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Because traditional fuzzy clustering validity indices need to specify the number of clusters and are sensitive to noise data, we
propose a validity index for fuzzy clustering, named CSBM (compactness separateness bipartite modularity), based on bipartite
modularity. CSBM enhances the robustness by combining intraclass compactness and interclass separateness and can auto-
matically determine the optimal number of clusters. In order to estimate the performance of CSBM, we carried out experiments on
six real datasets and compared CSBMwith other six prominent indices. Experimental results show that the CSBM index performs
the best in terms of robustness while accurately detecting the number of clusters.

1. Introduction

Recently, in order to reveal valuable knowledge and patterns
behind data, data mining has become increasingly crucial in
many fields such as automatic categorization of text docu-
ments [1, 2], grouping search engine results [3, 4], analyzing
time series data [5, 6], and others [7–10]. As one of the vital
techniques of data mining, clustering can divide a group of
samples into multiple clusters, so that elements in the same
cluster are as similar as possible and elements in different
clusters are as dissimilar as possible.

In fuzzy clustering, represented by the FCM (fuzzy C
means) [11] algorithm, the value of membership degree is
fuzzy, which means that a sample is allowed to belong to
multiple clusters with different probabilities. It is more
consistent with the rule of sample distribution than the hard
clustering logic; therefore, the fuzzy clustering research has
constantly been ongoing and innovative. As yet, a large
number of fuzzy clustering algorithms have been in-
creasingly improved in accuracy, efficiency, robustness, and
other aspects, which significantly boosts the development of
data mining. At the same time, the validity index used to
measure the clustering quality of fuzzy clustering, as an
indispensable part of algorithm research, plays a growing
important role in fuzzy clustering.

Recently, the achievement on clustering validity index is
pretty fruitful. Hu et al. [12] proposed a clustering validity
index by combining intraclass compactness with intercluster
separateness, which reduces the impact of noise data well.
Chen and Pi [13] proposed a nondistance validity index
based on fuzzy membership degree by mixing with com-
pactness and separateness, which improves the identification
of overlapping clusters while weakening the sensitivity to
noise data. Although these indices enhance the robustness by
combining intraclass compactness with interclass sepa-
rateness, it is still necessary to manually specify the number
of clusters owing to the restrictions of the FCM algorithm.
Zhang et al. [14], regarding the fuzzy membership degree
and the bipartite modularity as the global and local attri-
butes, respectively, proposed a weighted global-local validity
based index (WGLI). 'e WGLI can automatically de-
termine the number of clusters but is vulnerable to noise
data because of its higher dependency on the fuzzy mem-
bership degree of the FCM algorithm.

Motivated by the above analysis, in this paper, we apply
the bipartite modularity to the constructed bipartite network
based on the clustering result of the FCM algorithm and
evaluate the final partition result combining intraclass
compactness with interclass separateness at the same time.
'e proposed validity index fuses the bipartite modularity
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with intraclass compactness and interclass separateness,
which is not only able to enhance the robustness of clus-
tering results but also able to determine the optimal number
of clusters automatically.

2. Related Work

2.1. FCM Algorithm. 'e FCM algorithm divides N data
samples xi(i � 1, 2, . . . , N) into C fuzzy clusters by means of
the fuzzy partition method and then calculates the centre of
each cluster. Its objective function shown in formula (1) is
minimized through the process of iteration:

Jm(U, V) � 􏽘
C

c�1
􏽘

N

i�1
u

m
ci xi − vc

����
����
2
, (1)

where vc represents the center of c-th cluster,m is the fuzzy
parameter and m ∈ (1,∞), and uci indicates the mem-
bership degree that the sample i belonging to the cluster c
and

􏽘

C

c�1
uci � 1, uci ∈ [0, 1]. (2)

'en, the expressions of uci and vc can be obtained using
the Lagrange multiplier method as follows:
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k�1 dci/dki( 􏼁
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where dci and dki, respectively, represent the Euclidean
distances from the clustering centers c and k to the
sample i.

2.2. Fuzzy Clustering Validity Index. 'e fuzzy clustering
validity index canmeasure the clustering performance and is
fairly significant in the fuzzy clustering research. 'e
prevalent fuzzy clustering validity indices are shown in
Table 1.

2.3. Bipartite Modularity. Newman and Girvan [23] in-
troduced modularity to measure the strength of com-
munity structure in a single network. However, networks
in the real world not only exist in this simple form, which
means, for example, in the metabolic networks [24],
pathological networks [25], and the World Wide Web;
there may be one-to-many and even many-to-many re-
lationships between the vertices and the divided com-
munities instead of the simple one-to-one relationship.
For complicated networks, by extending and concretizing
the matrix-based method that Newman used for bipartite
network, Barber [26] defined a zero model and then
proposed the bipartite modularity applied in bipartite
networks with special constraints which means that the
vertices of bipartite network are divided into two disjoint
sets and each edge connects two vertices from these two

sets, respectively. However, the disadvantages of the bi-
partite modularity include that the number of commu-
nities must be determined in advance, and the number of
communities of the two types of vertices in the bipartite
network must be equal. Guimerà et al. [27] proposed the
bipartite modularity by adopting the idea of modularity
maximization and transformed the module identification
problem into the combinatorial optimization problem.
Unfortunately, the module structure of a type of vertex
should be manually specified, which will affect the ac-
curacy of partition.

'en, Murata [22] defined a modified bipartite modu-
larity, which allows random connections between two types
of vertices, and a community containing a type of vertex can
correspond to one or more communities of the other type of
vertex. When there is a complete one-to-one relationship
between communities of different types of vertices, the bi-
partite modularity reaches its maximum.

Let G be a bipartite network, in whichM denotes the total
number of edges and V is a set including all vertices. 'e
bipartite network is divided into communities ofX-vertex and
Y-vertex, and the numbers of these communities are LX and
LY. VX and VY are defined as sets of communities of X-vertex
and Y-vertex and represented as VX � VX

1 , VX
2 , . . . , VX

LX􏼈 􏼉

and VY � VY
1 , VY

2 , . . . , VY
LY􏼈 􏼉, respectively, in which the ele-

ments VX
l and VY

m represent a community of X-vertex and Y-
vertex, respectively. Let A be an adjacency matrix, and one of
its elements can be expressed as A (i, j). Moreover, if the
vertexes i and j are connected,A (i, j)� 1, otherwiseA (i, j)� 0.

Assuming that the two communities Vl and Vp are
different from each other, which means (Vl ∈ VX∧
Vp ∈ VY)∨(Vl ∈ VY∧Vp ∈ VX); the number of all the
edges, denoted by elp, that connect the vertices from Vl
and Vp and its row sum, denoted by al, can be respectively
expressed as

elp �
1
2M

􏽘
i∈Vl

􏽘
j∈Vp

A(i, j), (5)

al � 􏽘
p

elp �
1
2M

􏽘
i∈Vl

􏽘
j∈V

A(i, j). (6)

'e bipartite modularity QB is defined as

QB � QBXY + QBYX � 􏽘
l1∈VX

el1p1
− al1

ap1
􏼐 􏼑

+ 􏽘
l2∈VY

el2p2
− al2

ap2
􏼐 􏼑,

(7)

where

p1 � argmaxk1∈VY el1k1
􏼐 􏼑, (8)

p2 � argmaxk2∈VX el2k2
􏼐 􏼑. (9)

QB indicates the sum of bipartite modularity in two
different directions, VX⟶ VY and VY⟶ VX, QBXY and
QBYX , respectively, denote the expected values in two di-
rections, which means the number of edges connecting the
corresponding vertices from communities of X-vertex and
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Y-vertex minus the number of edges that are connected
randomly between X-vertex and Y-vertex in the same di-
vided communities. 'e larger the value of QB, the stronger
the community structure of bipartite network and the better
the result of community detection.

2.4. Constructing Bipartite Network. According to the
membership degree matrix and C clusters obtained from the
FCM algorithm, a weighted bipartite network can be con-
structed. 'e X-vertex is represented by all the cluster
centers, the Y-vertex is denoted by all the sample points, and
the weighted edges are indicated by membership degrees.
Applying the bipartite modularity to the constructed bi-
partite network, we have LX � LY �C, M � 􏽐

C
i�1􏽐

N
j�1A(i, j),

and the adjacency matrix A (i, j) can be defined as follows:

A(i, j) �

1.0, uci > α,

uci, (1 − α)≤ uci ≤ α,

0.0, uci <(1 − α),

⎧⎪⎪⎨

⎪⎪⎩
(10)

where α� 0.7, uci denotes the fuzzy membership degree of
the FCM algorithm.

Suppose that the FCM algorithm runs on a dataset in-
cluding 10 sample points and 4 clusters. According to
formula (10), a bipartite network can be constructed by
cluster centers and sample points and shown as Figure 1.

In Figure 1, the top nodes, which are also the X-vertex,
represent different communities composed of cluster cen-
ters, and the bottom nodes, which are correspondingly the
Y-vertex, represent different communities composed of
divided datasets. Besides, the weighted values of the edges

Table 1: 'e commonly used fuzzy clustering validity indices.

Indices Definition Description

PC (partition coefficient) PC � (1/N)􏽐
C
c�1􏽐

N
i�1u

2
ci

'epartition coefficient (PC) [15] measures the fuzzy
degree of final divided clusters by means of the fuzzy

partition matrix, and the larger its value,
the better the partition result

PE (partition entropy) PE � − (1/N)􏽐
C
c�1􏽐

N
i�1uci log(uci)

'e partition entropy (PE) [16] measures the fuzzy
degree of final divided clusters by means of the fuzzy

partition matrix, and the smaller its value,
the better the partition result

MPC (modified partition coefficient) MPC � (C × IPC − 1)/(C − 1)

Because the value of PC merely depends on the
membership degree uci, Dave [17] proposed the

modified PC index MPC, and the larger its value, the
better the partition result

MPE (modified partition entropy) MPE � (N × IPE)/(N − C)

Because the value of PE merely depends on the
membership degree uci, Dave [17] proposed the

modified PE indexMPE, and the smaller its value, the
better the partition result

XB (Xie–Beni index) XB � Jm/(N × mini,j�1, ..., C, i≠j ‖vi − vj‖2)

Considering the membership degree and the
structure of datasets, Xie and Beni [18] proposed the
XB index to measure the overall average compactness
and separateness, and the smaller its value, the better

the partition result

FS (Fukuyama–Sugeno index) FS � Jm(U, V) − Km(U, V)

� Jm − 􏽐
N
i�1􏽐

C
c�1u

m
ci ‖vc − v‖2

, where v � (1/N)􏽐
N
i�1xi

Fukuyama and Sugeno [19] also proposed the index
FS considering the compactness and separateness,
and when its value reaches the minimum, the

partition result is the best

PCAES (partition coefficient and
exponential separation)

PCAES � 􏽐
C
c�1􏽐

N
i�1(u2

ci/uM)

− 􏽐
C
c�1exp(− min

k≠c
‖vc − vk‖2􏽮 􏽯/βT), where

uM � min
1≤c≤C

􏽐
N
i�1u

2
ci􏽮 􏽯, βT � (􏽐

C
l�1‖vl − v‖2)/C,

v � (1/N)􏽐
N
i�1xi

Wu and Yang [20] proposed the index PCAES by
combining the normalized partition coefficient with
the exponential separateness degree of each cluster,
and the larger its value, the better the partition result

CO (compactness and overlap
measures)

CO � C(c, U) − O(c, U) � (1/n)􏽐
n
j�1

(􏽐
c
i�1Cij(c, U) − 􏽐

c− 1
a�1􏽐

c
b�a+1Oabj(c, U)), where

Cij(c, U) �
uijif(uij − uik)≥Tc, k � 1, . . . , c, k≠ j

0 otherwise􏼨

Oabj(c, U) �
1 − (uaj − ubj)if(uaj − ubj)≥To, a≠ b

0 otherwise􏼨

Žalik [21] proposed the index CO based on the
compactness and separateness, and the larger its
value, the higher the compactness degree, and the
lower the coverage degree between clusters, the better

the partition result

WGLI (weighted global-local index) WGLI � (2MMD + QB
′)/3, where

MMD � (1/n)􏽐
n
j�1 max uij

1≤ i≤C

Zhang et al. [14], based on the membership degree
obtained from the FCM algorithm, proposed the

index WGLI combining the bipartite modularity; QB
′

represents the bipartite modularity proposed by
Murata [22], and the larger the value of WGLI, the

better the partition result
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are the corresponding membership degrees, which are used
to express the values of A (i, j). According to the formulas
(5)–(10), the value of QB can be calculated.

3. Fuzzy Clustering Validity Index CSBM

In this paper, we proposed a fuzzy clustering validity index
named CSBM. 'is index combines three components: (1)
bipartite modularity, (2) intraclass compactness, and (3)
interclass separateness. First, CSBM builds a bipartite net-
work based on the clustering results of FCM and applies the
bipartite modularity to this bipartite network. Second,
CSBM evaluates the clustering results by combining intra-
class compactness and interclass separation.

Compared with the conventional validity indices, the
index CSBM can enhance the robustness on the one hand
and automatically determine the optimal number of clusters
on the other hand.

3.1. Intraclass Compactness. 'e intraclass compactness of
the index CSBM is defined as

NC � 􏽘
N

i�1
􏽘

C

c�1

u2
ci

umax
, (11)

where

umax � max1≤i≤N 􏽘

C

c�1
u
2
ci

⎧⎨

⎩

⎫⎬

⎭. (12)

NC (novel compactness) improves the performance of
the partition coefficient PC, where the compactness of the
cluster c is expressed as u2

ci/umax. 'e larger the value of NC,
the higher the intraclass compactness, and the better the
result of fuzzy partition.

3.2. Interclass Separateness. In order to reduce the impact of
noise data on the clustering result, the interclass separateness
is measured by the distance between different fuzzy clusters,
which is defined as follows:

SEP �
1
N

􏽘

N

i�1
􏽘

C− 1

a�1
􏽘

C

b�a+1
Oabi(C, U)⎛⎝ ⎞⎠, (13)

where

Oabi(C, U) �
1 − uai − ubi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, if uai − ubi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥To, a≠ b,

0, otherwise.

⎧⎨

⎩

(14)

'e threshold To is used to eliminate the noise points on
the cluster boundary and represents the separateness be-
tween samples of two clusters a and b. uai and ubi indicate the
membership degrees that sample point i belonging to cluster
a and b, respectively.'e smaller the value ofOabi (C,U), the
lower the coverage degree between clusters a and b, and the
higher the separation degree between the two clusters,
whereas SEP (separateness) indicates the sum of the cluster
separation degrees of all sample points in the fuzzy mem-
bership matrix, and the smaller the value of SEP, the better
the result of fuzzy partition.

3.3. Index CSBM. 'e objective function used to calculate
the index CSBM is defined as

CSBM � (C − 1)
(1/C)

×
NC − SEP + QB( 􏼁

2
. (15)

'e introduction of (C − 1)(1/C) is to adjust the value of
CSBM. 'e larger the value of NC, the smaller the value of
SEP and the better the clustering result. At the same time, the
larger the value of NC-SEP and QB, the larger the value of
CSBM. 'e better the clustering quality of FCM algorithm,
the more accurate the optimal number of clusters.

'e calculation process of the fuzzy clustering validity
index (CSBM) is as follows:

(1) Input: the dataset S and threshold ε used in the FCM
algorithm

(2) Output: the clustering result.
(3) Running the FCM algorithm on the given dataset
(4) Constructing the weighted bipartite network

according to the membership degree uci and the
cluster centre vc obtained from formulas (3) and (4)
and the adjacency matrix A (i, j) from formula (10).

(5) Calculating the bipartite modularity QB according to
formulas (5)–(10)

(6) Calculating CSBM according to formulas (11)–(15)

4. Experiments

4.1.Datasets. In order to verify the effectiveness and validity of
the index CSBM, we select six datasets fromUCI database.'e
detailed information of these six datasets is shown in Table 2.

4.2. Evaluation Criteria for Clustering Result. F-measure
(FM) and entropy (EN) are used to evaluate the clustering
result of the FCM algorithm. F-measure is often used to

1.00 1.00 0.47 0.51 1.00 1.000.63 0.31 1.00 0.55 0.41 1.00 1.00

Figure 1: 'e example of bipartite network.
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evaluate the partition result of clustering algorithms and can
be defined as

F �
2PR

P + R
, (16)

where P represents the accuracy rate, which means the
proportion of the related files retrieved by the system to the
total number of all the related files in the system and R
represents the recall rate, which indicates the proportion of
the related files retrieved by the system to the total number of
all the files retrieved by the system. In general, the accuracy
rate and recall rate interact on each other. Considering these
two factors, the index F-measure can be calculated and reveals
the overall performance. 'e value range of F-measure is [0,
1], and the larger its value, the better the clustering result.

Entropy, also known as Shannon entropy [28], is rep-
resented by a set of discrete probabilities pi, which, in the
case of sending a message, are the ones that a particular
message is actually sent. 'e entropy of message system is
used to measure the average amount of information in a
message and can be defined as follows:

E � 􏽘
N

i�1
pilog2pi. (17)

'e value range of entropy is [0, 1], and the smaller its
value, the better the clustering result.

4.3. Experimental Results. In order to evaluate the accuracy
of CSBM in terms of predicting the optimal number of

clusters, we compare it with six prevalent fuzzy clustering
validity indices, including PC, PE, MPC, MPE, CO, and
WGLI. Tables 3–8 show the values of the index CSBM and
other comparative indices obtained from running the FCM
algorithm on six datasets, in which the values of F-measure
and entropy are also included, so the practicability and
effectiveness of the FCM algorithm can be confirmed. 'e
bold values in the tables denote the values of indices cor-
responding to the optimal number of clusters.

'e experimental results can be clearly interpretive from
the following three aspects:

(1) On the iris, wine, and zoo datasets (Tables 3, 4 and 7,
respectively), the index CSBM outperforms other
indices, which means its matching classification
number indicates the best partition result. On the iris
and wine datasets shown in Tables 3 and 4, re-
spectively, other indices could produce their own best
index values when the cluster number equals 2. And
actually, these two datasets have both 3 classes. Table 7
lists the results on the zoo dataset which has 7 classes.
However, WGLI, PC, MPC, and CO all generate their
own best index values when there are 4 clusters, and
PE and MPE think the best number of clusters is 3.

(2) On the wpbc and Hayesroth datasets shown in Ta-
bles 5 and 6, respectively, some indices including
CSBM all gain their own optimal values, while others
are not as satisfactory. On the wpbc dataset, there are
5 indices that could find the realistic number of

Table 2: 'e detailed information of datasets.

Datasets Samples Attributes Clusters Description

Iris 150 4 3

'e dataset is the most famous database in the pattern
recognition literatures, including 150 samples, 4

attributes, and 3 classes containing 50 instances each,
and each class refers to a type of iris.

Wine 178 13 3

'e dataset is the result of chemical analysis on three
different kinds of wines from the same region of Italy.
It contains 178 results. 'e analysis determines the
number of 13 components found in each wine. 'e

dataset is divided into three categories.

Wpbc 194 33 2

'e dataset is a Wisconsin breast cancer dataset with
194 samples and 33 attributes, and each sample

represents a subsequent data of breast cancer case.
'e dataset is divided into two categories.

Hayesroth 132 5 3

'e dataset describes the evidence of behaviour
classification, confidence degree, and recognition

behaviour that are closely related to human
behaviour. It contains 132 samples and 5 attributes
using numerical values instead of actual values. 'e

dataset is divided into three classes.

Zoo 101 16 7
'e dataset describes the classification of animals,
including 101 samples and 17 attributes. 'e dataset

is divided into 7 classes.

Glass 214 9 6

'e study of glass classification is motivated by
criminological investigations. If the identification is
correct, the remaining glass can act as evidence. 'e
dataset consists of 214 samples and 9 attributes, which

is divided into 6 classes.
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Table 3: Values of each index on the iris dataset.

Clusters CSBM WGLI PC PE MPC MPE CO FM EN
2 0.7582 0.7966 0.8724 0.0833 0.7668 0.0844 0.8840 0.8399 0.2507
3 0.7744 0.7427 0.7660 0.1682 0.6599 0.1716 0.8129 0.9815 0.1338
4 0.7625 0.6926 0.6699 0.2468 0.5672 0.2536 0.7130 0.8652 0.1304
5 0.7593 0.6824 0.6508 0.2871 0.5690 0.2970 0.7072 0.8458 0.0888
6 0.7646 0.6472 0.5931 0.3474 0.5161 0.3618 0.6035 0.7968 0.0825
7 0.7647 0.6248 0.5447 0.3856 0.4725 0.4045 0.5832 0.7232 0.0446

Table 4: Values of each index on the wine dataset.

Clusters CSBM WGLI PC PE MPC MPE CO FM EN
2 0.7436 0.7760 0.8518 0.0912 0.7313 0.0922 0.8515 0.8533 0.3846
3 0.7564 0.7427 0.7690 0.1606 0.6674 0.1634 0.8294 0.8383 0.3304
4 0.7488 0.7314 0.7613 0.1767 0.6910 0.1807 0.8322 0.7379 0.3382
5 0.7483 0.7146 0.7235 0.2152 0.6613 0.2214 0.7933 0.7587 0.2875
6 0.7475 0.7192 0.7258 0.2204 0.6765 0.2280 0.8005 0.6555 0.282
7 0.7411 0.7208 0.7368 0.2134 0.6976 0.2221 0.7973 0.6425 0.2743

Table 5: Values of each index on the wpbc dataset.

Clusters CSBM WGLI PC PE MPC MPE CO FM EN
2 0.7187 0.7460 0.7640 0.1180 0.5997 0.1192 0.7407 0.7833 0.2788
3 0.7109 0.7098 0.7132 0.1686 0.6057 0.1713 0.7654 0.6914 0.2723
4 0.7142 0.7003 0.6786 0.2079 0.5954 0.2122 0.7526 0.5835 0.2778
5 0.7158 0.6726 0.6341 0.2527 0.5605 0.2594 0.6769 0.5362 0.2781
6 0.7106 0.6635 0.6013 0.2889 0.5359 0.2981 0.6703 0.4124 0.2758
7 0.7175 0.6547 0.5922 0.3045 0.5362 0.3159 0.6621 0.4014 0.2729

Table 6: Values of each index on the Hayesroth dataset.

Clusters CSBM WGLI PC PE MPC MPE CO FM EN
2 0.7429 0.7697 0.8141 0.1022 0.6749 0.1038 0.7985 0.4485 0.4618
3 0.7439 0.7419 0.7616 0.1529 0.6657 0.1564 0.8072 0.4328 0.4544
4 0.7404 0.7252 0.7318 0.1856 0.6579 0.1914 0.773 0.3603 0.4574
5 0.7368 0.7125 0.711 0.2099 0.6504 0.2182 0.7778 0.3369 0.4562
6 0.7355 0.7041 0.6945 0.2301 0.6428 0.241 0.7625 0.3269 0.4437
7 0.7343 0.6958 0.6786 0.2493 0.6329 0.2633 0.7405 0.2997 0.4427

Table 7: Values of each index on the zoo dataset.

Clusters CSBM WGLI PC PE MPC MPE CO FM EN
3 0.7853 0.6493 0.6147 0.2940 0.4248 0.3030 0.5777 0.6000 0.3421
4 0.7891 0.6711 0.6196 0.3219 0.4946 0.3352 0.6767 0.6825 0.2475
5 0.7885 0.622 0.5326 0.4117 0.4171 0.4332 0.5685 0.6652 0.2183
6 0.7778 0.5996 0.4917 0.4697 0.3911 0.4993 0.5662 0.7103 0.1625
7 0.8149 0.5542 0.4496 0.5117 0.3588 0.5498 0.4215 0.5737 0.1800
8 0.7969 0.556 0.4476 0.5342 0.3695 0.5802 0.4691 0.6003 0.1248

Table 8: Values of each index on the glass dataset.

Clusters CSBM WGLI PC PE MPC MPE CO FM EN
2 0.7252 0.7296 0.7702 0.1314 0.5864 0.1326 0.7498 0.6782 0.6697
3 0.7036 0.6958 0.7215 0.1909 0.6054 0.1936 0.7392 0.7240 0.6119
4 0.7350 0.6421 0.6051 0.2859 0.4889 0.2913 0.6576 0.7038 0.5901
5 0.7852 0.5568 0.4763 0.3925 0.3569 0.4019 0.3512 0.6558 0.5753
6 0.7746 0.5541 0.4703 0.4127 0.3736 0.4246 0.5503 0.6776 0.5364
7 0.7845 0.5307 0.4193 0.4799 0.3302 0.4961 0.4578 0.6967 0.5378
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classes accurately, including CSBM, WGLI, PC, PE,
and MPE. Other two indices, MPC and CO, find
more clusters. On the Hayesroth dataset, only the
CSBM and CO generate accurate number of clusters
and the other 5 indices generate less clusters.

(3) On the glass dataset as in Table 8, all the indices
cannot achieve the desired results. But compared
with the other indices, the predicted value, 5, of the
index CSBM is closest to the standard value, 6. 'e
second best is the index MPC, whose predicted
number of clusters is 3. 'e rest indices, including
WGLI, PC, PE, MPE, and CO, all generate their own
best values when the number of clusters is 2.

According to the above experimental results, the
index CSBM performs better than these comparative
indices in terms of predicting the optimal number of
clusters.

In order to verify the robustness of the index CSBM, we
add some noisy data to each dataset at a rate of 10% and then
run the FCM algorithm again. 'e change trend of values of
all the indices with the number of clusters is shown as
Figure 2. At the same time, the OC (original clusters) is the
original classification number of each dataset, and the op-
timal numbers of clusters of each dataset determined by all
the indices before and after adding noise data are shown in
Table 9.
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Figure 2: 'e variation trend of each index with the number of cluster (C) after adding noise data. (a) Iris. (b) Wine. (c) Wpbc.
(d) Hayesroth. (e) Zoo. (f ) Glass.
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'e numbers outside and within parentheses, re-
spectively, represent the optimal number of clusters de-
termined by the corresponding indices before and after the
addition of noise data, and the coarser values indicate that
the number of clusters matches the standard values

It can be seen from Figure 2 and Table 9 that the index
CSBM is less vulnerable to the added noise data than other
comparative indices and can still determine the optimal
number of clusters accurately. Meanwhile, due to the noise
data, the results of indices WGLI, PC, PE, and MPE on zoo
and glass datasets, index MPC on wine, wpbc and Hayesroth
datasets and index CO on wine, and Hayesroth and glass
datasets are all changed in different degrees. According to
Figure 2, after adding noise data, the values of some indices
remain unchanged, such as the results of WGLI on iris
dataset, and the values of some indices are slightly closer to
standard values, such as the results of CO on wine dataset.
However, some indices differ from standard values to a
greater extent, such as the results of MPC on wine dataset.
'e overall change shows that there is a big difference be-
tween the value of each index and the standard values in
theory after adding noise data, but the actual results are
relatively random and lack of the corresponding rules, which
furthermore verifies the excellent performance of the index
CSBM in terms of robustness.

5. Conclusions

In this paper, a new fuzzy clustering validity index named
CSBM is proposed. 'is index modifies the intraclass
compactness and interclass separateness on the basis of
conventional indices, which means that it enhances the
robustness and weakens the impact of noise data. At the
same time, the optimal cluster number of fuzzy clustering
can be predicted more accurately by integrating with
bipartite modularity. Six datasets from the UCI database
are selected for the sake of validating the feasibility and
validity of the index CSBM. 'e results show that the
index CSBM performs better than other comparative
indices in terms of clustering accuracy and robustness
and predicts the optimal number of clusters more
precisely.
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