(V) is the maximum value of the voltage
sequence and m ∈ [1,NT + ip], NT are the number of
sampling points in a period, and ip is the number of
preset interpolation points.
/e normalized value Im

′ is obtained from current
sequence Im, which is defined as

Im
′ �

Im

max(I)
, (8)

where max(I) is the maximum value of the current
sequence and I is the current sequence, the maximum
voltage point is vmax(Vvmax′ , Ivmax′ ), the minimum
voltage point is vmin(Vvmin′ , Ivmin′ ), and the trajectory
area is area, which is defined as
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Figure 4: Electrical start-up transient power waveform.
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area � 􏽘

NT+ip− 1

m�1

1
2

Vm+1′ − Vm
′( 􏼁 Im+1′ − Im

′( 􏼁, (9)

(3) /e absolute area absarea of the normalized V-I
trajectory curve, which is defined as

absarea� 􏽘
vmin− 1

m�1

1
2

Vm+1′ − Vm
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Im1′ − Im

′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Im2′ − Im+1′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

(10)

where m1 satisfies min(|Vm1′ − Vm
′ |),

m1 ∈ [vmin + 1,NT + ip], m2 satisfies
min(|Vm2′ − Vm

′ |), m2 ∈ [vmin + 1,NT + ip].

(4) /e standard deviation of instantaneous resistance
D[15], which is defined as

D �

������������

􏽐
NT
n�1 Rn − R( 􏼁

2

NT

􏽳

, (11)

where Rn � (Vn
′ /In
′) is the instantaneous resistance of

the n-th sampling point, Vm
′ is the n-th sampling point

and represents the normalized voltage value, In
′ is the

n-th sampling point and represents the normalized
current value, m ∈ [1,NT + ip], NT are the number of
sampling points in a period, and ip is the number of
preset interpolation points. R is the average value of
Rn.

According to the size of the power, the working state of
the equipment is divided into several gears; the greater the
power, the higher the gear. From device 1 to device 11,
there are at most five working states, so the working state
of the device is divided into five levels. /e device data of
one-second period is randomly selected from each run-
ning state to draw the V-I trajectory. Based on the above
steps and the single-state data provided in Annex 1, the
V-I trajectory feature database is obtained, and the V-I
trajectory feature of gear 1 of each device is obtained (the
default line represents that the device does not have this
gear).

As can be seen from Table 3, the V-I trajectory char-
acteristics of gear 1 of each equipment, especially the dif-
ference between the current span and the standard deviation
of instantaneous resistance are relatively large, and the
differences of the obtained track are very obvious, so the V-I
trajectory characteristics can be used to distinguish electrical
equipment.

(2) Power Characteristics. Active power is the total power
consumed by the load during operation. If the load is pure
resistance, the voltage-current waveform will always be in
phase, so there is no reactive component. However, due to
the presence of inductive or capacitive elements, there is
always a phase shift between the current and voltage
waveforms, which produces or consumes reactive power.
Active power and reactive power are calculated as follows
[16]:

Table 2: Transient eigenvalues.

Mean current Root-mean-square value Transition time Multiple of impulse power
YD1 110.021 71.860 4 1.003
YD2 3229.075 2635.514 3 3.376
YD3 4362.044 3874.353 1 1.014
YD4 213.690 74.269 4 1.612
YD5 98.903 87.131 1 1.005
YD6 25.685 16.077 2 1.030
YD7 435.202 1079.552 6 7.127
YD8 1242.107 863.184 2 1.005
YD9 100.004 54.712 7 1.551
YD10 2153.312 2129.346 3 1.037
YD11 289.769 239.148 6 1.011
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Figure 5: YD3 (Joyang hot pot).
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Figure 6: YD2 (Midea microwave).
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P � 􏽘

∞

k�0
Pk � 􏽘

∞

k�0
UkIk cos φk( 􏼁,

Q � 􏽘

∞

k�0
Qk � 􏽘

∞

k�0
UkIk sin φk( 􏼁,

(12)

where U is the effective value of voltage when the power load
is running, I is the effective value of current when the power
load is running, ϕ is the power factor angle when the power
load is running, and k is the number of harmonics.

We draw the images of active power and reactive power
of each device on the same coordinate axis and obtain the
comparison diagram of active power and reactive power of
each device. /e comparison diagram of YD1 device and
YD9 device is shown in Figure 7.

As can be seen from Figure 7, the active power of YD1
equipment is greater than the reactive power, while the
active power of YD9 equipment is not always greater than
the reactive power, among which the active power is less
than the reactive power during a sampling period, so
YD9 equipment is obviously different from other
equipment in the comparison of active power and re-
active power.

(3) Harmonic Matrix. /e harmonic data contains the
unique characteristics of different electrical appliances. /e
harmonic of load voltage or current can be extracted by
Fourier transform or wavelet transform and further iden-
tified the load. It should be noted that most loads produce
even harmonic with small amplitude and odd harmonic with
large amplitude. Low harmonic contains a large amount of
information [17]. /erefore, this paper selects the 2nd to
11th harmonic data to study. Calculate the amplitude of each
harmonic content rate of each device, and obtain the fol-
lowing harmonic feature database. /e data in each row is
the amplitude of the kth (k � 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

harmonic content rate of each device.
It can be seen from Table 4 that resistive loads, such as

incandescent lamps and kettles, produce few harmonic.
While nonresistive loads, such as induction cooker, electric
fan, produce rich harmonic. It can be seen that the second
and third harmonic contents of YD1, YD2, YD3, YD5, YD6,
and YD8 are above 90%, but the harmonic contents of YD9,
YD10, and YD11 are significantly lower than 90%, which can
distinguish these loads.

In this paper, the current variance of harmonic content
rate of each device under different working conditions is
calculated to describe the variation trend of harmonic
content rate of each device under different working con-
ditions. /e default value indicates that the gear does not
exist in the device. For example, device 1 cannot be switched
4th to 5th gear. /e result is shown as Table 5.

As can be seen from Table 5, under the closed state, the
variance of harmonic content rate of YD1, YD2, YD3, YD5,
and YD6 is greater than other equipment. For one device,
such as YD4, the variance of harmonic content rate is firstly
small under the closed state, and then the harmonic content
rate increases rapidly when switching to the first gear. In
addition, the higher the gear shift is, the lower the variance
harmonic content rate is, and the harmonic content rate is
almost constant. /erefore, the variance of harmonic con-
tent rate can be used as the identification basis.

3. Mathematical Model and Application of
Automatic Identification of Single Device

3.1. Similarity and Weight Coefficient. To automatically
identify an unknown single device, the characteristic simi-
larity of load mark can be analyzed [14]. Domain feature
similarity S is defined as

S �
1

Yi − Yx

����
����/ Yi

����
����

����
����
2. (13)

where Yx represents the eigenvector of the unknown device
x. Yi is the eigenvector of device i. /e larger the value of S,
the higher the similarity between the unknown device x and
the known device i.

/e similarity of load mark extracted in this paper is
divided into four types of calculation, where
(1/‖‖Zi − Zx‖/‖Zi‖‖2) represents the similarity of transient
characteristic of device YDi and device YDx. Similarly,
(1/‖‖Vi − Vx‖/‖Vi‖‖2) and (1/‖‖Xi − Xx‖/‖Xi‖‖2) represent
the similarity of V-I trajectory characteristic and harmonic
characteristic of device YDi and device YDx.

Hix represents the contrast similarity of the active power
reactive power, defined as the image similarity between the
active power and the reactive power contrast figure of the
two devices. /e specific similarity calculation employs the
histogram method [18]. Firstly, calculate the histogram of

Table 3: /e V-I trajectory characteristics of gear 1 of each device.

V-I trajectory characteristics /e current span Area Absolute area Standard deviation of instantaneous resistance
YD1 3.253 0.0723 0.085 4.410
YD2 77.582 0.012 0.072 59.810
YD3 95.075 0.077 0.077 2.120
YD4 11.086 0.014 0.022 30.925
YD5 4.100 0.072 0.079 3.874
YD6 2.336 0.017 0.060 170.892
YD7 16.185 0.016 0.024 38.097
YD8 31.091 0.069 0.084 0.191
YD9 0.881 0.062 0.110 6.843
YD10 36.897 0.027 0.051 12.263
YD11 11.780 0.059 0.062 9.119
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the two images, respectively, and then calculate the distance
measure of the two images, the Pap distance is chosen as a
measure, which is defined as

d H1, H2( 􏼁 �

���������������������������

1 −
1

��������

H1H2N
2

􏽱 􏽘
I

����������

H1(I)H2(I)

􏽱
􏽶
􏽴

. (14)

Finally, we calculate the contrast similarity between the
active power and the reactive power of the device YDi and
the device YDx. /e total similarity is calculated by weight,
and the weight is determined by entropy method [19].

/e entropy weight coefficient [20] of each target is
expressed as follows:

wi �
1 − Hi

m − 􏽐
m
i�1 Hi

, i � 1. (15)

/rough the entropy value method, the weight of each
feature similarity is w � (0.151, 0.342, 0.375, 0.132).

3.2. Establishment of the Similarity Model. Load identifica-
tion model based on similarity is a weighted sum of all kinds

Table 4: Device amplitude of kth harmonic content rate.

Amplitude 2 3 4 5 6 7 8 9 10 11 Two norms
YD1 99.68 99.71 96.9 98.28 94.51 89.62 98.51 98.19 95.49 96.21 305.958
YD2 99.2 99.44 95.8 96.9 99.32 98.6 98.04 97.98 97.89 99.33 310.714
YD3 99.9 94.5 96.48 99.01 93.5 97.43 97.54 93.74 97.31 96.84 305.622
YD4 21.06 96.19 19.6 88.75 18.47 82.88 17.43 76.13 15.01 62.38 188.104
YD5 97.15 99.85 97.84 99.45 95.64 99.68 99.54 96.9 93.93 94.94 308.364
YD6 97.83 92.98 97.89 94.48 96.08 96.67 84.73 94.65 98.6 97.28 301.039
YD7 79.93 94.24 36.77 83.92 19.74 78.01 19.49 73.88 13.26 58.86 199.043
YD8 99.51 98.09 98.93 92.82 98.65 97.63 92.07 98.63 99.54 98.93 308.366
YD9 17.75 53.85 34.85 62.77 25.88 31.83 32.73 37.85 42.27 46.98 128.647
YD10 66.59 38.27 38.37 21.88 14.4 20.07 8.67 22.51 10.96 13.5 96.665
YD11 6.14 31.41 6.05 10.67 4.64 15.31 4.53 17.42 4.01 8.97 43.025
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Figure 7: Comparison diagrams of active power and reactive power (left and right are device YD1 and device YD9, respectively).

Table 5: Variance of harmonic content rate under each operating state of the device.

Variance Closed Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
YD1 763.2436 1.21656 0.97821 0.24295
YD2 702.8478 768.2751 0.582456 0.58845 90.05154 42.24794
YD3 777.4941 703.4177
YD4 17.23165 555.0503 480.2903 474.9479
YD5 582.9355 0.088918
YD6 583.3648 220.6958
YD7 8.813617 480.7053 473.4962 75.56688 32.17358 1.453375
YD8 166.9674 290.4106 0.128187 175.1147 274.4583
YD9 36.81396 38.92979 51.2206 38.28987
YD10 16.59171 107.8209 0.063964 12.29556 8.93058
YD11 9.557222 5.628287
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of feature similarities to obtain a total similarity of load
feature similarity. /e specific model is as follows:

Six �
w1

Zi − Zx

����
����/ Zi

����
����

����
����
2 +

w2

Vi − Vx

����
����/ Vi

����
����

����
����
2

+
w3

Xi − Xx

����
����/ Xi

����
����

����
����
2 + w4H

2
ix,

(16)

where Zi is the eigenvector of transient of YDi, Zx is the
eigenvector of transient of YDx, Vi—the eigenvector of V-I
trajectory of YDi, Vx is the eigenvector of V-I trajectory of
YDx, Xi is the eigenvector of harmonic of YDi, Xx is the
eigenvector of harmonic of YDx, and Hix is the comparison
similarity of active power and reactive power between the
device to be tested and the known device.

3.3. Application of Model

3.3.1. Feature Extraction and Recognition of Unknown
Devices. By the method of V-I trajectory and harmonic
matrix, the feature matching data of unknown device X1 and
X2 are extracted as follows.

It can be seen from the characteristic data of Table 6 that
when the devices X1 and X2 to be tested are in the first gear
position, the V-I trajectory curve caused by the standard
deviation characteristic of instantaneous resistance is rela-
tively large.

As can be seen from Table 7, the unknown equipment X1
produces few harmonics, and the unknown equipment X2
produces abundant harmonics. It can be seen that the third
and fifth harmonics content rate of X2 nearly 50%, but the
harmonic content of X1 is less than 1%.

As can be seen from Table 8, in the closed state, the
variance of harmonic content rate of X1 and X2 has little
difference. For equipment X1, firstly, the variance of
harmonic content rate is small in the closed state, and then
the harmonic content rate slowly decreases when switching
to the 1st level, and finally the harmonic content rate
continues to decrease when switching to the 2nd level. For
the equipment X2, firstly, the variance of harmonic content
rate is small in the closed state, then gradually decreases
with the increase of gear switch, and finally remains almost
constant.

/rough the established model and relevant data, the
calculation results of the similarity between the unknown
device X1, X2, and YD1 to YD11 are as follows.

Table 6: /e V-I trajectory characteristics of gear 1 of the device.

/e current span Area Absolute area Standard deviation of instantaneous resistance
X1 1.642 0.022 0.054 64.249
X2 1.277 0.049 0.079 13.390

Table 7: Amplitude of kth harmonic content rate of device.

Amplitude 2 3 4 5 6 7 8 9 10 11 2-norms
X1 0.98 0.99 0.97 0.98 0.88 0.95 0.98 0.88 0.99 0.94 3.01947
X2 15.7 54.12 21.21 49.32 15.3 34.93 17.81 29.42 15.72 29.94 99.16741

Table 9: Similarity results of device 1.

Similarity Similarity of transient
characteristic

Similarity of V-I
trajectory

Comparison similarity of active
power and reactive power

Similarity of
harmonic

/e total
similarity

Device 1—YD1 0.321 0.302 0.945 1.000708 0.63868
Device 1—YD2 1.228 1.134 0.675 1.000417 0.98893
Device 1—YD3 1.147 0.920 0.961 1.000407 0.99420
Device 1—YD4 0.434 0.973 0.782 1.000839 0.81413
Device 1—YD5 0.321 0.305 0.956 1.0011 0.64316
Device 1—YD6 0.148 1.265 0.943 1.000979 0.89269
Device 1—YD7 1.320 1.176 0.910 1.001123 1.09019
Device 1—YD8 3.001 0.664 0.898 1.002281 1.26949
Device 1—YD9 0.297 0.346 0.928 1.010204 0.64403
Device 1—YD10 1.361 0.786 0.926 1.006951 0.98783
Device 1—YD11 0.604 0.515 0.955 1.034707 0.76915

Table 8: Variance of harmonic content rate under each operating state.

Variance Closed Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
X1 0.047832 0.02007 7.51E-06
X2 0.047832 0.080229 0.046945 0.037575
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Based on the result shown in Tables 9 and 10, the
similarity between the unknown device X1 and device 8 is
the highest; that is, the unknown device X1 is device 8. /e
similarity between the unknown device X2 and device 9 is
the highest; that is, the unknown device X2 is device 9.

3.3.2. Calculation of Real-Time Power Consumption of Un-
known Equipment. In the equipment data given in Annex 2,
U, I, and PFC are the measured voltage, current, and power
factor, respectively. /e specific calculation formula of real-
time power consumption is as follows:

P �
U × 10− 1 × I × 10− 3 × PFC × 10− 3

3600
, (17)

where U represents voltage, I represents current, and PFC
represents power factor.

According to the above calculation formula and the data
given in Annex 2, the real-time power consumption of the
unknown device is obtained./ere are some data of the real-
time power consumption of the unknown device 1.

Table 11 shows partial data of calculation results of real-
time power consumption of unknown equipment X1.

4. Conclusion

Based on the data analysis, this paper firstly uses MATLAB
to detect and distinguish the abnormal points and mutation
points by using the method of wavelet decomposition Wk

value of the original data. Secondly, the data is transformed
by wavelet noise reduction, and pretreatment of the sampled
data points of each device is completed. Finally, the ab-
normal point detection results of a certain device are ob-
tained, and the waveform diagram after noise reduction is
drawn.

In the process of feature extraction, firstly, the transient
characteristic of a single device are extracted by analyzing the
preprocessed data, which includes active power, reactive
power, harmonic current, and voltage-current trajectory (V-I
trajectory). Secondly, the computation and extraction
methods of the characteristic values of each load characteristic
are given. Finally, the transient characteristic values of the
equipment are obtained, containing the V-I trajectory
characteristics of gears 1, 2, 3, 4 and 5, the comparison di-
agram of active power and reactive power of each equipment,
the amplitude of kth (k � 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) harmonic
content rate of the equipment, and the variance of harmonic
content rate of each operating state of the equipment.

In the automatic identification of a single device, this
paper identifies any single device by establishing a similarity
model. Based on the load characteristics of four types
extracted, a similarity-based load identification model is
established. Firstly, the feature similarity is defined to denote
the similarity degree of any two devices, and the weight
coefficient of similarity of each feature is determined by the
entropy value method. Secondly, the weighted sum of fea-
ture similarity is used to determine the total feature simi-
larity, and the device with the highest similarity is selected to
match with the unknown device. Finally, the similarity
feature data between the unknown device and devices 1-11
are obtained. According to the calculation results, the un-
known device X1 is determined as device 8, and the un-
known device X2 is determined as device 9.
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Table 10: Similarity results of device 2.

Similarity Similarity of transient
characteristic

Similarity of V-I
trajectory

Comparison similarity of active
power and reactive power

Similarity of
harmonic

/e total
similarity

Device2—YD1 2.488 0.772 0.9585 1.01977 1.22088
Device2—YD2 1.013 1.047 0.7076 1.011319 0.931428
Device2—YD3 1.009 1.003 0.9296 1.010978 0.983971
Device2—YD4 1.386 1.278 0.8192 1.021115 1.110883
Device2—YD5 2.021 0.753 0.9456 1.031931 1.120526
Device2—YD6 0.609 1.041 0.9594 1.027882 0.927835
Device2—YD7 1.038 1.197 0.9267 1.029494 1.050958
Device2—YD8 1.039 0.976 0.9022 1.073814 0.986183
Device2—YD9 4.198 1.025 0.9735 1.510558 1.741483
Device2—YD10 1.018 1.044 0.9365 1.156208 1.029209
Device2—YD11 1.187 1.146 0.9492 0.881266 1.042491

Table 11: Real-time power consumption of device 1.

ID Time Real-time power consumption (W)
Device 1 2018/1/16 16:04 0.1130
Device 1 2018/1/16 16:04 0.1117
Device 1 2018/1/16 16:04 0.1117
Device 1 2018/1/16 16:04 0.1121
Device 1 2018/1/16 16:04 0.1115
Device 1 2018/1/16 16:04 0.1115
Device 1 2018/1/16 16:04 0.1121
Device 1 2018/1/16 16:04 0.0605
Device 1 2018/1/16 16:04 0.0001
Device 1 2018/1/16 16:04 0.0001
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