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Earth surface texture features referring to as visual features of homogeneity in remote sensing images are very important to
understand the relationship between surface information and surrounding environment. Remote sensing data contain rich
information of earth surface texture features (image gray reflecting the spatial distribution information of texture features, for
instance). Here, we propose an efficient and accurate approach to extract earth surface texture features from remote sensing data,
called gray level difference frequency spatial (GLDFS). -e gray level difference frequency spatial approach is designed to extract
multiband remote sensing data, utilizing principle component analysis conversion to compress the multispectral information, and
it establishes the gray level difference frequency spatial of principle components. In the end, the texture features are extracted using
the gray level difference frequency spatial. To verify the effectiveness of this approach, several experiments are conducted and
indicate that it could retain the coordination relationship among multispectral remote sensing data, and compared with the
traditional single-band texture analysis method that is based on gray level co-occurrence matrix, the proposed approach has
higher classification precision and efficiency.

1. Introduction

Remote sensing technology can extract high resolution re-
gional marine environmental information in time, especially
for the complex sea area. Multispectral remote sensing data
reflects the interested target or regional radiation charac-
teristics through the electromagnetic spectrum of multi-
band, and it has the advantages of wide range, multiphase,
multiband, and high resolution. Remote sensing image
could enrich the spectral characteristics of landmark and
find out more detailed information, such as the structure,
shape, and texture. However, in virtue of the fact that same
objects possess different spectral and different objects share
same spectral, the applications of remote sensing data would
be serious restricted if only spectral information is taken into
consideration.-e earth surface texture is a good solution to
the problem because of the stability characteristics [1].

-e classical texture extraction and analytic approaches
include gray level co-occurrence matrix method [2, 3],

wavelet analysis method [4, 5], Gabor spectrum method [6],
and so forth. While all these methods could only be applied
to analyze the information of single band in remote sensing
images, for multispectral remote sensing data, all the bands
should be processed separately, which would decrease the
extraction efficiency badly.

Because of the geometric characteristics of the surface
object, it has a unique texture features on the remote sensing
images. So, the different surface objects can be extracted
through the texture features. -is paper utilizes gray level
difference frequency spatial to extract texture features of
multiband remote sensing data. We firstly conduct principal
component analysis (PCA) on the eight bands of Worldview-
II multispectral images and compress these data on basis of
guaranteeing against loss of spectral information. Make gray
difference statistics on the compressed principle components
and establish the gray level difference frequency spatial. In the
experiments, the gray level difference frequency spatial is used
to extract texture features, and a comparison with Gray Level
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Co-occurrence Matrix (GLCM) is made. -e experimental
results indicate that the gray level difference frequency spatial
has higher classification accuracy and efficiency.

2. Worldview-II Multispectral Remote
Sensing Data

Worldview-II is one of the highest resolution remote sensing
satellites, and it has the highest spatial resolution (0.46m in
the panchromatic band and 1.84m in the multispectral
bands). It provides high resolution multispectral data with
eight bands, which include four conventional bands (red,
green, blue, and near-infrared 1) and four characteristic bands
(coastal, yellow, red edge, and near-infrared 2). -e data
analyzed in this paper are Worldview-II multispectral remote
sensing image of the Sea Islands; the texture features of eight
bands are extracted. Firstly, we calibrate the data and get the
radiance data. Secondly, atmospheric correction is conducted
to eliminate the influence of atmosphere and illumination,
and the actual reflectance of surface objects is obtained. Fi-
nally, we make orthorectification on the data through a few
control points, thus eliminating the geometric distortion.

3. Compression of Multispectral Remote
Sensing Data

Principal component analysis could project the high di-
mensional data onto a low-dimensional space. It takes the
variance in size as the evaluation standard of information
quantity; the greater the variance, the more information it
provides [7, 8]. On the premise of keeping useful information
of multispectral remote sensing data, principal component
analysis could reduce the correlation and redundant in-
formation in order to compress multispectral remote sensing
data. We transform Worldview-II multispectral remote
sensing data into a column vector W as follows:

W � w1, w2, · · · , wn􏼂 􏼃
T
, (n � 1, 2, · · · , 8). (1)

Principal component analysis makes a combination of
W through linear transformation and guarantees that P has
the largest variance after transformation, as shown in the
following equation:

P � LTW, (2)

where L � (l1, l2, l3, · · · , ln) is the m-dimensional space to be
determined andR is the covariancematrix ofW, thereby, the
variance of P could be computed as follows:

D(P) � LTRL. (3)

-ereby, solving the maximum value of D(P) is equal to
seeking the vector L that makesD(P) the largest.-e length L
is limited to unit length, and then the question is converted to

max D(P) � LTRL,

s.t. LTL � 1.
(4)

In last equation, the covariance matrix R could be
expressed as follows:

R � Γdiag λ1, · · · λn( 􏼁ΓT, (5)

where λ1, · · · λn is the characteristic value of R and λ1 ≥
λ2 ≥ · · · ≥ λn is satisfied. Γ � (a1, a2, · · · , an), where a1,
a2, · · · , an is the eigenvector corresponding to the unit or-
thogonal eigenvectors. Let a ∈ Rn and multiplying Equation
(5) with aT and a on the left and right side separately, we get

aTRa � aTΓdiag λ1, · · · λn( 􏼁ΓTa. (6)

Let k � ΓTa, then aTa � kTk; Equation (6) satisfies

aTRa � kTdiag λ1, · · · λn( 􏼁k � λ1k
2
1 + λ2k

2
2 + · · · + λnk

2
n

≤ λ1 k21 + k22 + · · · + k2n􏼐 􏼑.

(7)

Equation (4) can be rewritten as follows:

max
LTL�1

LTRL � max
kTk�1

λ1k
2
1 + λ2k

2
2 + · · · + λnk

2
n􏼐 􏼑≤ λ1. (8)

If a � a1, then aT1Ra1 � λ1, which indicates that the
maximum value of LTRL is at the point of a1 under the
condition of LTL � 1, thereby the first PCA principle
component could be expressed as p1 � aT1W. -e contri-
bution rate reflects the information quantity contained in
each principle component, and the contribution rate of the i-
th principal component could be computed as follows:

λi

tr(R)
�

λi

􏽐
n
k�1λk

. (9)

-e cumulative contribution rate of the first l principal
components is as follows:

􏽐
l
i�1λi

􏽐
n
k�1λk

. (10)

-e contribution rate indicates the ability that principle
components reflect W. It determines the number of prin-
cipal components after compression of multispectral remote
sensing data.

4. Texture Features Extraction from
Multispectral Remote Sensing Data

4.1. Gray Level Co-Occurrence Matrix. Gray Level Co-
occurrence Matrix is the most direct and simplest texture
analysis approach, which considers the spatial structure of
remote sensing images [9]. It describes the image texture
through the two-order combined conditional probability
density among image pixels [10]. Assume the remote sensing
image is of size M × N; the gray level is L; the distance
between two pixels is d; the angle is θ; the gray levels are
separately i and j; the times that these two pixels appear
simultaneously is P(i, j, d, θ) which could be expressed as
follows:

P(i, j, d, θ) � 􏼈 x1, y1( 􏼁, x2, y2( 􏼁􏼂 􏼃 ∣ f x1, y1( 􏼁 � i, f x2, y2( 􏼁

� j; x1, x2 � 1, 2, · · · m; y1, y2 � 1, 2, · · · n;􏼉,

(11)
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Where m and n represent the number of remote sensing
image pixels in a row and a column; i, j � 1, 2, · · ·L, x1, y1,
x2, y2 are the pixel coordinates in the image. Figure 1 shows
the spatial sketchmap of GLCM. If the remote sensing image
has L picture gray levels, the size of the gray level co-
occurrence matrix is L × L, d represents the distance of
two pixels in the remote sensing image, θ represents the
angle between the connection line of the two pixels and
horizontal direction, and it is usually set as 0∘, 45∘, 90∘, and
135∘. �e element at the a-th row and b-th column in
P(i, j, d, θ) represents the appearance times of all the pixel
couples that are δ apart from each other in the θ direction,
with gray values i and j, respectively. d is related to the image,
the step is usually set as δ � 1, and the central pixel to be
operated and compared with the directly adjacent pixel.

4.2. Establishment of the Gray Level Di�erence Frequency
Spatial. Gray level di�erence frequency spatial is proposed
as a texture extraction approach for the multiprinciple
component, which is based on the Gray Level Co-occurrence
Matrix. Assume the gray level of primary gradient remote
sensing image is g; �rstly, iterate the principle components’
remote sensing image with a rectangular window which is of
size m × n. Assume Lm � 1, 2, · · · , m{ } and Ln � 1, 2, · · · , n{ }
are separately the horizontal and vertical spatial domains of
the window and G � 0, 1, · · · , g− 1{ } is the gray level. Ln ×
Lm is the windows’ pixel set with ranking sequence in the
row and column, specifying I as the conversion formula of
pixels in Ln × Lm to G:

I : Ln × Lm⟶ G. (12)

In di�erent windows of principle components’ image, the
appearance probability of the pixel couples with distance d,

direction θ, and gray level di�erence Δ composing the GLDFS
and it is named P, in which (m1Pi, n1Pi), (m2Pi, n2Pi) are
coordinates of two pixels in the i− th principal component
Ln × Lm; I(m1Pi, n1Pi), I(m2Pi, n2Pi) are gray levels corre-
sponding to the two pixels; and (m2Pi, n2Pi) locates in the θ
direction of (m1Pi, n1Pi) with distance d. �e two pixel gray
level’s di�erence is expressed as follows:

Δi � I m1Pi, n1Pi( )− I m2Pi, n2Pi( )
∣∣∣∣

∣∣∣∣, (13)

where Δi ∈ [0, g− 1]. Make statistics of the gray level dif-
ference in each principal component andmap the result to k-
dimensional space according to the distance d and direction
θ. �e coordinates of the spatial points are (Δ1,Δ2, · · · ,Δk),
and k is the number of the principle components’ remote
sensing images. Meanwhile, make statistics for each prin-
cipal component at the four directions 0∘, 45∘, 90∘, and 135∘,
thereby generating four n-dimensional spaces, and # in-
dicates the number of the elements in the space; the sta-
tistical methods are as follows:

Pk Δ1,Δ2, · · ·Δk, d, 0
0( ) � #

m1P1, n1P1( ), m2P1, n2P1( ) ∈ Ln × Lm( ) × Ln × Lm( )
m1P2, n1P2( ), m2P2, n2P2( ) ∈ Ln × Lm( ) × Ln × Lm( )

⋮

m1Pk, n1Pk( ), m2Pk, n2Pk( ) ∈ Ln × Lm( ) × Ln × Lm( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1P1 −m2P1 � 0, n1P1 − n2P1
∣∣∣∣

∣∣∣∣ � d, I m1P1, n1P1( )− I m2P1, n2P1( )
∣∣∣∣

∣∣∣∣ � Δ1
m1P2 −m2P2 � 0, n1P2 − n2P2

∣∣∣∣
∣∣∣∣ � d, I m1P2, n1P2( )− I m2P2, n2P2( )

∣∣∣∣
∣∣∣∣ � Δ2

⋮

m1Pk −m2Pk � 0, n1Pk − n2Pk
∣∣∣∣

∣∣∣∣ � d, I m1Pk, n1Pk( )− I m2Pk, n2Pk( )
∣∣∣∣

∣∣∣∣ � Δk







,

(14)

Pn Δ1,Δ2, · · ·Δk, d, 45
0( ) � #

m1P1, n1P1( ), m2P1, n2P1( ) ∈ Ln × Lm( ) × Ln × Lm( )
m1P2, n1P2( ), m2P2, n2P2( ) ∈ Ln × Lm( ) × Ln × Lm( )

⋮
m1Pk, n1Pk( ), m2Pk, n2Pk( ) ∈ Ln × Lm( ) × Ln × Lm( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1P1 −m2P1 � d, n1P1 − n2P1 � −d( ) or m1P1 −m2P1 � −d, n1P1 − n2P1 � d( ), I m1P1, n1P1( )− I m2P1, n2P1( )
∣∣∣∣

∣∣∣∣ � Δ1
m1P2 −m2P2 � d, n1P2 − n2P2 � −d( ) or m1P2 −m2P2 � −d, n1P2 − n2P2 � d( ), I m1P2, n1P2( )− I m2P2, n2P2( )

∣∣∣∣
∣∣∣∣ � Δ2

⋮
m1Pk −m2Pk � d, n1Pk − n2Pk � −d( ) or m1Pk −m2Pk � −d, n1Pk − n2Pk � d( ) I m1Pk, n1Pk( )− I m2Pk, n2Pk( )

∣∣∣∣
∣∣∣∣ � Δk







,

(15)

Pk Δ1,Δ2, · · ·Δk, d, 90
0( ) � #

m1P1, n1P1( ), m2P1, n2P1( ) ∈ Ln × Lm( ) × Ln × Lm( )
m1P2, n1P2( ), m2P2, n2P2( ) ∈ Ln × Lm( ) × Ln × Lm( )

⋮
m1Pk, n1Pk( ), m2Pk, n2Pk( ) ∈ Ln × Lm( ) × Ln × Lm( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1P1 −m2P1
∣∣∣∣

∣∣∣∣ � d, n1P1 − n2P1 � 0, m1P2 −m2P2
∣∣∣∣

∣∣∣∣ � d, n1P2 − n2P2 � 0
m1P2 −m2P2
∣∣∣∣

∣∣∣∣ � d, n1P2 − n2P2 � 0, I m1P2, n1P2( )− I m2P2, n2P2( )
∣∣∣∣

∣∣∣∣ � Δ2
⋮

m1Pk −m2Pk
∣∣∣∣

∣∣∣∣ � d, n1Pk − n2Pk � 0, I m1Pk, n1Pk( )− I m2Pk, n2Pk( )
∣∣∣∣

∣∣∣∣ � Δk







,

(16)

Pn Δ1,Δ2, · · ·Δk, d, 135
0( ) � #

m1P1, n1P1( ), m2P1, n2P1( ) ∈ Ln × Lm( ) × Ln × Lm( )
m1P2, n1P2( ), m2P2, n2P2( ) ∈ Ln × Lm( ) × Ln × Lm( )

⋮
m1Pk, n1Pk( ), m2Pk, n2Pk( ) ∈ Ln × Lm( ) × Ln × Lm( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1P1 −m2P1 � d, n1P1 − n2P1 � d( ) or m1P1 −m2P1 � −d, n1P1 − n2P1 � −d( ), I m1P1, n1P1( )− I m2P1, n2P1( )
∣∣∣∣

∣∣∣∣ � Δ1
m1P2 −m2P2 � d, n1P2 − n2P2 � d( ) or m1P2 −m2P2 � −d, n1P2 − n2P2 � −d( ), I m1P2, n1P2( )− I m2P2, n2P2( )

∣∣∣∣
∣∣∣∣ � Δ2

⋮
m1Pk −m2Pk � d, n1Pk − n2Pk � d( ) or m1Pk −m2Pk � −d, n1Pk − n2Pk � −d( ) I m1Pk, n1Pk( )− I m2Pk, n2Pk( )

∣∣∣∣
∣∣∣∣ � Δk







.

(17)
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Figure 1: �e space description of the GLCM.
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4.3. Texture Features’ Description of the Gray Level Difference
Frequency Spatial. Haralick proposed Gray Level Co-
occurrence Matrix 14 properties to describe the image’s
texture features, and Sor proposed Gray Level Co-
occurrence Matrix 10 properties aiming at the SAR im-
ages [11]. But some properties are relevant, resulting in
information redundancy; besides, part of properties is not
suitable for analysis of remote sensing images’ texture fea-
tures [12–14]. -is paper makes analysis of seven texture
features with GLDFS and could be computed as follows:

(1) Energy:

T1 � 􏽘
Δ1

􏽘
Δ2

· · · 􏽘
Δn

Pn Δ1,Δ2, · · · ,Δn( 􏼁􏼈 􏼉
2
. (18)

(2) Entropy:
T2 � −􏽘

Δ1

􏽘
Δ2

· · · 􏽘
Δn

Pn Δ1,Δ2, · · · ,Δn( 􏼁

· log Pn Δ1,Δ2, · · · ,Δn( 􏼁( 􏼁.

(19)

(3) Autocorrelation:

T3 � 􏽘
Δ1

􏽘
Δ2

· · · 􏽘
Δn

Δ1,Δ2, · · · ,Δn( 􏼁Pn Δ1,Δ2, · · · ,Δn( 􏼁.

(20)

(4) Correlation:

T4 � 􏽘
Δ1

􏽘
Δ2

· · · 􏽘
Δn

Δ1,Δ2, · · · ,Δn( 􏼁Pn

· Δ1,Δ2, · · · ,Δn( 􏼁
−μΔ1μΔ2 · · · μΔn

σΔ1σΔ2 · · · σΔn

.

(21)

(5) Highlight degree of clustering:

T5 � 􏽘
Δ1

􏽘
Δ2

· · · 􏽘
Δn

Δ1 + Δ2 + · · ·Δn − μΔ1μΔ2 · · · μΔn
􏼐 􏼑

3
Pn

· Δ1,Δ2, · · · ,Δn( 􏼁.

(22)

(6) Dark degree of clustering:
T6 � 􏽘

Δ1

􏽘
Δ2

· · · 􏽘
Δn

Δ1 + Δ2 + · · ·Δn − μΔ1μΔ2 · · · μΔn
􏼐 􏼑

4
Pn

· Δ1,Δ2, · · · ,Δn( 􏼁.

(23)

(7) -e maximum similarity:

T7 � MAX
Δ1 ,Δ2 ,···,Δn

Pn Δ1,Δ2, · · · ,Δn( 􏼁 (24)

-e energy, entropy, autocorrelation, and correlation are
the extentions of Haralick's method in high-dimensional
space, and the maximum similarity is generalization of Soh's
method, the highlight degree, and the dark degree of
clustering, which are the simulation calculations of human
perception.

5. Analysis of Experimental Results

-e experiment data are based on the multispectral remote
sensing data of 8 different bands, which were recorded by
Worldview-II on 8th April, 2009. In order to ensure the same
landform features, the reef selected by the experiment is
uncovered with plants consisting of sedimentary and
metamorphic rocks. Gray value variance has a regular
pattern when counted on space and texture feature shows up
with strong intensify as well, so this paper tests and verifies
the gray level difference frequency spatial texture feature
extracting method through the classification of landform
and compares it with the Gray Level Co-occurrence Matrix.
-e gray level difference frequency spatial and Gray Level
Co-occurrence Matrix choose worldview-II remote sensing
data of the same region which cohere well, and thus the
comparability of the experiment data is assured. Experi-
mental classification uses SVM, which is based on structural
risk minimization principle. SVM is a better solution to
small samples and nonlinear problems.

5.1. ;e Experimental Data Compression. PCA is applied to
compression of 8 different bands of Worldview-II multi-
spectral remote sensing data. In this paper, the first three
principal components are derived as the feature of the gray
level difference frequency spatial texture feature. Figure 2
shows the contribution rate as well as the cumulative con-
tribution rate of eachmain component of theWorldview-II 8-
band multispectral data after principal component analysis
transform. Figure 3 shows the three principal component
image data after principal component analysis transformation
and compression. Figure 3(a) shows the first principal
component, and the contribution rate is 74.12%. Figure 3(b)
shows the second principal component, and the contribution
rate is 22.16%. Figure 3(c) shows the third principal com-
ponent, and the contribution rate is 2.73%.

5.2. ;e Classification and Analysis of Sample Data
Experiment. Deriving the texture features of the three
principal components after being compressed with the gray
level difference frequency spatial and deriving the texture
features of the four regular bands and four special bands
which are compared separately with Gray Level Co-
occurrence Matrix, the distance d of both methods is 1;
merely comparing the gray-scale changes of the adjacent
pixel, the window size is 13 × 13. Features including energy,
self-correlation, correlation, cluster dark, and maximum
self-similarity are selected; the sample size is 1350 among
which the reef, sea, and foam samples are 350 separately.-e
SVM pattern is applied for the purpose of dividing the data
into three. -e result of landmark feature classification with
the gray level difference frequency spatial and Gray Level
Co-occurrence Matrix are shown in Tables 1 and 2. -e
recognition rate is based on the typical testing samples
randomly selected from the samples including reef, sea,
and foam data. Calculating the percentage of correct
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identi�cation number for each landmark class with its
corresponding total samples, the average value is the right
recognition number of the three types of landmarks with the

gross sample number. It can be �gured out that the gray level
di�erence frequency spatial is capable of dealing with three
types of landmark features at the same time and has better

1.2

1

0.8

0.6

0.4

0.2

0
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Contribution rate for various components
Accumulative contribution rate for the
first n principal component

Figure 2: �e contribution rate and the cumulative contribution rate of each principal component.

(a) (b)

(c)

Figure 3: Image after PCA transformation and compression: (a) �rst principal component, (b) second principal component, and (c) third
principal component.
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Table 1: -e recognition rate of GLDFS and GLCM of conventional bands.

Recognition rate (%) Blue band Green band Red band Near-infrared 1 band Principal component data
GLCM of conventional bands GLDFS

Reef 60.2 64.6 62.9 79.8 89.3
Seawater 72.3 50.3 34.2 18.9 92.8
Foam 81.2 79.4 49.6 89.3 70.7
Average 65.4 71.3 30.9 62.4 85.9

Table 2: -e recognition rate of GLDFS and GLCM of characteristic bands.

Recognition rate (%) Coastal band Yellow band Infrared band Near-infrared 2 band Principal component data
GLCM of characteristic bands GLDFS

Reef 70.1 64.3 91.4 95.4 93.1
Sea 69.3 30.4 39.8 2.8 94.5
Foam 74.9 49.8 7.9 93.8 69.8
Average 63.2 55.2 54.6 71.2 83.6

(a) (b)

(c) (d)

Figure 4: Continued.
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recognition efficiency and quality than traditional Gray
Level Co-occurrence Matrix.

-e classification using the gray level difference fre-
quency spatial and the classification using Gray Level Co-
occurrence Matrix in conventional bands and characteristic
bands of processing results about principal component data
can be seen from Figure 4. In Figure 4, black indicates the
reef, dark gray indicates foam, and light gray indicates sea.

Figures 4(a)–4(d) are the classification result of conventional
bands of the Gray Level Co-occurrence Matrix. Figures
4(e)–4(h) are the classification result of characteristic bands
of the Gray Level Co-occurrence Matrix. Figure 4(i) is the
classification result of the principal component data of the
gray level difference frequency spatial. -is paper presents
a method named the gray level difference frequency spatial
for the principal components data processing and has

(e) (f )

(g) (h)

(i)

Figure 4:-e classification processing results of GLDFS in conventional bands and characteristic bands and GLCM in principal component
data: (a) blue band, (b) green band, (c) red band, (d) near-infrared 1 band, (e) coastal band, (f ) yellow band, (g) infrared band, (h) near-
infrared 2 band, and (i) principal component data.
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a better classification results with three kinds of surface
features. -e method of Gray Level Co-occurrence Matrix
has poor identification with reef when it is processing blue
bands and coastal bands, and some island and reef are
identified as foam mistakenly; when green bands and yellow
bands is processing, the identification to seawater is poor,
some seawater is identified as reef and island mistakenly;
when red band and red edge band are processing, the
identification to seawater and foam is poor, some seawater
and foam is identified as reef and island mistakenly; when
No. 1 and No. 2 bands of near-infrared are processing,
seawater is identified as foam. -e method of Gray Level
Co-occurrence Matrix has high recognition to some
landmark, but for the multilandmarks of multispectral
remote sensing data, it cannot be guaranteed to have higher
recognition rate in classification. If a variety of surface
landmarks is classified, the single-band data need to be
processed separately. In the experiment, texture features
are extracted from the conventional band and special band
data using Gray Level Co-occurrence Matrix method and
from the principal component data using gray level dif-
ference frequency spatial method. -e extracted results are
processed and used as SVM input variables of multi-
landmark classification. Finally, the classification time
consumption is compared and analyzed. -e efficiency of
texture feature extracted by two methods using SVM
classification is as shown in Table 3, and the results show
that the gray level difference frequency spatial to the main
component of compressed data has better efficiency in
ensuring a higher recognition rate, but takes long time. -e
main reason is that the conventional band and special
bands contain four bands of data; Gray Level Co-
occurrence Matrix requires processing individual band
and makes the results of 4 bands as SVM input variables to
multilandmark classification. Due to the increased di-
mension of the input variables, the efficiency of calculation
of SVM is reduced and the classification time becomes
longer.

6. Conclusions and Discussions

According to theWorldview-II multispectral remote sensing
data, this paper proposed a texture feature method based on

gray-scale difference in space-frequency. -is method
compresses the multispectral remote sensing data after
having it disposed, carries out gray-scale statistic on the
main components after the compression process, and builds
the gray-scale frequency difference spacemodel.-emethod
is validated by taking the data collected by Worldview-II.
From the results, it can be seen that the gray level difference
frequency spatial can extract texture features and recognize
and classify multiband, multi-landmark, and multi-spectral
remote sensing data at the same time and has an advantage
over tradition Gray Level Co-occurrence Matrix on con-
sideration of both recognition efficiency and quality.
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