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Cloud computing provides benefits in terms of equipment consolidation and power savings from higher utilization for vir-
tualizable software. Cellular communication software faces challenges in cloud computing platforms. BSs create a specific load
profile that differs from traditional cloud service loads. Cellular communication system implementations have real-time deadlines
with fixed, periodic latency requirements. In this paper, we assess the suitability of an unmodified Ubuntu Linux OS running on a
commodity server to operate latency-critical software using a 4G LTE BS software-defined radio implementation. Scaling of the
CPU clock frequency is shown to be feasible without excessive impact on the platform’s ability to meet the 4 ms processing delay
requirement imposed by the LTE standard. Measurements show the relationship between the processor’s operating frequency and
the number of missed subframe processing deadlines to be nonlinear. The results obtained also indicate that a high computational
capacity does not suffice to ensure satisfactory operation since fronthaul processing overhead can limit achievable performance.

Use of offload-capable network interface cards is studied as a potential remedy.

1. Introduction

Evolution of telecommunication systems is directed by the
intersection of demand and available technical solutions. BS
design evolution reflects how Moore’s law has enabled in-
creased platform flexibility. In early BSs, specialized func-
tions were implemented by discrete elements. Over time,
discrete solutions were replaced by specialized ASICs. More
recently, the rigidity of ASICs was eschewed in favor of
FPGA- and DSP-based platforms. Nowadays, BS processing
is within the reach of general purpose processors (GPPs)
[1-3].

Increased use of software has enabled greater con-
solidation of logical functions into physical devices
through the use of network function virtualization (NFV),
software-defined networking (SDN), and software-de-
fined radio (SDR). Consequently, this trend has lead to
investigation of the feasibility of replacing specialized
hardware by commodity servers with general purpose
processors (GPPs) and even PCs. In this paper, the
suitability of cloud servers to provide cellular radio access
processing, known as cloud radio access network (C-RAN), is
assessed.

General purpose servers aim to provide reasonable
throughput for a wide range of tasks and by definition are
not optimized for any particular one of them. In order to
serve the needs of cellular systems, general purpose com-
puting platforms must be adapted to satisfactorily run la-
tency-sensitive cellular communication applications while
still retaining the flexibility inherent in a software-based
design.

By porting radio access functionality to a cloud platform,
cellular system development can be set onto the same tra-
jectory as other cloud-based services. Virtualization enables
consolidation of computing hardware, reduces system cost,
provides power savings, and increases flexibility [4]. How-
ever, it comes at the expense of process isolation and reduced
predictability. Very stringent processing delay requirements
in cellular base stations (BSs) may make centralization
impractical. In order to remedy this problem, the trend is to
migrate the C-RAN computation towards the edge of the
network into edge clouds [5, 6].

For C-RAN to realise effective coexistence of multiple
BSs, the implementation must cope with the unpredictable
delays and variable processing power availability of general
purpose server environments. Achieving this aim calls for


mailto:nicolas.malm@aalto.fi
https://orcid.org/0000-0002-1465-4035
https://orcid.org/0000-0002-2611-1636
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1854826

the creation of SDR BS implementations and system tests to
outline the limits of current server platforms in order to
guide their evolution.

In addition to tight latency and timing requirements,
energy efficiency has gained importance as a cellular system
metric. Global energy expenditure of the ICT industry
represents 2% of global consumption and is projected to
reach 3% by 2020 [7]. Meeting both the ever growing and
more varied needs for wireless communication, along with
acceptable levels of energy consumption, requires solutions
enabling power management to take into account the latency
bounds inherent to real-time cellular systems. In particular,
this study focuses on improving power management in a
C-RAN type shared computational environment with la-
tency constraints.

In this paper, we describe the specific computational
requirements of a cellular BS and what constraints it imposes
on a cloud platform. To serve this computational load takes
not only software adaptation but also suitable hardware. The
suitability of current commodity server platforms is inves-
tigated using a 4G cellular system BS running on an Intel
server platform. Assessing the suitability of a general pur-
pose Linux-based operating system (OS) constitutes a
prerequisite to creating a suitable C-RAN to exploit the
consolidation benefits of cloud technologies. Improvement
opportunities are outlined based on the results obtained.

This article is organized into nine parts. The structure
and functionality of a typical BS are presented in Section 2.
Related work is surveyed in Section 3. Sections 4 and 5
describe the pertinent BS features and their implementation
in the agile radio framework (ARF) SDR platform. In
Sections 6, 7, and 8, the performance model, experimental
setup, and the results obtained therewith are presented.
Section 9 concludes this article.

2. Base Station Evolution into C-RAN

A cellular BS generates load that is characterized by high
computational requirements along with stringent periodic
completion deadlines. Because of these requirements, BSs
are usually implemented in dedicated hardware with a real-
time OS.

System specification evolution requires BS platform
flexibility. BS adaptability has progressed from software-
controlled hardware-defined radios (HW) [8], through ac-
celerator-based GPP designs [9, 10] to full software physical
layer software-defined radio (SDR) implementations [8].
Each evolutionary stage provides more run-time config-
urability than the previous.

In a cloud environment, it is desirable to use general
purpose hardware and virtual machines executing non-real-
time OSs. Cloud-based SDRs would be implemented as an
application process that can be created with libraries,
toolsets, and frameworks employed in general software
development. Implementation of BSs in centralized servers
is called cloud radio access network (C-RAN). C-RAN
systems are usually split up into remote radio head (RRH)
and baseband unit (BBU). These units are connected over a
fronthaul link. The most efficient way to split functionality
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between BBU and RRH remains an open question. One of
the issues is in which system component to place physical
and MAC layer processing. This paper describes a cen-
tralized approach to C-RAN. RRHs receive modulated
samples and perform baseband signal up and down con-
version. The BBU then handles the computationally heavy
baseband processing.

Softwarization of implementation combined with the
physical decoupling of the BBU from the RRH introduces
the possibility of virtualization and centralization. A single
server may operate multiple BSs serving multiple cell sites.
These sites only require RRHs and a communication link to
the centralized server. By eliminating computational re-
sources from access points, a more efficient architecture can
be realised, in which processing resources are allocated from
the pool based on demand. Enabling demand-based re-
source provisioning, in turn, allows for many low-cost, low-
energy RRHs to be built to enhance coverage uniformity.

In the coverage area of a small cell, the number of active
users can vary significantly. This, in turn, wastes energy with
current peak-dimensioned designs due to a high probability
of transmitters being idle [11]. Turning off idling base sta-
tions is one potential solution [12-14] but becomes prob-
lematic if one aims towards low-latency and high reliability
communication. In such cases, when having a wake-up delay
is unacceptable, energy reduction techniques constitute a
preferable alternative.

Cellular networks exhibit spatial and temporal patterns
in the load they experience [15, 16]. Daytime load is higher
than during the night, when many users are asleep. Fur-
thermore, due to diurnal variations between areas, load
varies spatially by C-RAN instance as well as users move
from residential areas to workplaces and back.

While RTOSs exist to solve latency and jitter challenges,
they cannot be used in a virtualized environment since they
cannot offer any guarantees when running on top of a non-
real-time hypervisor controlling access to the actual hard-
ware. Indirect access to hardware through the hypervisor
further complicates management of timers and interrupts.
Additionally, a real-time hypervisor’s strict division of time
between guests restricts opportunities for exploiting variable
loads in guests.

Alternatively to RTOS, overprovisioning can be used to
meet requirements. This method wastes both capital and
energy. The predicted increase in the number of cell sites in
5G only compounds this problem.

In light of the above, it becomes necessary to investigate
the ability of virtualizable, general purpose OSs and hard-
ware to meet the timing requirements of BSs. In a non-real-
time OS, packets can be lost due to missing the packet
preparation deadline, denoted as late packets. In this work,
soft-real-time is defined as a task that must meet its deadline
on average but can tolerate occasional overruns [17, 18].
Conjointly, the relationship between energy efliciency and
performance must also be investigated to determine design
parameter trade-offs. Slowing down computing helps to run
processors at more power efficient clock speeds.

By exploiting the diurnal variation, operators can save
energy by reducing the processing power and thus energy
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consumption during off-peak hours and in lightly loaded
cells. This could be realised, for example, by grouping the
processing of geographically close cells in the same C-RAN
server. The power-performance profile of each server (and
therefore cell group) can then be adjusted according its
specific needs. Further refinement of the configuration
granularity becomes possible on hardware support per-core
adjustment of frequency and voltage.

Determining parameters with highest impact allows for
the design of cloud systems better suited to the needs of
virtualized BSs. The BS can reduce the amount of late packets
by adjusting the radio link throughput and thereby the
computational load. This opens up the possibility of
leveraging a C-RAN platform to allocate computing re-
sources intelligently. The following sections review research
that has been conducted into latency-sensitive and energy-
efficiency conscious software.

3. Related Work

3.1. Server Platforms for Time-Critical Systems. Management of
system power consumption through online variation of
processor voltage and frequency is known as dynamic voltage
and frequency scaling (DVES). Work presented in [19]
proposes a statistical scheme to estimate and adapt to vari-
ation in load for latency-critical tasks. The authors consider
variable arrival and processing times. They determine that
queuing delays often dominate total latency. While similar in
aim, the characteristics of the offered load in the present
article are different. Due to the periodic nature of the LTE
frame structure, arrival times are well determined and re-
quired completion times are known. Consequently, stale work
items in queues can be discarded based on this known
deadline. The BS also partially knows future load due to its
control over resource allocations for connected devices it
serves (see Section 2). The authors in [20] similarly focus on
queuing. They however propose extending the time a task
spends in the queue in order to obtain longer periods during
which the processor resides in a low power state. Such a
solution can be problematic in cellular systems, where
communicating nodes must uphold strict timing in order to
preserve synchronization. DVFS use in an embedded com-
puter has been investigated in [21]. The authors studied the
impact of voltage scaling on the worst-case execution cycle
counts of their test programs. Unlike the present article, none
of their test cases involved external interrupts caused by
fronthaul data arriving at the network interface card (NIC) or
other peripherals. Problems involved in operating low-latency
systems involving substantial network communication are
discussed in [22]. The authors of [22] discuss the general
characteristics and broad outlines of potential solutions but
no concrete solutions are offered. The aforementioned work
demonstrates that power savings are possible but the case of
interrupt-heavy periodic loads has received little attention.

3.2. Software-Based BS Implementations. Implementation of
tightly latency constrained wireless communication systems
on server hardware has been investigated before. In [1], the

authors present their approach to running the LTE physical
layer on Linux. In contrast to the approach used in this
paper, they do not implement protocol layers above the
physical. It is also unclear whether time-division duplexing
(TDD) or frequency-division duplexing (FDD) is employed.
In order to obtain satisfactory performance, the authors pin
execution threads to specific CPU cores according to a hand-
tuned pattern. In [23, 24], communication with the radio
frontend occurred over a Peripheral Component Inter-
connect Express (PCle) bus instead of an Ethernet con-
nection as in the present work. Furthermore, in the latter
case, the authors used the real-time framework Xenomai to
introduce timing guarantees to the OS. Work presented in
[25] reports on the methodology used to implement TD-
SCDMA. The authors modified the Linux kernel’s sched-
uling interrupt timer’s frequency. This technique is no
longer applicable to modern tickless versions of the kernel.
Techniques applicable to real-time approaches, such as
Xenomai, are more cumbersome since they attempt to
enforce timing constraints on the entire BS software stack
instead of only network packet processing. Interrupt pat-
terns of IP-based traffic differ from those of PCle. Studies
into the performance of IP-based soft-real-time SDR are
therefore needed.

3.3. Contribution. The above-presented related works con-
sidered either the problem of implementing latency-con-
strained communication systems or the reduction of energy
consumption in processing local tasks. This article aims to
combine both aspects and provide a scheme for reducing
power usage while maintaining processing delays acceptably
low. Energy savings are accomplished through CPU clock
frequency scaling. Measurements quantify the dependence
between the operating frequency and the BS’s ability to
complete tasks in a timely fashion. Factors taken into ac-
count include processing in the BBU, the radio frontend, and
the network communication between them.

The present work explores the feasibility of imple-
menting BSs on GPPs with a standard Linux OS kernel
through tuning of hardware and OS parameters. The aim is
to assess the suitability of a soft-real-time latency-critical
cellular software to operate on cloud infrastructure. The
techniques used do not require any modifications to the
standard OS kernel or the hardware. This helps to ensure
applicability in C-RAN execution environments.

4. Logical Functions in a Base Station

All BSs present the same functional interface to user
equipment (UE) to allow interoperability. From the net-
work’s point-of-view however, they are not identical nor do
they serve the same purpose. Some BSs, known as macro BSs,
target a large coverage area called a macrocell. Com-
plementing these are micro- and picocells serving demand in
small hotspots. Large macrocells are suitable for serving fast
moving users, since their large coverage area will result in
less frequent handovers than if the user was served by more
spatially limited access points.



While all the BSs are equipped with the same specifi-
cation-mandated functions, they might be called at different
rates and with different target parameters. As such, BSs can
generate different computational loads. These differences
provide opportunities for intelligent resource adaptation.

BS radio interface supports two-way communication.
The BS receives data from the core network and prepares it
for transmission over the air interface and conversely it takes
the signal from the radio interface and converts it to bits to
be transmitted to the core network. In order to compensate
for channel errors, signals have to be acknowledged posi-
tively or negatively. The specification-mandated period [26]
within which this must be accomplished sets a constraint on
computing speed for decoding received data and sending out
the acknowledgments.

The processing in BS can be split into physical layer
processing and higher layer processing. The physical layer
related processing is mainly execution of data flow type
computationally heavy algorithms. Higher layers deal
dominantly with users and protocol states. Figure 1 depicts
the processing flow for data to and from the air interface. The
BS’s external connection to the mobile core network is
beyond the scope of this work.

Functions dealing with digitized samples of the signal
received at the antennas are collectively known as Layer 1
(L1). In 3GPP-specified cellular systems, L1 operates on
groups of samples contiguous in time known as subframes
or transmission time intervals (TTIs). In modern cellular
systems, the TTI is the basic time unit for processing. The
samples to be transmitted have to be prepared for each TTI
and received samples have to be analyzed during certain
TTIs.

The main functions in L1 are modulation, equalization,
channel coding, and waveform processing. Processing load
depends on the modulation and coding scheme (MCS)
which the BS selects based on a mapping from the observed
radio link quality. The MCS value selects operating pa-
rameters, such as constellation size and coding rate, for the
modulator, demodulator, encoder, and decoder. In tradi-
tional systems, the choice of modulation accounts only for
the quality of the channel between communicating nodes. In
cloud-based systems, there exists an additional trade-off
based on processing requirements. A higher MCS value
allows for more bits to be transmitted but requires more
processing for receiving those bits. The server can trade off
lower data rates for reduced processing power requirements.

Above the physical layer reside the medium access
control (MAC) functions. These primarily handle resource
allocation, scheduling, and channel multiplexing. The MAC
also carries the responsibility of generating acknowledg-
ments and negative acknowledgments as well as responding
to those received from the UE. In the LTE standard, the
available response generation time is never shorter than four
milliseconds. Resource allocation relies on these acknowl-
edgments and on channel quality reports to inform the BS as
to which transmission parameters are appropriate for the
conditions experienced by each UE. Since the computational
load is a function of user resource allocation, the scheduler
can directly impact the BS’s processing burden.
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Connected to the core network are the BS functions
dealing with IP packets. These provide header compression,
encryption, integrity protection, and segmentation. En-
cryption and integrity protection provide security. Seg-
mentation and concatenation functions are necessary to
enable IP packets to fit the available radio resources. Header
compression helps in this regard by eliminating needlessly
redundant information from transmitted packets.

5. BS Implementation Using the ARF Platform

The agile radio framework (ARF) is a soft-real-time SDR
platform designed to run on commodity computer hardware
using a GNU/Linux OS as shown in Figure 2. In this work, it
is used to implement an LTE BS in order to evaluate C-RAN
latency and computation load issues. The ARF is designed to
be compatible with a wide variety of different server plat-
forms. As such, the ARF does not require special drivers,
beyond those for the radio frontend in use, or modifications
to the kernel of the OS. This entails that no hard-real-time
extensions need be applied. While RTOSs provide tools to
solve latency and jitter-related issues, they cannot do so
when operating virtualized on top of a hypervisor. Addi-
tionally, compatibility of the ARF with standard software
tools and libraries leads to wide portability. The same applies
to online migration of virtual machines. Apart from the
radio frontend, the ARF does not need any special hardware.
However, use of such is not precluded by the design. For
instance, one could use a graphics processing unit (GPU) to
accelerate computations [27].

Architecturally, the ARF platform is divided into three
main components as depicted by Figure 3. The lowest layer is
the Virtual Hardware Enhancement Layer (VHEL) [28]. Its
purpose is to serve as an abstraction layer for hardware
nonidealities. Radio frontend hardware interfacing is done
through the Universal Software Radio Peripheral Hardware
Driver (UHD) [29]. Since the ARF does not assume hard-
real-time guarantees from the OS, protocol processing may
be late in the upper or lower layers. As explained in Section 2,
cellular systems require transmitted and received samples to
be ready for a specific TTI. In a non-real-time system, the
processing could exceed its allotted time or be delayed past
its deadline. In this paper, such events are termed lates.
Upon occurrence of a late, the VHEL sends a preconfigured
contingency subframe to the radio frontend to help maintain
timing alignment. This could, for example, be a zero-filled
subframe or a pregenerated subframe containing only pilots
and synchronization signals if appropriate. In the receive
direction, the VHEL will similarly mask lates and overflows
by handing the protocol’s physical layer a subframe con-
taining the correct number of samples even if some were lost.
The VHEL hides lates and therefore the soft-real-time nature
of the platform from upper layers. These are written as if the
samples would always arrive on time. Upper layers can
therefore apply block-based processing while ignoring
timing related issues.

The communication protocol’s retransmission mecha-
nisms can take care of performing a new transmission of
data lost due to lateness of processing in the transmitter part
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FIGURE 3: Layers in the ARF architecture.

of the ARF platform. From the communication protocol’s
point-of-view, this is no different than experiencing poor
channel conditions, provided late processing occurs seldom
enough. While this approach does not provide the same level
of timing determinism as RTOS-based designs, it simplifies

development. Code related to handling TTI timing and
meeting deadlines resides only in the VHEL. Other code may
be written as non-latency-critical software. In case perfor-
mance proves insufficient, traditional software optimization
techniques can be applied until deadlines can be met with
some probability. Furthermore, an intelligent cloud platform
could take advantage of the difference in processing load
between different BSs as described in Section 2 to adapt its
resources optimally.

6. C-RAN Processing Performance Model

The main challenge in C-RAN implementation is reduction
of late packets. Whether a packet is late depends on the total
packet processing time. This time is a function of the packet
processing time within the BS stack T, delays related to
operating system functionality T g, and delays related to
data transmission over the fronthaul link T;. Knowledge of
the latter is required in order to estimate how far ahead of the
deadline a packet must be sent to arrive in time at the
frontend.

Accurate total processing time information might not be
available to the C-RAN. In practical systems, it is easier to
measure the number of late packets as a function of these
various delays Fp (T'gs, T'os» T's). The function Fp, provides a
tool for adapting BS processing. To achieve a given packet
outage target P, the C-RAN should manage delays such
that

Fp(Tgss Tos Tr) < Py (1)

While allocating its resources, the C-RAN can track Fp
in real time. Optimal allocation raises the question of
whether Fj, captures the system’s characteristics sufficiently
well and which parameters are the most significant for
system performance. Function Fp is implementation de-
pendent. However, system-specific dependencies can be
measured and learned for each particular platform at run
time.



The ARF platform is used as a measurement tool for
identifying cloud processing bottlenecks while executing
an SDR BS load. Execution time is subdivided into two
parts: cellular BS-related functionality and operating
system housekeeping activities. The former constitutes the
lion’s share of the load. In turn, it is composed to two
components. The first is air interface processing, com-
prised of relatively computationally heavy physical layer
algorithms executed each in TTI (1 ms interval in LTE).
Higher layer communication protocol processing executes
separately from the physical layer and presents a com-
paratively much lighter processing burden. The second
component includes all noncore-functionality processing,
termed management processing, such as data copying, OS
function calls, and fronthaul data transmission. Conten-
tion for these resource as well as OS kernel scheduling
decision can influence whether processing completes on
time. Overall C-RAN behavior is characterized by how the
system management and BS processing work together.
This was investigated through the insertion of measure-
ment points into the BS and management parts of the ARF
code.

The results presented in this article were obtained by
running a partial LTE Release 8 payload in TDD mode on
the ARF. Consequently, the TTI duration is 1ms. The
measurements were done while sending data over the air.
Performance of the TX processing impacts the RX pro-
cessing and vice versa. Processing-time overruns in one will
reduce the CPU time available for the other. This stems from
the need to know whether to send a positive or negative
acknowledgment and, on the transmit side, whether the
retransmission buffer can be cleared after a successful re-
ception by the remote node. UEs must first receive grants
from the BS before they know when and with what pa-
rameters they may transmit. This limits the available time to
prepare data to the time between receipt of the grant and the
transmission time.

Packet processing time (including transmission to RRH)
should be less than the TTI duration. Each component of the
packet late function F, contributes to overall processing
time differently. The delay T, related to user load, is a linear
function of the computational demands on the CPU. The
more data the UEs want to receive, the more work the BS
must perform to transmit it to them. In order to fit a greater
quantity of data into the same, fixed, amount of spectrum,
more complex modulation, equalization, and channel
coding schemes must be employed. Doing so increases
computational complexity. Increased load can be managed
by adding more processing capacity. This could, for example,
be more or faster CPUs as well as accelerators.

Fronthaul transmission-related delays are composed of
data transmission and endpoint processing. For dedicated
fronthaul links, the data transmission delay T is largely fixed
and adds latency without any means for the BBU to com-
pensate. Endpoint processing, on the other hand, can be
sped up in the BBU. Typically, it is the OS that handles
network-related tasks. It is therefore possible to obtain
improved performance by switching to more capable net-
work hardware, a newer kernel, or different OS.
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The main contributor to OS-related delays Tog is in-
terrupt processing. It causes delay and jitter due to context
switches to interrupt service routines and handlers [35].
Context switches degrade performance even if they are not
computationally expensive as they might cause data to be
evicted from cache, new processor state information to be
loaded, and virtual memory translation lookaside bufters to
be flushed [36]. Since context switches can be caused by
aperiodic background processes and hardware interrupts,
their effect on an SDR platform—or any other software—is
not easily predicted or quantified by said software itself.
Mitigation strategies must therefore extend beyond the SDR
code base into the operating system, hardware, and load
management.

7. Experimental Setup

Measurements to quantify the contribution of each factor of
Fp (equation (1)) were carried out using two different
systems. These measurements serve to quantify the impact of
general purpose hardware and operating systems on cellular
BS implementation performance. Table 1 presents the test
systems’ main components while Table 2 lists the Linux
kernel boot arguments. Both systems were directly con-
nected to their respective frontends using Gigabit Ethernet.
The ARF SDR platform was configured as an LTE Release 8
BS with one transmitter and one receiver antenna. Assessing
the impact of protocol processing was done through the use
of the data plane. Turbo Code decoding was used to create a
uniform and constant load. Five iterations of the decoder
were applied to 25 resource blocks (RB) in the LTE subframe
structure. Modulation and coding scheme (MCS) 9 was used
as defined in LTE Release 8 for uplink data transmissions.
The operating system used was Ubuntu 16.04 LTS. In an
effort to reduce interrupt and CPU contention for the BS
code, OS boot-time parameters were modified from their
defaults. The aim of the changes is to improve the perfor-
mance of the ARF platform by dedicating resources. Listing
1 gives the parameters applied to the first system’s Linux
kernel on boot and Listing 2 presents the same for the second
system. The “intel_pstate = disable” parameter was used to
prevent dynamic control of the operating frequency in order
to enable consistent measurement runs. The OS’s scheduler
was instructed to avoid CPU cores 2-7 and 10-15. Doing so
reserves them for use by the BS code. The parameters in
Listing 1 and Listing 2 were in addition to the “root="
parameter as well as the default values of Ubuntu 16.04 for
each system, given in Listings 3 and 4, respectively. No
additional kernel boot settings were applied to System 3.
In addition to boot-time parameters, measures were
taken after system start-up to further improve performance
on System 1 and System 2. The governor for all processor
cores was set to the “performance” setting. The energy-
performance bias parameter was also changed. It was set to
indicate to the CPU to prefer higher performance over lower
energy consumption. This was done in an effort to minimize
latency and increase the repeatability of the data since the
decisions of the CPU are opaque to the user. The SDR
platform process was also executed with a high priority. This
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TaBLE 1: Computer system configuration.

Component System 1 System 2 System 3
CPU Intel Xeon D-1541 [30] Intel Xeon E3-1230 v3 [31] Intel Xeon E5-1650 v4 [32]
RAM 32 GB 2133 MHz DDR4 16 GB 1600 MHz DDR3 32 GB 2400 MHz DDR4
NIC Intel 1350 Intel 82574L Mellanox Connect4-X LX Intel XL710
Frontend NI USRP N200 [33] NI USRP N200 [33] NI USRP X300 [34]

TaBLE 2: Kernel configurations for systems 1 and 2.
Listing 1 intel_pstate = disable isolcpus=2-7, 10-15 rcu_nocbs =2-7, 10-15
Listing 2 intel_pstate = disable
Listing 3 ro quiet splash
Listing 4 ro quiet splash vthandoff=7

helps to ensure that the OS’s scheduler tries to minimize
interruptions caused by other tasks requesting processor
time. Ensuring constant operating parameters reduces jitter
from transitions between them and helps avoid unnecessary
delays. Such transitions were observed to occur frequently.
One possible reason for this is that relatively low CPU
utilization rate led the OS to reduce clock frequency in order
to save power as it believed the system to be relatively
unloaded. In fact, the system was likely busy moving data or
waiting for it. Waking up from a low power state when the
data does arrive takes more time than resuming processing
from a fully on state. The cset application [37] was used to set
the ARF code to run on the isolated CPUs. On System 1, two
cores and their adjoining Hyperthread cores were kept for
other processes while on System 2, the corresponding
number was one. On System 3, the CPU governor was set to
“performance” and the interrupt coalescing value to 10 us.

Although the measurements presented in this work were
obtained on a physical host without virtualization, we argue
that the results provide meaningful insights into C-RAN
implementation for three reasons. Firstly, a C-RAN differs
from a public cloud service in that the platform is purpose-
built to host cellular BBUs under the control of the same
administrative entity, i.e., the network operator. As such,
fewer abstraction layers are required than in a public cloud.
For the same reasons, direct access to hardware resources
can be granted to guests. Furthermore, hardware-assisted
virtualization technology, such as single root input/output
virtualization (SR-IOV), enables a single device to be shared
amongst the guests at a hardware level with low overhead
[38]. Secondly, being a purpose-build platform also makes it
feasible to provide an interface (i.e., paravirtualization) for
the guests to communicate their load status to the hyper-
visor. The latter can then utilize the similarity of the diurnal
cycle induced load (see Section 2) across neighboring BBUs
to scale down the CPU frequency of the whole system.
Thirdly, an operator’s business model differs from a public
cloud provider. The latter might oversubscribe resources to
increase revenue [39]. Another difference is that public
clouds do not know a priori what load type their customers
will run. Infrastructure must therefore be designed to be
generic. A C-RAN platform, on the other hand, knows the
load type to be executed and places meeting latency re-
quirements first. Consequently, resource allocations can be

tailored to the task at hand. Furthermore, since payloads in a
C-RAN platform originate from trusted users, less need for
hardware abstractions and security isolation overhead exists.
Performance, therefore, behaves more akin to a physical
host, yet still provides the benefits of consolidation by en-
abling multiple BSs to be hosted on a single server.

Measurements were performed to determine the impact
of two different system parameters on the performance of
the ARF. The first one was the clock frequency of the CPU.
It was varied from highest to lowest supported by the CPU
(see Table 3). CPU clock frequency measurements were
done to study the feasibility of reducing power con-
sumption without compromising performance. A lower
clock frequency enables operating voltage to be dropped,
which in turn leads to power savings. The CPU’s operating
speed impacts the T'zg parameter of Fp. The second type of
measurement involved varying the interrupt coalescing
behavior of the NIC (see Section 3.3). Table 3 shows the
parameters used for interrupt coalescing. The value labeled
“rx-usecs” indicates the amount of time in microseconds
that the NIC was configured to wait for further network
packets to arrive before notifying the CPU in an effort to
improve the interrupt-to-payload ration. Interrupt coa-
lescing was selected as test parameter to assess the impact of
OS processing (Tog in Fp) on BS performance. A greater
number of NIC interrupts result in more processing time
spent in kernel space. This does not significantly change the
computational load as each network packet still needs to be
processed but does reduce the number of context switches
required.

8. Results and Analysis

Results from the measurements are reported as the prob-
ability of the subframe processing being late. It is computed
by normalizing the number of late subframes by the total
number of subframes. This metric was chosen instead of the
more conventional CPU usage as it better reflects the ob-
jective: to process received subframes and prepare new ones
to transmit within the alloted time. It would indeed be
possible for the processor to be relatively unoccupied but to
have data be delayed by other factors (for example, network
stack processing or interrupt moderation by NICs). CPU
clock frequency and interrupt coalescing measurements
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TaBLE 3: CPU frequency and interrupt coalescing test parameters.
Test name Duration per value Starting value End value Step size
rx-usecs (ys) 30 min 10 300 10
cpu-freq (MHz) system 1 15 min 1000 2100 100
cpu-freq (MHz) system 2 15 min 1000 3300 100
3 ><10"4
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FIGURE 4: System 1: dropped TTI ratio for each clock frequency value recorded. The red line is the median with the vertical bars

depicting + one standard deviation. 5 MHz bandwidth.
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FIGURE 5: System 1: dropped TTI ratio for each clock frequency value recorded. The red line is the median with the vertical bars

depicting + one standard deviation. 10 MHz bandwidth.

were carried out using System 1 and System 2 while the NIC
offload measurements were performed using System 3.

8.1. Performance per MHz. Comparing Figures 4 and 5,
performance can be seen improving from the lighter pro-
cessing load to the more demanding one. Since the ARF
platform can handle higher data rate (load) better, improved
performance at a higher load suggests computational ca-
pacity is not the sole factor influencing performance. To
confirm that delays outside of the SDR platform impact
performance, measurements were carried out to determine
the effect of additional system delay in processing incoming
network traffic. The NIC’s interrupt coalescing timeout was
varied to introduce extra delay. Despite load, bandwidth,
and CPU clock frequency remaining constant, Figure 8
shows an increase in the ratio of dropped TTIs.

Dropped TTI ratio
[3S] w = w (o))

—_
T
L

o o o

1000 1200 1400 1600 1800 2000 2200
CPU clock frequency (MHz)

FIGURE 6: System 1: dropped TTI ratio for each clock frequency
value recorded. The red line is the median with the vertical bars
depicting + one standard deviation. 10 MHz bandwidth with 25 RB
load.
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FIGURE 7: System 2: dropped TTI ratio for each clock frequency value recorded. The red line

is the median with the vertical bars

depicting + one standard deviation. 10 MHz bandwidth with 25 RB load.

Even though a subframe may be ready in time in the
BBU, it still needs to be transported to the RRH. When
setting the frequency of the CPU, frontend transmission
delays must also be taken into account. For receiver-side
data processing, the same principle applies in reverse; not all
of the TTI duration is available for baseband processing. This
reduction in available processing time must be taken into
account in the design of the SDR platform and the con-
figuration of the OS it runs on. Unlike RTOS running on
ASIC-based designs, a margin should also be included to
protect against jitter in network processing caused by
competing processes running on the same machine.

The measurement with heavy protocol processing load
leads to the situation depicted in Figure 6. The shape of the
curve remains the same but the ratio of dropped TTIs below
the threshold frequency rises. Performance above this
threshold point remains essentially unchanged. Operating
the CPU at full frequency therefore needlessly increases
energy expenditure without providing a corresponding
improvement in the timeliness of computations or the
performance of the platform in general. It is already oper-
ating at effectively the same performance as a dedicated
design with preset timing and scheduling.

A potential alternative would be to execute the job as
quickly as possible using the highest performance setting
and then enter a low-power state. Such an approach may
not be suitable in all cases. Resuming normal execution
from a low-power state incurs a delay and consumes full
power [40]. Therefore, in order to be beneficial, the length
of the idle period must be long enough that the energy and
performance penalty [41] of transition into a power saving
state is recouped. The latency is of particular concern in
cellular systems. Processing a subframe requires obtaining
all its constituent samples from the radio frontend. These
do not arrive at the same time in one transaction but are
instead sent in chunks, the size of which is determined by
the Ethernet maximum transmission unit (MTU) size.
Frames are sent as soon as they are filled with samples. This
means the C-RAN platform must continuously process
incoming data from the network and thus requiring CPU
involvement. Delaying processing of arriving data means
accumulating work to be done once the last sample is

x107°

Dropped TTI ratio

100 150 200 250
Interrupt coalescing timeout (us)

300

FIGURE 8: System 1: dropped TTI ratio for each interrupt coalescing
timeout tested. The red line is the median with the vertical bars
depicting + one standard deviation. 5 MHz bandwidth.

TaBLE 4: Initial value multipliers used in generating initial values
for least squares curve fitting.

-1000  -100

Multipliers -10 1 10 100 1000

received. This backlog of work then creates extra delay in
the handling of the subframe as pending data frames must
be handled first. Similarly, if TTIs get shorter or subframes
are processed in smaller parts to reduce latency, the in-
tervals available for power states decrease even further.
However, the frequency-scaling method presented in this
work is not mutually exclusive with other power man-
agement techniques but rather a complementary ap-
proach. For example, it may be possible to hand over users
from several lightly loaded BBUs to one. Then, the all but
one could be put into power saving mode while the active
one executes with the lowest power state providing the
required performance. How to combine these techniques
as part of an overall solution is left up to future work.

Figure 7 indicates that the existence of the energy-saving
frequency threshold is not specific to System 1. System 2
exhibits the same type of behavior but with a greater po-
tential energy saving due to a higher maximum CPU op-
erating frequency.
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TaBLE 5: Smallest MSE value for tested model coeflicient counts 1-9 for f, for System 1.
1 2 3 4 5 6 7 8 9
(o — — — — —6.6338¢e + 08 — — 3.9947¢+06 —4.3060e+05
[ — — — — — 2.0958¢+10 1.2865e+05 -3.6605¢+03 —
c3 — — — — — -1.9060e+07 —119.1427 — 0.3559
4 — — —8.6528¢ + 09 — — — — —2.3198e+03 —
cs — — — — — — — — 0.0644
cs — — — ~43.3500 — — — — —
[ — — — —2.5526¢e + 04 — 1.0976e+13  9.3501e+07 9.9289%¢+ 05 —
Cg — — — — —6.4473e+05 — — -930.6551 —822.0543
Cy — — — — — -9.0785e+06  —83.9962 — 0.7473
C1o — — — — —4.9180e+06 1.1812¢+07 — — —
n - - - - — - - - 0.0669
¢, —2.0083  -2.0203 —-8.6256¢ + 06 — — — — — —
C13 — — — — —-33.3167 —-18.6360 —-16.2634 12.6242 16.5625
Ciy — — 0.0066 0.0019 0.0333 — — -0.0175 —
Ci5 — — — —-1.8772e-06 — — 1.3552e-05 4.8688e—06 —
Cie — - - - - - - - 0.7894
17 - — - - - - — - —
Cig — 6.4146¢ — 05 — — — — 2.1030e—-05 — —4.9713e - 04
MSE 0.7722 0.1178 0.0028 0.0020 0.0015 8.9748e—04 7.2662¢—04 6.9194e—-04  6.6601le—04

8.2. Performance Modeling. C-RAN server run-time ad-
aptation requires learning the BS’s performance vis-a-vis
its load and to be able to predict the impact of changes in
operating parameters. One way to accomplish this is to
extract a dependency function, the parameters of which
can be learned in real-time. Such a function was sought
using collected performance data. Analysis of the data
(see Figures 4-7) suggested that the impact of CPU
frequency can be divided into two distinct regimes: one in
which it majorly affects the late rate and one in which it
does not. Due to this shape, two function families were

selected:
)53 (e,x)

g, (¢, x)
g5 (¢, x)

g, (¢, x)

)

The criteria for the selection of the equations’ form were
being a function of CPU frequency and sampling rate,
possessing two regions (steep and shallow), and having a
suitably rapid transition from one region to the other.
Parameterwise, CPU frequency was selected since it is user
tunable and significantly affects both performance and
energy consumption. Sampling rate similarly heavily im-
pacts the amount of data needed to be processed. Through
preliminary analysis of early measurements, these two
factors were picked as being the most significant.

Studying the effect of sampling rate provides one of the
defining characteristics of C-RAN, namely, a steady and
constant inflow of samples to process. The analysis could,
however, be made more general by considering a generalized
load factor. Such a load factor would be constituted of the
traffic-independent part (i.e., sampling rate) and the traffic-
dependent part (i.e., per-resource block processing). The
latter would be subject to the diurnal patterns discussed in

fl (C’ x) =91 (C, x) * exp(

Section 2. The analysis of such a generalized model is left up
to future work.

While the general form of the function could be de-
termined by inspection of the collected data plots, parameter
combinations are too numerous for manual determination
to be practicable. Instead, an exhaustive search through all
the parameter combinations determines the best selection, as
well as their coeflicients as presented in [42]. Functions g,
g,> and g5 (equations (4)-(6)) contain these coeflicients:

(3)

2 2
g1, x)=ci+cf +c3f” + R, + R, + ¢4 fR,,

(4)

2 2
9 (6x) =c;+cgf +cof +cpR+ ¢ Ry +cpp fR,,

2 2
g3(6,x) =ci3+ e f tesf™ +egR + RS + g fR,.

(5)

Fitting of the model was done using the least squares
method in MATLAB [43]. Mean-squared error (MSE) was
used as the goodness-of-fit metric. The least squares method
exhibits sensitivity to its starting point. Multiple initial
values were therefore employed. Initial values were obtained
as two-step process. First, random values were obtained by
multiplying a random number uniformly distributed in
[0, 1] with a multiplier. Table 4 lists the multipliers used.
Each parameter of the model received an independently
selected value. An initial fitting was then conducted. A subset
of the lowest MSE coefficients was retained to serve as initial
values for subsequent fittings.

Iterations of the search potentially yield unsuitable re-
sults. This may occur due to ill-conditioned Jacobians or
rank deficiency. Any set of coefficients producing issues
of the aforementioned type, as reported by MATLAB,
was rejected. Additionally, significance of each parameter
to the overall model formed an additional criterion. Pa-
rameters more likely than a = 0.05 to result from the null
hypothesis resulted in rejection of the generated model.
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TaBLE 7: Smallest MSE value for each tested model coefficient counts 1-9 for f, for System 1.

1 2 3 4 6 7 8 9
(ol — 0.1728 — — 0.0157 — —5.3419¢ + 05 —0.0084 —-0.0036
C, — — — 0.0366 -0.1128 — 8.4137e—-06  3.6577e—06
C3 — — 0.0079 — 1.1375e - 04 0.5342 — —
N — — — — — — — —
Cs — — — — — — — —
Co — — — — — — — —
[ — — — — —9.1552¢ + 05 — —6.5538¢e + 05 —
Cg — — 5.5567 — 25.7958 915.3064 1.5507e + 03 436.4609 355.4889
Cy — — — 0.8146 0.8146 — -1.5507 — —
1o — — — — — — ~4.4712¢ + 04 —
‘1 - - - - - - - -
1 — — — — — — — 12.1912
Ci3 — — —620.3365 -2.3393e+05 1.7225¢+05 — —5.0350e+04 -2.1597¢+04 2.0170e+ 05
Cia — — — — ~331.6080 — — — ~476.7543
Ci5 — — — — 0.1656 —-0.0266 0.0536 — 0.3077
Ci6 — — — — 203.1686 —29.6142 2.4683e+04 —8.7337e+03
€17 — — - — - - - —
cig  6.4146e—-05 6.4146e—05 — 0.4405 — — —29.0912 9.8531
MSE 0.1178 0.0898 0.0030 0.0025 0.0016 8.4944e—-04 7.3278¢—04  6.6535e—04 6.428le—04

Some parameter combinations yielded results with imagi-
nary components. These were also rejected.

Tables 5 and 6 present the lowest MSE score for each
parameter count when fitting data recorded on System 1
using f,. The corresponding values for f, are given in
Tables 7 and 8. Similar results for System 2 are omitted for
brevity. They followed a similar pattern to the results for
System 1.

After an initial sharp drop in MSE between one and six
parameters, performance remains mostly stagnant from

1.2865¢ + 05% f — 119.1427% f>

seven parameters upwards. For f, the lowest MSE occurs
for 14 parameters and for f,, at 13. Lower parameter count
models are preferable as they are less likely to overfit, which
degrades predictive accuracy, and since they are less costly to
fit parameters for processingwise. Therefore, we select f at
seven parameters as the most suitable model (its MSE being
lower than f, at the same number of parameters). Equation
(6) presents the selected model:

(6)

Fulh) (

Figure 9 illustrates the selected model’s fit for System 1
data. To assess the impact of specific system characteristics on
performance, Figure 10 presents the fit f with the data
recorded for System 2. It can be observed that while the general
shape of the curve remains similar, there is more divergence
between modelled and recorded than in Figure 9. Residual
plots (Figures 12 and 13) for the selected model indicate a
different pattern on both systems. The quality of the fit im-
proves when the model is retrained based on System 2 data as
shown in Figure 11. This indicates that the general form of the
function applies to multiple platforms. Machine-specific
variations are expected since hardware, OS, driver, and load
differences impact behavior. Completely accounting for all
such variations in practice presents an almost infeasible task.

Determining when diminishing returns set in as a function
of f,, accomplished by analysing the relationship between the
dropped TTI ratio and the CPU clock rate. Beyond the
threshold frequency, performance stops increasing. A practical
SDR platform implementation may track this information and
use it to build time averaged statistics. These in turn can be

9.3501e + 07 — 83.9962: f2

)— 16.2634+1.3552e— 05+ f2+2.1030e— 05+ f *R,

utilized in online computations of the predictive equation’s
parameter values reflecting the current state of the execution
environment. Shorter averaging times lead to a more re-
sponsive estimation of the required CPU frequency while
longer ones reject transients better.

In addition to the statistics collection above, SDR systems
may also utilize communication protocol scheduler data for
performance-energy optimizations. Since in an LTE system
UEs may only transmit when given a grant by the BS, the
latter knows to a large degree its receiver-side processing load
some period of time into the future. It is not possible to
account for all incoming traffic (e.g., random access bursts), so
a margin should be left to avoid underestimating the required
computational resources. No fluctuation margin was included
in the values computed in this section as that is a system
design issue and therefore dependent on the use-case.

8.3. Network Processing Impact. Cloud infrastructure ex-
hibits not only a non-real-time computational
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FIGURE 9: System 1: comparison of actual and predicted lates for f,. (a) 5 MHz bandwidth. (b) 10 MHz bandwidth. (c) 15 MHz bandwidth.
(d) 20 MHz bandwidth.
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FIGURE 11: System 2: comparison of actual and predicted lates for f, with seven parameters f,,. (a) 5MHz bandwidth. (b) 10 MHz
bandwidth. (c) 15 MHz bandwidth. (d) 20 MHz bandwidth.

environment but also non-real-time data transfers.  performance. Network traffic originated interrupts can
Samples must be moved to and from the radio frontendsto  disrupt the dataflow processing of the physical layer. This
the virtualized BBU. Network traffic interrupts were ob-  will not be visible in the CPU usage of the baseband task
served to have a significant impact on platform  but can still cause processing to be late. CPU clock frequency
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FIGURE 12: System 1: residuals for the predicted lates for f . (a) 5MHz bandwidth. (b) 10 MHz bandwidth. (c) 15 MHz bandwidth.
(d) 20 MHz bandwidth.
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adjustment algorithms may therefore make incorrect
predictions. A smaller standard deviation provides a more
predictable environment for the SDR platform to adapt to,
thus making it possible to scale CPU frequency down more
aggressively.

Measurements were carried out to quantify the pro-
portion of time spent handling network related functions. In
an effort to isolate variance to that caused by network
processing itself, no LTE processing was executed concur-
rently. Tables 9 and 10 show round-trip time (RTT) obtained
for 50 megasamples per second with 368 samples per TTT at
two different MTU sizes.

One method to relieve the CPU is the use of offload-
capable NICs. These take on the task of processing in-
coming network packets instead of the OS. As such, they
only deliver ready-to-use payload data straight to the
application as there is no need to invoke any OS kernel
functionality. Offloading network processing presents
gains orthogonal and independent of baseband processing
capacity.

In both the small and large MTU cases, offloaded net-
work processing provided the best performance. The much
lower standard deviation improves reliability of the BS
software when the CPU clock frequency is adjusted close to
the minimum required as described in Section 8.1. These
latencies measured represent a lower bound on TTI prep-
aration time that is independent of computing capacity. It
should also be noted that the offloading results in less CPU
usage and context switches.

While LTE requirements can be met, the impact of
network processing on SDR performance becomes more
severe as TTI durations decrease. In 5G, TTI duration is
expected to shrink to provide lower latency communication.
The ratio of TTI duration to interrupt handling latency will
worsen the risk becoming the limiting factor for 5G SDR
implementations. Additionally, larger bandwidth will re-
quire more samples to be transferred between RRHs and
BBU. The resultant increase in network traffic increases the
number of packets to process and thus network processing
load on the OS.

TaBLE 9: System 3: latency results per NIC configuration. Sampling
rate 50 Msps, 368 samples per TTI, and MTU of 604 bytes.

Test configuration Average latency (us) Standard deviation

Mellanox 40G kernel 171.8 90.7563
Mellanox 40G offload 59.8 14.7207
Intel 40G kernel 127 42.4676

TaBLE 10: System 3: latency results per NIC configuration. Sam-
pling rate 50 Msps, 368 samples per TTI, and MTU of 8028 bytes.

Test configuration Average latency (us) Standard deviation

Mellanox 40G kernel 155.8 34.3977
Mellanox 40G offload 119.4 8.5615
Intel 40G kernel 181.8 63.4287

9. Conclusion

Cellular BS execution on general purpose hardware and OSs
is feasible. The SDR aim of increasing the flexibility of
communication protocol implementations can be met if
system parameters are appropriately taken into account to
achieve optimal performance. It was demonstrated that
acceptable performance can be obtained without resorting to
a hard-real-time OS or dedicated ASIC-based designs. This
opens up the possibility of consolidating BS processing into
C-RAN data centers. This could further increase the flexi-
bility of SDR system deployment by enabling on-demand
allocation of resources to those cells experiencing load while
activating power saving measures on unloaded ones. Con-
centration of computations produces savings in the hard-
ware investments required to build the network. In addition,
energy savings can be realised through CPU frequency
scaling. Measurements showed that the relationship between
operating frequency and the probability of late subframe
processing is nonlinear. By operating at, or slight above, the
threshold point, performance can be kept at virtually the
same level as fully on but with a significantly lower energy
consumption.
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It was shown that optimising for computations-per-
second is not sufficient—latencies and jitter caused by
competing processes must be taken into account. On the
other hand, energy-efficient use of computing resources
demands that CPU clock frequencies be kept low and idle
periods extended as much possible. In order to combine
these two objectives—few missed TTI deadlines and high
power savings—parameter tuning should take into account
not only the processing needs of the application itself but
also delays external to the platform. In particular, latency
from passing data from the NIC through the network stack
to the user process was studied. It was found that network
traffic generated interrupts impact processing time and must
therefore also be taken into consideration. Especially for
shorter TTI durations, network processing delay can con-
stitute a substantial portion of the total computation time
budget. Accounting for this is of particular relevance in
C-RAN environments, where RRHs are physically separate
from the servers executing the baseband processing. Miti-
gating the impact of moving data to-and-from BBU con-
stitutes an important avenue of research to improve the
performance of virtualized cellular software platforms. NICs
offering full network stack offload constitute one possible
solution.

Several metrics along with a performance model were
also proposed to help in estimating suitable operating points
for the CPU clock frequency. Such a model may be used to
determine appropriate resource allocation levels for soft-
ware-based BSs according to load. Design of a self-tuning
platform is left up to future work.
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