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In this paper, we propose a new denoising algorithm for electromagnetic ultrasonic signals based on the improved EEMDmethod,
which can adaptively adjust for added noise and average times in different noisy environments, so that the effect of the residual
difference of white noise on the results can be eliminated as far as possible. First, the way to add white noise in the EEMDmethod
is processed, and then the permutation entropy algorithm is used to identify the nature of the components obtained during the
decomposition.+en the wavelet transformmodulus maximum denoising method is used to deal with the IMF components of the
high-frequency part obtained before. Finally, the processed IMF results and residual difference are summed up. +e results show
that after processing, the noise component in the signal is less and the original information is more reserved, which prevents the
signal distortion to a great extent and provides more effective data for subsequent processing. In the experiment, the crack defect
data collected by the electromagnetic ultrasonic experiment system were processed by the improved EEMD method. Compared
with the traditional EEMDmethod, it can retain the information of crack location more accurately, which proves the effectiveness
of the proposed method.

1. Introduction

In recent years, the electromagnetic ultrasonic non-
destructive testing technology for pipeline defect detection
has been paid more and more attention. Compared with the
traditional ultrasonic testing technology, it is simpler and
more effective, having a variety of different detection modes.
However, due to the influence of environment, human
operation, and other factors, there are some singularities in
the data collected by the receiving end of the electromagnetic
ultrasonic transducer. What is more, it contains a certain
degree of noise interference, so that it may cause great
disturbance to the identification of signal position and
feature in the later period.

Literature [1] proposed an improved denoising algo-
rithm based on wavelet transform modulus maxima re-
construction. +is method had a good approximation to the
original wavelet transform coefficients of the signal. How-
ever, the wavelet denoising method was limited by both the

time domain and the frequency domain, and it could not
meet the analysis requirements of high resolution in the time
domain and frequency domain. In document [2], authors
utilized special symmetric matrices to construct the new
nontensor product wavelet filter banks, which could capture
the singularities in all directions. In document [3], authors
proposed an image denoising method based on non-
separable wavelet filter banks and two-dimensional principal
component analysis (2D-PCA). +is method could achieve
both good visual quality and a high peak signal-to-noise
ratio for the denoised images. In document [4], the per-
mutation entropy was introduced into the threshold func-
tion as the representation parameter of signal denoising, and
the permutation entropy of the wavelet packet coefficients of
the signal was calculated. Literature [5] proposed a new
EEMD (Ensemble Empirical Model Decomposition) har-
monic detection method based on new wavelet threshold
denoising preprocessing to effectively eliminate the effect of
random noise on harmonic detection. However, the EEMD
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denoising method was to reject the high-frequency partial
components directly, which would result in the loss of valid
information in the high-frequency components.

+e core of the improved algorithm in this paper is to
adaptively adjust the added noise and the average times
under different noise environments, so that the effect of the
residual difference of white noise on the results can be
eliminated as far as possible.

In this paper, we first introduce the conception of
modulus maxima denoising method based on wavelet
transform and EEMD denoising method. +en, the differ-
ential threshold method is used to remove the singularities
in the data. Next, we make innovative improvements to the
EEMD algorithm so that it can adaptively get the ratio
coefficient, and the useless residual difference of the added
white noise can be reduced to the maximum extent at the
same time. Aiming at the added white noise in the EEMD
method, we use the permutation entropy algorithm to
identify the nature of the components obtained during the
decomposition.

For the remaining signal of the low-frequency stationary
part, the EMD (Empirical Mode Decomposition) is directly
used in the processing, while the other high-frequency IMF
(Intrinsic Mode Function) components are continuously
obtained by the EEMD decomposition, thereby reducing the
influence of noise on the effective part.

Afterwards, the wavelet transform modulus maximum
denoising method is used to deal with the IMF components
of the high-frequency part obtained before. Finally, the
processed IMF components and residual difference are
summed up.+e results show that after processing, the noise
component in the signal is less and the original information
is more reserved, which can prevent the signal distortion to
a great extent and provide more effective data for subsequent
processing.

2. Preliminaries

2.1. Preparation. +ere are many traditional discrete data
denoising methods. At the following, the applicable char-
acteristics of various methods will be combined to explain
the relevant knowledge involved in this article algorithm.
And then the method proposed in this paper is applied to the
processing of electromagnetic ultrasonic nondestructive
testing signal. By comparison, the advantages of this article
algorithm are highlighted.

In order to compare the denoising effects of several
methods, we used the ETG-100 ultrasonic thickness gauge to
test three steel plates of the same material as X56 in the
laboratory environment. +eir length is 50 cm, the width is
30 cm, and the thickness is 12.37mm, 13.35mm, and
15.21mm. +ree sets of clean thickness echo signals are
obtained. Noise is added to the first set of signals, as shown
in Figure 1.

2.2. Introduction to EMD Method. EMD is suitable for the
analysis of nonlinear, unsteady signals. +e core of the

method is to decompose the more complex signals and get
the IMF components of the signals. +e IMF components
obtained by this method represent the characteristics of the
data series at different time scales, respectively. In this way,
the fluctuation trend of the signal under different scales of
the original signal can be decomposed and refined and then
analyzed.

For the IMF, Huang et al., had given the qualified
conditions [6]:

(1) In the whole data set, the number of extrema and
zero-crossings must either be equal or differ at most
by one

(2) +e average value of the envelope of the maximum
and the minimum value of a data sequence is zero

For the signal sequenceXi that needs to be processed, the
interpolation function is, respectively, used to obtain the
envelopes of the maximum Xmax and the minimum point
Xmin of the signal. +en the average of two envelopes is
obtained:

Xmid �
Xmin + Xmax( 􏼁

2
. (1)

After using the original signal and the average line signal
to deal with the difference component, we have

H1 � Xi −Xmid. (2)

After getting the component, we first judge whether it is
IMF. According to the two principles mentioned above, if
the conditions are met, we define C1i � H1. Otherwise, the
original sequence is replaced with H1.+e above operation is
repeated until a satisfactory sequence function H1−k is ob-
tained, denoted as C1i. +e calculation will be stopped, when
the following cutoff condition is met:

sd � 􏽘
T

i�0

H(1−k)i −H(1−(k−1))i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

H2
(1−(k−1))i

, (3)

where sd is generally based on experience value of 0.2–0.3.
When meeting the above requirements, we note C1i � H1−k.

+e C1i is stripped from the original sequence, Xi, and
repeated for the rest of the sequence to obtain C2i, and so on,
to obtain Cji. +e residual sequence obtained by separating
all the eigenfunctions from the original data sequence is
defined as Ri. Overall expressed as

Xi � 􏽘
k

j�1
Cji + Ri. (4)

For the EMD method, it is difficult to ensure that the
local mean value limited by condition (2) is equal to zero
during the screening process because of the complexity of
the electrical signals collected by electromagnetic ultra-
sound. When the signal is abnormal, it will affect the signal
envelope, and the IMF component, resulting in model ali-
asing, which may lead to the loss of the original physical
meaning of the component.
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2.3. EEMD Denoising Method. +e improvement proposed
by Norden. E. Huang to the EMD method in solving the
problem of model aliasing is called EEMD [7]. +e steps of
the EEMD method are as follows:

(1) Add a white noise sequence in the original signal.
(2) Get IMF components with EMD decomposition

method.
(3) Repeat the above two steps, and the added white

noise is different each time. When a signal is applied
to a uniformly distributed white noise background,
the signal regions at different scales are automatically
mapped to the appropriate scales associated with the
background white noise. +e decomposed IMF
components are shown in Figure 2.

(4) Integrate and average the IMF components obtained
each time. Since the noise is different in each indi-
vidual test, the noise will be removed when the
overall mean at a sufficient number of tests is used.
After that, the overall mean will eventually be
considered as the true result. With more and more
repetitions of the above steps, additional noise can be
eliminated, and the only permanent part is the signal
itself. +e general EEMD decomposition flowchart is
shown in Figure 3.

+e traditional EEMD algorithm is based on the prin-
ciple of noise-assisted signal processing; the mode aliasing
phenomenon is effectively solved by adding a small am-
plitude of white noise to equalize the signal. +e real signal is
retained by using the zero-mean characteristic of Gaussian
white noise, which is a great improvement to the traditional
EMD analysis method.

But the disadvantage of the traditional EEMD method is
that the added white noise can not be completely offset from
each other in practical application, so the signal is still af-
fected by noise to a certain extent. In the decomposed
component, the high-frequency part contains a lot of noise,

which is usually removed directly, and then the signal with
a large correlation is reconstructed to get the denoised signal.

Because the high-frequency IMF component which is
removed directly contains effective information, it will affect
the original signal to some extent. In addition, the added
white noise and the number of processing have a greater
impact on the decomposition results, so that mode aliasing
cannot be completely eliminated and may produce more
useless components. +erefore, EEMD cannot adjust these
decomposition parameters according to the actual situation,
especially when the noise is changeable.

3. Abnormal Data Removed

Before the postprocessing of the data, some “damage data” of
the data collected by electromagnetic ultrasound needs to be
checked and removed. In this paper, the differential
threshold method is used to distinguish the numerical
changes between the sampling points of the collected data.
When the absolute value of the difference between two
adjacent points is greater than the set threshold, it is
regarded as the wrong data and will be replaced. +e
principle of differential threshold method is as follows:

Xi �

xi−1 + xi+1

2
, xi − xi−1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>T,

xi, xi − xi−1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<T,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where xi is discrete data obtained after normalization, Xi is
data obtained through algorithm detection and processing,
and T is the selected differential threshold and is the
maximum value of the difference between adjacent sampling
points in the ideal signal.

When the data difference between two adjacent points is
less than the selected threshold, the original data will
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Figure 1: Adding noise to the original signal.
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continue to be used. For the mutation data, the data of the
two sample points before and after the mutation sample data
can be used to supplement.

4. The Improved EEMD Method

In view of the lack of traditional EEMD in electromagnetic
ultrasonic testing data processing, for the first time, a new
denoising algorithm based on the improved EEMDmethod,
which can adaptively adjust for added noise and integrated

average times in different noisy environments, is proposed
in this paper.

4.1. Permutation Entropy Algorithm. Permutation entropy
[8] is an algorithm used to describe the complexity of time
series signals. +e algorithm is simple and efficient. What is
more, it can be used to analyze the correlation of nonlinear
and nonstationary complex signals. In this paper, it is used to
identify the properties of the components obtained during
the decomposition.
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Figure 2: Decomposition results of EEMD method. (a) IMF 1–8. (b) IMF 9–16.
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For a time series S(i), the signal is first reconstructed to
obtain the following:

s(1) s(1 + τ) · · · s(1 +(n− 1)τ)

s(2) s(2 + τ) · · · s(2 +(n− 1)τ)

⋮ ⋮ ⋱ ⋮

s(N) s(N + τ) · · · s(N +(n− 1)τ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where τ is the delay time, n is the number of dimensions
embedded, and N is the difference between the signal length
and (n− 1).

+e reconstructed data are sorted in the ascending order
of magnitude.+en the position index of each element in the
reconstruction component is labeled as [j1, j2, . . . , jn], re-
spectively. By this way, we get N sets of different labels such
as [j1, j2, . . . , jn]1,...,N. According to the embedding

dimension, the symbol sequence has a total of m! kinds. +e
probability that we get each sequence of sequence numbers
is P1, . . . , PN. +e form as defined by Shannon entropy is
shown in Equation (7), and the normalized method is
shown in Equation (8), so that the value of entropy is
between 0 and 1:

Hp(m) � −􏽘
N

g�1
Pg lnPg, (7)

Hp �
Hp(m)

ln(m!)
. (8)

After that, we process the simulation signal for the
combined sequence of noise and related sinusoidal signals.
According to relevant research experience, we set the pa-
rameters τ � 1 and n � 5. +e signal sequence s is as follows:
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Figure 3: Processing flow of EEMD.
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(i) s(1)​ : white noise with a signal sequence length of
98000 (with late detection data length)

(ii) s(2)​ : Gaussian random noise and random signal
with signal sequence length of 98000

(iii) s(3)​ : mixing of random noise and white noise with
a signal sequence length of 98000

(iv) s(4)​ : sin(2π · 500 · t), t � 0 : 1/97999 : 1
(v) s(5)​ : sin(2π · 10 · t)sin(2π · 100 · t), t � 0 : 1/97999 : 1
(vi) s(6)​ : [1 + sin(2π · 5 · t)]sin(2π · 50 · t2 + 2π · 10 · t),

t � 0 : 1/97999 : 1

+e sequence is processed to obtain the permutation
entropy values, which are 0.9897, 0.9722, 0.9815, 0.2443,
0.1159, and 0.2105. We can see that the entropy of the noise
is large and irregular, while the entropy of the sinusoidal
composite signal is low. We can set a threshold value of 0.58
to provide the parameter support for the improved follow-
up study of the EEMD algorithm mentioned below.

4.2. Wavelet Transform Modulus Maxima. Wavelet trans-
form is used to decompose the original signal into high-
frequency part and low-frequency part. +e low-frequency
parameters are retained while the high-frequency part is
decomposed again, followed by progress [9].

+e modulo-maximum method is a typical method in the
wavelet denoising method. Wavelet coefficients can reflect the
transient characteristics of the original signal at different scales.
Modular-maximum denoising based on wavelet transform is
to process the modulus maxima of wavelet decomposition
coefficients. Since the modulus maximum point of the signal
will increase with the expansion of the scale, the noise
maximum modulus point will be opposite, and the signal will
be reconstructed from the modulus maxima at different scales
by the processed wavelet coefficient, which is the basic idea of
WTMM (wavelet transform modulus maxima).

Because of the complexity of the signal processing, the
extreme point of the wavelet decomposition coefficient
usually corresponds to the abrupt point of the signal, and
the singularity of the signal corresponds to the variation
rule of the modulus of the wavelet coefficients. +erefore,
the paper incorporates the WTMMmethod into the EEMD
denoising algorithm, and a new improved EEMD denoising
algorithm is proposed. +e following describes the specific
implementation process.

4.3. Parameter SelectionCriteria. +e improved method first
determines the principle of adding noise and the average
number of times. Different from the traditional empirical
judgment, through a considerable number of experimental
studies, the specification of adding white noise in the EEMD
method has been derived:

0≤ β≤
ρ
2
, (9)

where β is the ratio of the standard deviation σnoise of
artificially added white noise to the standard deviation σch of

the original signal, and ρ is the ratio of the standard de-
viation σh of the high-frequency component of the signal to
the standard deviation σch of the original signal.

So, Equation (9) can be equivalent to Equation (10):

0≤ σnoise ≤
σh

2
. (10)

In normal conditions, we choose σnoise � σh/4, that
β � ρ/4.

Another important parameter is the average number of
times. Empirical studies have shown that the formula is
chosen as shown in

e �
β
��
N

√ , (11)

where N is the average times, and e is the relative de-
composition error, the general value is 1%.

According to the above formula, the average number of
integration N is obtained as shown in the following
equation:

N �
β
e

􏼠 􏼡

2

�
σnoise

e × σch
􏼠 􏼡

2

�
σh

4σch × e
􏼠 􏼡

2

. (12)

Obviously, the standard deviation of artificially added
white noise and the average number of integration are all
related to the ratio coefficient β.

4.4. Denoisingwith the Improved EEMDMethod. +e core of
the improved algorithm is to adaptively adjust the added
noise and the average times under different noise envi-
ronments, so that the effect of the residual difference of white
noise on the results can be eliminated as far as possible.
Research shows that the white noise added to the high-
frequency part of the EEMDmethod has negligible influence
on the mode aliasing, while the white noise added to the low-
frequency part has a greater influence factor, so the low-
frequency part is directly decomposed by the EMD method
to eliminate the influence of mode aliasing.

Firstly, we make improvements to the EEMD algorithm
so that it can adaptively get the ratio coefficient. At the same
time, it can minimize the useless residual difference caused
by added white noise in the result. Secondly, aiming at the
way to add white noise to the EEMD method, we use the
permutation entropy algorithm to identify the nature of the
components obtained during the decomposition. As for the
remaining signal of the low-frequency stationary part, the
EMD decomposition is directly used in the processing, while
the others are continuously obtained by the EEMD de-
composition, thereby reducing the influence of noise on the
effective part. Afterwards, the wavelet transform modulus
maximum denoising method is used to deal with the IMF
components of the high-frequency part obtained before.
Finally, the processed IMF results and residual difference are
summed up.+e results show that after processing, the noise
content in the signal is less and the original information is
more reserved, which prevents the signal distortion to a great
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extent and provides effective data for subsequent processing.
+e flowchart of improvement is shown in Figure 4. +e

specific steps are as follows:

(1) First of all, the original signal is decomposed by the
EMD method to obtain the eigenfunction group, and
the first set of high-frequency IMF components in the
decomposition result is recorded as the high-frequency
component of the original signal.+en, the ratio of the
standard deviation of the original signal and the high-
frequency IMF components, combined with the pre-
vious formula, is used to find the value of β. In this way,
we can find out the deviation standard of artificially
added noise in the EEMD decomposition operation
and the average integral times of this state.

(2) Firstly, the original signal is decomposed into IMF
components by EEMD algorithm, and then, all IMF
components are sequentially calculated by using the
permutation entropy algorithm. If the entropy value
is greater than the set threshold, the next component
will continue to be calculated.

(3) +e WTMM method is used to denoise the com-
ponents whose entropy values are greater than the
threshold. +en, the IMF components and the re-
siduals of the high-frequency part can be obtained.

(4) +ese high-frequency components whose entropy
values are greater than the threshold are removed
from the original signal, the remaining part of the
signal is decomposed by the EMD method to get the
low-frequency partial IMF components.

(5) By summing the IMF components and the residuals
obtained in the above two steps, the processed result
is as shown in the following equation:

X(t) � 􏽘
m

i�1
IMFi + pi. (13)

After calculation, the 2–5 in the IMF component diagram
needs to be processed. Using the modulus maxima denoising
method based on the wavelet transform, the IMF component
image after processing is shown in Figure 5.

4.5. Methods Comparison. In order to prove that the im-
proved method is superior to the traditional EEMD method
in the processing of electromagnetic ultrasonic detection
signals and to verify that it has sufficient stability, the
corresponding experiments have been carried out through
simulation.

We used the ETG-100 ultrasonic thickness gauge to test
three steel plates of the same material as X56 in the labo-
ratory environment. +eir length is 50 cm, the width is
30 cm, and the thickness is 12.37mm, 13.35mm, and
15.21mm. +ree sets of clean thickness echo signals are
obtained.

In the first set of simulation experiments, the original
signal is the clear thickness measurement data used in the

previous section. +e original signal is artificially added with
noise and then denoised by the traditional EEMD method
and the improved EEMD method, respectively. +e com-
parison chart of denoising effect is shown in Figure 6.

+e SNR (signal-noise ratio) of the original signal, the
traditional EEMD method, and the improved EEMD
method is calculated, which are shown in Table 1.

In the second and third sets of simulation experiments,
the original signal uses different clean thickness echo data
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Figure 4: Improved method to handle flowchart.
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which are also artificially added with noise later, and the
original signal is processed by the traditional EEMDmethod
and the improved EEMD method, respectively. +e SNR of
the original signal, the traditional, and the improved EEMD
method is presented below.

As can be seen from Tables 1 and 2, the SNR obtained by
the improved method is closer to the original SNR. +e
improvedmethod can not only solve the shortcomings of the
EEMD method, but also get closer to the original data, so
that the processed signal can better maintain the charac-
teristics of the original signal. +erefore, the improved
method is superior to the traditional EEMD method in the
processing of electromagnetic ultrasonic detection signals,
and it has sufficient stability.

5. Experiment

In order to verify the validity of the improved method, we
used the EMAT2000 electromagnetic ultrasonic crack de-
tector on Central Offshore Oil Pipeline Test Platform to test
the crack defects at Tanggu, Tianjin. +e actual metal spline
crack depth of the pipe wall was 0.5mm. +e echo signals
obtained from electromagnetic ultrasonic testing are pro-
cessed by the traditional method and improved method,
respectively. +en, the denoising effects of the two methods
are compared.

+e collected signal data are shown in Figure 7. Obvi-
ously, the collected data contain noise, so that it is also
necessary to remove singular values and denoising.
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Figure 5: IMFs obtained by the improved method. (a) IMF 1–8. (b) IMF 9–16.
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For the data collected from the crack defect, after
eliminating the singular value of the data, the IMF com-
ponents obtained by the traditional EEMD method are
shown in Figure 8, and the IMF components obtained by the
improved EEMD method are shown in Figure 9.

Finally, the IMF components and the residual di�erence
are reassembled, and the comparison results of the traditional

EEMD method and the improved EEMD method are shown
in Figure 10.

As can be seen from Figure 10, the data obtained by the
improved EEMDmethod are cleaner than those obtained by
the traditional EEMD method. �e valid region is partially
enlarged to get Figure 11, from which the resulting echo
signal from the EMAT (Electromagnetic Acoustic Transducer)
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Figure 6: Denoising e�ect comparison chart.

Table1: Denoising e�ect comparison.

Method �e original signal-to-noise ratio �e traditional EEMD method �e improved EEMD method
SNR 11.53 10.12 11.15

Table 2: �e other two sets of denoising e�ects comparison.

Method �e original signal-to-noise ratio �e traditional EEMD method �e improved EEMD method
SNR of the second set of experiments 11.78 11.23 11.59
SNR of the third set of experiments 10.45 9.68 10.23
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Figure 8: +e IMF components obtained by the traditional EEMD method. (a) IMF 1–8. (b) IMF 9–16.
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Figure 9: +e IMF obtained by the improved EEMD method. (a) IMF 1–8. (b) IMF 9–16.
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receiver can be obtained. �e interior of the black box is the
received echo signal. Obviously, it can accurately re�ect the
e�ective information of the cracked position, and later, it can
identify the location information of the defect according to the
feature extraction method.

6. Conclusion

In this paper, a new denoising algorithm of electromagnetic
ultrasonic testing signal based on the improved EEMD
method is used to process the collected data. First of all,
singular values in the data are removed. �en, aiming at the
way that white noise is added to the EEMD method, the
permutation entropy algorithm is used to identify the nature
of the components obtained during the decomposition.
Furthermore, the components of low-frequency signal are
decomposed by EMD directly, while the components of other
high-frequency IMF components are decomposed by EEMD.
Afterwards, the wavelet transform modulus maximum
denoisingmethod is used to deal with the IMF components of

the high-frequency part obtained before. Finally, the pro-
cessed IMF results and residual di�erence are summed up. In
the experiment, crack defect data collected by electromagnetic
ultrasonic experiment systemwere processed by the improved
EEMD denoising method. �e results show the e�ectiveness
and superiority of the proposed method.
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