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Integrating with analysis of uncertainties, this paper presented a multiobjective optimization approach for coordinating
different DG from the perspective of Distribution Network Operator (DISOPER). Aiming to three uncertain factors including
fuzzy variable, random variable, and interval variable, the information entropy and interval analysis methods are adopted to
construct multistate models of multisource uncertainty. .e information entropy method is to convert fuzzy variable into
equivalent random variable. Interval analysis method is to transform random variables into interval variables by setting
a confidence level. .en plenty of simulation analysis based on the small probability event and expectation are investigated to
reduce the computational burden and eliminate invalid computation. Subsequently, multiobjective formulations based on
multistate are built by analyzing systematical power loss, voltage quality, reliability, and environment change provide some
reference for DISOPER in dealing with access of privately owned DG units. Furthermore, based on network topology analysis
and modified nondominated sorting genetic algorithm (NSGA), a combinatorial optimization method is proposed to reduce
search space and solve the constructed formulations efficiently. Simulations are carried out on IEEE 37-bus systems and results
are presented and discussed.

1. Introduction

Environmental deterioration, energy shortages, and climatic
anomaly compel many countries to take renewable energy as
future alternatives [1]. Consequently, distributed generation
(DG) such as wind turbines (WTs) and photovoltaic (PV)
systems are considered the most promising technologies to
meet electrical loads because of their outstanding advantages
such as environmentally benign, clean, and inexhaustible
[1, 2]. Constrained by traditional power grid, one main
application of DG in China is DG access to distribution
system for the purpose of giving full play to the function of
interests’ integration [3, 4]. However, different from con-
ventional power sources, DG penetration has a significant
influence on power system due to its stochastic nature [2, 3].
Previous research has shown that the effect of DG access is
closely related to siting and size of DG [4]. .erefore, the

appropriate planning of DG in distribution system plays
a crucial role in fully exerting DG advantages as well as
restraining its disadvantages [5–7].

Apparently, DG planning in distribution network is an
extraordinarily complicated problem, which is attributed
to not only the diversity and intermittent nature of DG but
also the complex structure and abundant metadata in-
formation of distribution network. So far, loads of re-
searches have been reported [7–23]. Earlier studies
focused on certain situation because of restrictions im-
posed by the treatment of uncertainty. In Reference [8],
Shuffled frog leaping algorithm is presented for the
placement of DG in distribution systems to reduce the real
power losses and cost of the DG. When constructing
multiobjective formulas, influence of load models is
considered in siting and sizing of DG [9]. In Reference
[10], the authors optimized three objectives including
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maximum DG utilization, minimizing system loss, and
minimum environmental pollution by improving Pareto
evolutionary algorithm. From DG Owner’s and Distri-
bution Company’s Viewpoints, multiobjective optimiza-
tion is proposed from the operational aspects and
economic analysis [11]. .ese models and calculation
methods can be used for optimum design of controlled
DG and good effect can be obtained.

However, due to the profound effect of uncertainty on
optimization results, certain programming models and
algorithms lack adaptability for dealing with planning
problem with plenty of uncertainties, which is especially
prominent in planning renewable energy like WTs and PV
generation. .erefore, uncertainty modeling and optimi-
zation algorithm are focused on recently published doc-
uments [9–29]. In describing uncertainty, the probability
density functions is usually employed to model load, wind
power, PV power, electricity market price, and so on
[12–22]. Also, few studies have explored fuzzy mathematics
models to describe uncertainties like load [3, 20] and
constraints for voltage profile, feeder current, and sub-
station capacity [25]. Treatment techniques of uncertainty
involvedMonte Carlo simulation [22, 24], scenario analysis
[19, 23, 25, 26], and multistate model constructed by ap-
plying probability density functions [17, 18, 22]. In ob-
jective formulations, most of them were analyzed from
economic benefits [9, 27–30], environmental concerns
[30, 31], and technical constraints [9, 27, 28]. In optimi-
zation solution, some intelligent algorithm [28] and un-
certain programming theory [14] were introduced to adapt
to planning problems with plenty of uncertainties. Based
on chance-constrained programming, a planning model is
presented integrated with random characteristic of load
and renewable DG power [14]. In Reference [29], Monte
Carlo simulation is employed to deal with uncertainties,
and NSGA-II is applied to find Pareto optimal front of two
minimum objectives including system total cost and
technical risk. Considering technical constraint dissatis-
faction, costs, and environmental emissions, stochastic
dynamic multiobjective model is constructed in Reference
[25], and it applied a binary particle swarm algorithm and
a fuzzy satisfying method to obtain the optimal solution. A
sample average approximation algorithm-based technique
is proposed in Reference [32] to solve the optimal place-
ment of DG units, which is formulated as a stochastic
optimization problem.

All these researches offer valuable contributions, but
they lack the following important features. For one thing,
multisource uncertainty is rarely considered together in
distribution network optimization studies. For another
thing, access control mechanisms for privately owned DG
units are overlooked in terms of DISOPER.

In fact, there has been all kind of available DG in the
market. It will be an inevitable trend that multitype and
multiresource DG access power grid simultaneously, which
is dominated by different factors such as policy in-
terventions, benefit actuation, and traditional resource re-
striction. .e advent of more charging stations for electric
cars, whose charging were noted for variation in time and

space, gave rise to frequent load fluctuation [17, 19, 20]. .e
implications of DG and load change make it necessary for
DISOPER to integrate considerations regarding multisource
uncertainty into DG planning of the distribution network.
For the treatment of uncertainty, Monte Carlo Simulation
requires enormous computational burden and is un-
satisfactory to deal with complex models [33]. When
multistate models and scenario analysis techniques [17–19,
22, 23, 25, 26] are applied to cope with uncertainties, se-
lection of state or scenario apparently influences on the
accuracy of optimization results. In this paper, three un-
certainties including fuzzy variable, random variable, and
interval variable are analyzed by information entropy and
interval analysis methods to construct multistate model of
uncertainties. Simultaneously, small probability event and
expectation for multistate models as well as proportion
compensation method are investigated to obtain represen-
tative state which can reduce invalid computation, improve
computational efficiency, and guarantee the accuracy of
results.

According to distribution network planning studies, the
objective functions involving active power losses, emission,
and reliability have been presented in many researches.
However, existing papers have the drawback of overlooking
the private ownership feature of DG units. Under current
rules, it does not state clearly that DISOPER can randomly
reject privately owned DG units whose accesses have an
adverse impact on distribution network operation. But as the
operator of distribution network, DISOPER has the right to
change connected location of privately owned DG units to
assure safe operation of distribution network. In addition,
DG access concerned to multifaceted problems such as
technicality, economics, environment, and social charac-
teristics, which potentially correlate to DISOPER’s benefits.
However, it is difficult for DISOPER to qualify some of them
in monetary terms alone. .erefore, based on the proposed
multistate model, this article developed multiobjective op-
timization formulations through analyzing power loss im-
provement, voltage quality, systematical reliability, and
environment change so as to provide some reference for
DISOPER in dealing with access of privately owned DG
units.

Furthermore, it has been studied and concerned widely
in solving multiobjective optimization problems of strong
constrained condition in the fields of engineering. At
present, nondominated sorting genetic algorithm (NSGA-
II) has been recognized as one of the most promising al-
gorithms, primarily because it has the feature of high
convergence speed, low computational complexity and
good global convergence property [34, 35]. Compared with
contemporary constraint-handling strategy, application of
NSGA-II is encouraged to solve more complex and real-
world multiobjective optimization problems [34]. NSGA-II
has also played an indispensable role in solving constrained
multiobjective optimization of the electric industry [35–
37]. Fast and elitist NSGA-II algorithm is employed to
avoid artificially balanced solutions [35]. In Reference [36],
NSGA-II is applied to deal with simultaneously de-
termining optimal capacities of active and reactive power
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reserve. NSGA-II and fuzzy set theory is chosen to find the
best compromise solution [37]. In Reference [38], the
authors adopted a novel building energy/exergy simula-
tion tool with multiobjective optimization capabilities
based on NSGA-II for carrying out simultaneously
analysis of building energy use and design’s Net Present
Value. NSGA-II algorithm is used to the design of
a standalone HRES comprisingWTs, PV panel and battery
bank [39]. In this paper, we proposed a combinatorial
algorithm integrating network topology analysis and
modified NSGA in order to reduce search space and ef-
ficiently solve the constructed formulations. .e purpose
of network topology is to eliminate obvious impossible
access location of DG and avoid entire network search. In
NSGA-II, the modified contents refer to nondominated
sorting operator, individual crowding distance operator,
and genetic operators. .e purpose is to obtain effective
Pareto solutions, assure uniform distribution of solutions,
accelerate convergence rate of algorithm, and avoid local
optimal or missing Pareto optimal solutions.

.e main contribution of this paper is as follows. Firstly,
three uncertainties including fuzzy variable, random vari-
able, and interval variable are analyzed by information
entropy and interval analysis methods to construct multi-
state model. Simultaneously, small probability event and
expectation for multistate models as well as proportion
compensation method are investigated to obtain represen-
tative state. Subsequently, from the perspective of DISOPER
of dealing with privately owned DG units, multiobjective
formulations based on multistate are constructed by ana-
lyzing power loss improvement, voltage quality, systematical
reliability, and environment change. Also a combinatorial
algorithm integrating network topology analysis and
modified nondominated sorting genetic algorithm (NSGA)
is presented to reduce search space and efficiently solve the
constructed formulations.

2. Descriptions and Treatment for
Multisource Uncertainties

.e involved uncertainties in DG planning are related to not
only connotation (e.g., load variations and renewable DGs
fluctuation) but also extension (e.g., electricity market
change, policy and regulation adjustment, and availability of
system facilities). For simplification and integrating with
research contents, three uncertainties including random
variable, fuzzy variable and interval variable, which are
related to load variations and DG fluctuation, are portrayed
and treated.

2.1. Descriptions for Load and DG Uncertainties.
Uncertainties of load and DG have been widely studied.
Here, frequently used load and electric vehicle charging
stations [40] are considered, and RES-based DGs include
wind turbines (WTs) and photovoltaic generators (PVs).

Integrating with existing researches, the frequently used
load is modeled by using uniform distribution of interval
and truncated Gaussian distribution [14–16], which is

a normal distribution that restricts the range of variable
value [41]. Simultaneously, taking into account the un-
availability of historical data, here, electric vehicle charging
stations are modeled in (1) according to quick charging
mode [17, 19, 20]:

P �
QV

η
, (1)

where η is the charging efficiency for charger, V is the
Charging voltage for the electric vehicle, and Q is the
current sum of all recharging battery. Here, assume that Q

is a fuzzy variable with the triangular membership
function.

Output power of WTs is directly related to wind speed,
which is usually taken as Weibull distribution. Research for
the intermittent and stochastic of WTs has been relatively
mature [13, 22]. .e expression of wind power can be found
in Reference [22].

Similar to WTs, PVs is also related to natural factors,
geographic envissronment, season variation, etc. Here, PVs
output power is given according to the composition of Grid-
connected PV generation system [3]:

P � ηmodArtiltηwrηpc, (2)

where ηmod is the efficiency under the ambient temperature,
A is the total area of illumination, rtilt is solar radiation
intensity of inclined plane, ηwr is the distribution efficiency,
and ηpc is the efficiency of power regulating system, which
has very strong diurnal patterns [3, 23, 42]. ηmod can be
shown in the following equation:

η � η0 1− cT Tp −Tr􏼐 􏼑􏽨 􏽩, (3)

where Tr is reference temperature, whose value is 298 K. η0
is the conversion efficiency of PVs at the reference tem-
perature. cT is the temperature coefficient of solar cell,
which generally is 0.005. Tp is the temperature at time p.
From (2) and (3), uncertainty of PVs output power is
concerned to solar radiation intensity and the temperature.
It is well known that temperature is affected by sunlight and
changed with different weather conditions. .at is, the
temperature changes quickly in sunny days while it changes
slowly in cloudy or rainy weather [43]. Furthermore, real
output of PVs is still relate to illumination inhomogeneity,
dust, production deviance, installation error, etc. Appar-
ently, it is not easy to express such change through random
uncertainty model. For simplification and ensuring
rationalization, here PVs output power is simplified into
(4) according to (2):

PPV � Artiltη1, (4)

where PPV is real output and η1 is the conversion efficiency
related to weather conditions. Here, assume that η1 is
a fuzzy variable considering that there is an inevitable
fuzziness in conversion efficiency of representing the
weather conditions. And integrated with under sunny,
cloudy, and rainy days given in [3], here η1 is modeled as
trapezoid membership function shown in the following
equation:
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1, 0.3≤ η1 ≤ 0.55,

14− 20η1
3
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0, others.
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(5)

2.2. Treatment for Multisource Uncertainties. .e purpose
of treatment for multisource uncertainties is to convert
various uncertainties into multistate variables to improve
computational efficiency and reduce invalid computation.
Based on the concept of possibility-probability consistency,
information entropy is adopted to transform fuzzy number
to stochastic variable. Interval analysis is applied to convert
random variables into limited discrete intervals by setting
a certain confidence level, and meanwhile, composite state is
obtained by analyzing small probability event and
expectation.

Entropy is the best measure to uncertainty. Fuzzy en-
tropy Gx measures fuzziness of uncertainty, while proba-
bility entropy Hy measures randomness of uncertainty [44].
Here, set Gx is equal to Hy, then fuzzy variable is converted
into an equivalent random variable in normal distribution
with mean ueq and variance σeq shown in the following
equations:

σeq �
1
���
2π

√ e
Gx−0.5

,

μeq �
􏽒

x
xμ(x)dx

􏽒
x
μ(x)dx

,

(6)

where μ(x) is the fuzzy membership function of fuzzy
variable and σeq is variance. And mean ueq is obtained when
membership degree takes 1 [45, 46]. For improving calcu-
lating efficiency and ensuring data integrity, transformation
of random variables to interval variable includes the
following:

(i) Determination of the upper and lower limits. .e
method is to calculate cumulative probability of
random variable. .e value should be close to 1 and
never lower than a specified confidence level, which
is often more than 90%.

(ii) Division of interval variable. Setting interval number
m, interval is divided by regularly or irregularly step-
length on the basis of actual situation. Subsequently,
a binary state sequence with state and its probability
is obtained. .e ith state probability in interval
[xi, xi+1] can be obtained by

Pi ωi( 􏼁 � 􏽚
xi+1

xi

f(x) dx � F xi+1( 􏼁−F xi( 􏼁. (7)

Simultaneously, the normalization processing is carried
out by the proportion compensation method to assure that
the sum of state probability is 1 [47], whose principle is to
assign loss probability based on the proportion of interval
probability. .e revised form of state probability is shown in
the following equation:

Pi
′ � Pi +

Pi 1−􏽐
m
i�1Pi( 􏼁

􏽐
m
i�1Pi

. (8)

.e composite state formultisource uncertainty is analyzed
under the independence assumption among random variables.
Assuming that the kth composite state is composed of three
binary sequence X: ωk

Fi, P′(ωk
Fi)􏼈 􏼉, Y: ωk

Rj, P′(ωk
Rj)􏽮 􏽯, and

Z: ωk
Iq, P′(ωk

Iq)􏽮 􏽯 from three uncertainties, the number of
composite state and the kth joint probability are obtained by

N � 􏽙

mF

i�1
NFi􏽙

mR

j�1
NRj􏽙

mI

q�1
NIq, (9)

PX,Y,Z(k) � P′ ωk
Fi􏼐 􏼑P′ ωk

Rj􏼐 􏼑P′ ωk
Iq􏼐 􏼑, (10)

where m and N are the number of variables and interval,
respectively. Subscript F, R, and I are orderly on behalf of
fuzzy, random, and interval variables.

From (9), the number of composite state increases ex-
ponentially with increase of interval number. From (10), the
consequence of interval division is noticeable. Too small
interval will increase tendency to small probabilities, while
too large range will reduce accuracy of solution. To avoid
these, plenty of simulations based on the small probability
event and expectation are carried out besides setting
a confidence level. .e simulations are to analyze the
number of small probability events and guarantee reason-
able expectation of the given formulation, while the appli-
cation of confidence level is to reduce the number of
composite state. Similarly, the normalization is also carried
out by (8).

3. Multiobjective Formulations

DG penetration has significant impacts on systematical loss,
voltage, reliability, etc. And compared with conventional
power, DG cost is higher. However, DISOPER cannot
randomly reject privately owned DG units although its
accesses have an adverse impact on distribution network
operation under the condition that the technical parameter
is in conformity with access standard. .erefore, sometimes
DISOPER has to change connected location of privately
owned DG units or sacrifice personal economic interests to
assure safe operation of distribution network. From the
viewpoint of economics and technology, here, four maxi-
mum objectives are constructed by analyzing reduction of
power loss, enhancement of voltage quality, improvement of
reliability, and change of environment to optimize the lo-
cation and capacity of DG, thereby providing reference for
DISOPER in coordinating access of privately owned DG
units.
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3.1.2eReduction of Power Loss. .epower loss rate in (11),
which is defined as the ratio of power loss reduction with DG
and power loss without DG, is proposed to reflect impact of
DG on power loss:

IPloss �
􏽐

N1
s�1P(s)Ps

loss −􏽐
N2
q�1P(q)P

q

loss

􏽐
N1
s�1P(s)Ps

loss

, (11)

where N1 and N2 denote the number of composite state
without DG and with DG, respectively. P(q) and P(s) are
state probability at the qth and sth composite state. Ps

loss and
P

q

loss are power loss at the qth and sth composite state.

3.2. Enhancement of Voltage Quality. Currently, besides the
consumers’ higher requirements for power supply because
of the rapid development of modern power electronic de-
vices, electric market reform has brought fierce competition
among enterprises. To improve vitality and competitiveness,
DISOPER has to reinforce system to better control over
voltage variations [48, 49], which is closed linked to technical
and potential economic interest. .erefore, the quantifica-
tion of DG impact on voltage quality is very necessary. Here,
the improvement of systematical voltage offset, which is
defined as the ratio of nodal voltage offset before and after
DG installation, is given in (12) to quantify DG enhance on
voltage quality:

IVenha �
􏽐

N1
s�1P(s)􏽐i∈ϕ Vs

woi −Vrated
i􏼐 􏼑

2

􏽐
N2
q�1P(q)􏽐i∈ϕ V

q
wi −Vrated

i􏼐 􏼑
2 , (12)

where subscripts wo and w are without and with DG, re-
spectively; φ is the load node set; Vi and Vrated

i are the real
voltage magnitude and the nominal voltage at the ith load
node.

3.3. Improvement of Reliability. DG access can improve
reliability of load in island if DG island operation is feasible
after system fault. Here Ratio of Expected Energy Not
Supplied Reduction shown in (13) is employed to measure
DG impact on systematical reliability:

IRimp � 1−
􏽐

N2
q�1P(q)EENSq

w

􏽐
N1
s�1P(s)EENSs

wo

, (13)

EENS � 􏽘
i∈ϕ

βiTiLi, (14)

where EENS is expected energy not supplied; βi is the ith
load fault rate (number of faults per year); and Ti is the
average durations of fault (hour per time). .e equations for
βi and Ti are proposed in [48–50].

3.4. Improvement of Environment. Without a doubt, elec-
tricity industry is playing an inescapable role for environ-
mental pollution. DG is also propelled to meet requirements
of low carbon emissions. Here, only carbon emission is taken
into account because the others are looked as being pro-
portion to it. .e environmental improvement is investigated

by the rate of carbon emission reduction in the following
equation:

IEimp � 1−
􏽐

N2
q�1P(q) E

q

mainCcon + 􏽐
NDG
i�1 E

q

DGiCDGi􏼐 􏼑

􏽐
N1
s�1P(s)Es

woCcon
, (15)

where Ewo is the electricity from main grid without DG
(kWh); Emain is the electricity from main grid with DG
(kWh); EDG is the electricity from DG; and C is the amount
of carbon emission per unit electricity (kg/kWh). Subscript
con is the conventional energy.

3.5. 2e Constraints. For safe and stable operation, the
optimization problem is subject to power flow equations
constraint and some inequation limits like node voltage,
branch capacity, etc. .ese constraints are shown in the
following equations:

P
q

main + 􏽘

NDG

i�1
P

q

DGi � 􏽘
i∈ϕ

P
q

Li + P
q

loss,

Pr Vmin
i ≤V

q

i ≤Vmax
i | i ∈ ϕ􏼈 􏼉≥ 1− εV,

Pr S
q
ij ≤ Smax

ij | i, j ∈ ϕ􏽮 􏽯≥ 1− εS,

NDG ≤Nmax
DG ,

􏽘

NDG

i�1
PDGi ≤ k%∗􏽘

i∈ϕ
PLi,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q � 1, 2, . . . , N,

(16)

where Pmain is the power from the main grid; PDG is DG
power; Ploss is systematical losses; N are the number of
operating state; Pr ·{ } represents the probability of an event;
Vmax

i and Vmin
i are the ith nodal upper and lower of voltage;

S
q
ij and Smax

ij are real line capacity at the qth state and
permitted maximum line capacity; NDG and Nmax

DG are the
real number and the allowable ceiling of DG location; εV and
εS are confidence level of bus voltage and line capacity; PLi

and PDGi are base load andDG power at node i; and k% is the
penetration rate of DG.

4. Optimization Method Based on Network
Topological Analysis and Modified NSGA-II

Besides the inherent complexities of power flow calculation
in DG planning, the previously constructed multiobjective
optimization formulations are obviously constrained, non-
linear, with mixed integer variables. Consequently, opti-
mization computation is a tremendously complex task. In
order to improve the computational efficiency without
influencing the accuracy of solutions, the topological
analysis and modified NSGA are adopted to carry on
combinatorial optimization. .e purpose of topological
analysis is to reduce search space by determining DG
candidate locations in accordance with the actual situation,
while that of modified NSGA is to improve convergence
speed as well as avoid falling into local best during opti-
mizing the constructed formulations.
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4.1. Determination of DG Candidate Locations Based on
NetworkTopologyAnalysis. Previous researches showed that
DG impacts on distribution network are related to the
connected bus as well as all others buses, but the bigger
influence occurs on the bus near DG [51]. And DG layouts
should try to keep decentralized to limit potential of in-
terfering with each other in undesired ways. In addition, DG
location is restricted by geographical position and local
natural resources. .erefore, here DG candidate locations
area is proposed to determine one DG location when car-
rying out multiobjective optimization. .e number of DG
candidate locations areas is corresponding to the maximum
number of DG installation locations. Each area, which de-
termines DG candidate locations set, is obtained through the
limited depth-breadth priority algorithm. A DG candidate
locations set is obtained according to nodal electric dis-
tances, nodal load moment, and reliability requirement. .e
detailed process is described as following:

Step 1. Obtain the DG candidate location area. Based on the
maximum number of DG installation location h, the dis-
tribution network is divided into k area. Partitioning method
is to add the base load starting from the end of line according
to the limited depth-breadth priority algorithm. .e sum of
all base loads in one area is approximately equal to the value
of the total base load divided by h.

Step 2. Select DG candidate locations based on the principle
of reducing the power loss. Generally, the bus far from
substations produced more power line losses. .erefore,
here the nodal electric distance d is applied to determine the
DG candidate locations. .e selected node i is obtained by

di ≥
max d(j) | j ∈ ϕ􏼈 􏼉

3
, (17)

where d is electric distance and j is the alternative bus.

Step 3. Select DG candidate locations based on the principle
of improving the nodal voltage. It has been proved that the
constant PQ DG can definitely boost up the nodal voltage,
while PV DG also can achieve the same effect under the
condition that the connected nodal voltage is lower than the
voltage of PV DG [51]. Furthermore, the voltage loss is in
correspondence with the nodal load moment. .erefore,
through the descending order of the nodal load moment, the
first half is selected as DG candidate location.

Step 4. Select DG candidate locations based on the reliability
requirements. As mentioned previously, DG access can
improve the reliability in island load. .us, buses having
high reliability requirements are chosen as candidate
location.

Step 5. Form DG candidate locations sets by combining and
abandoning candidate locations in view of the partitioning
area. One candidate location set is corresponding to one
area..e principle of abandon and combination includes the
following: (a) to reserve all candidate locations based on
reliability, (b) to abandon the candidate locations without

locating in installation locations area, (c) to abandon in-
accessible geographical location, and (d) to keep candidate
locations coming from both step 2 and step 3.

4.2. DG Island Separation Based on Network Topology
Analysis. As mentioned in [48], DG impact on reliability is
mainly concerned to the island’s load. .en improvement of
reliability is closely associated with the formation of the
island. Consequently, DG island separation has a significant
influence on reliability. Starting from DG connected bus,
this paper goes into distribution network’s structure using
breadth search, giving the island scope by the following
equation:

P
s
DGi − 􏽘

Nil

j�1
P

s
j ≤ c, (18)

where Nil is the number of load points in island; Ps
j are the

load value at the sth state; Ps
DGi is power output at the ith DG;

and c is the threshold.
.e formation of the island is described as following:

(i) Select the connected bus of DG as the reference
node of determining electrical distance, and then
obtain the electrical distance of all loads.

(ii) Give a lateral stratification of loads in accordance
with electrical distance. Loads on the same layer are
ranked in order of importance, which is represented
in weighted coefficients of load.

(iii) Perform breadth search starting from the innermost
layer. When the total load in the island is closed to
threshold, the loads on the outermost layer are
chosen according to the weighted coefficients of
load.

To understand it more clearly, take Figure 1 as an ex-
ample. Assume that threshold c is constant, and bus 4 is
selected as DG location. By carrying on the width search, the
next-linked buses 3, 5, 7, 8 are selected. If the sum of these
load value is not satisfied with (18), buses 2, 9, 6 are con-
sidered. If they are all chosen, the sum will gone beyond the
threshold c. .erefore, according to weighted coefficients of
loads at buses 2, 9, 6, bus 9 with larger weighty is chosen.
.en the buses in island include 3, 5, 7, 8, 9.

4.3. Multiobjective Optimization Based on NSGA.
NSGA-II is currently one of the most popular multiobjective
evolutionary algorithms because of its rapidly converging
rate. However, considering that NSGA is inclined to result in
prematurely converging to local Pareto optimal front, here
the proposed modified NSGA-II can not only manage
a variety of decision variables such as DG type, DG capacity,
and DG location, but also deal with the complicated con-
straints expediently. .e modified content mainly refers to
genetic algorithm (GA) implementation to improve the
GA’s local searching capacity, accelerate the convergence
rate, and effectively prevent the premature convergence.
About population code, decimal encoding scheme based on
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segmented chromosome management is applied to adapt to
characteristic of DG planning involving DG type, DG ca-
pacity, and DG location. .at is, each solution is coded by
using three segments, which orderly represent DG type, DG
location, and DG size. Each segment is a vector, whose size is
equal to maximum number of installation DG units [49]. In
genetic manipulation, the selection, crossover, and mutation
operator are properly collected besides the segmented point
cross and mutation proposed in [49]. Figure 2 describes
a coding example and the implementation details of the
segmented point cross and mutation.

Selection operator is improved by using elitist preser-
vation strategy and dual tournament selection to enhance
the global convergence performance of algorithms and
enlarge search space. Elitism preservation strategy is to copy
a small proportion of the fittest candidates into the next
generation to improve convergence and avoid loss of op-
timal solution. Dual tournament selection is to randomly
pick up individuals from the population.

Crossover is preceded by correlation between two in-
dividuals to maintain population diversity and improve
global search ability. .e correlation is shown in the fol-
lowing equation [52]:

r x1, x2( 􏼁 � 􏽘

Nch

i�1
x

i
1 ∩ x

i
2, (19)

where r(x1, x2) is the correlation between individuals x1 and
x2; Nch is the segment number of population; superscript i is
the ith component of individuals x1 or x2; and ∩ is a binary
operator, which is satisfied with the following equation:

x
i
1 ∩ x

i
2 �

0, xi
1 � xi

2,

1, xi
1 ≠xi

2.

⎧⎨

⎩ (20)

Obviously, the bigger the r is, the smaller the correlation
is. .erefore, two individuals with bigger r are matched for
crossover.

Nonuniform mutation operator is employed to improve
local searching ability of GA and maintain diversity. Non-
uniform mutation operator in Reference [39] can adaptively
adjust the searching step size in genetic evolution.

In addition, application of segmented point cross and
mutation maybe result in occurrence of individual beyond
threshold due to diversity of heredity encoding. .erefore,
according to [53], treatment of DG capacity border in (21) is
used to maintain the crossed or mutated individual within
normal range:

x
C
1 �

k% ∗􏽘
i∈ϕ

PLi − 􏽘

NDG−1

i�1
PDGi, ρ � 0,

0, ρ � 1,
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(21)

where ρ is random variable of the Bernoulli distribution.

4.4. 2e Framework for Multiobjective Optimization. .e
proposed optimization method includes determination of
DG candidate location sets and multiobjective optimization
based on modified NSGA-II. Flowchart for multiobjective
optimization is shown in Figure 3.

5. Numerical Example

5.1.Example forMultistateModel ofMultisourceUncertainty.
As stated in Section 2, fuzzy variables are transferred into
random variables with normal distribution..erefore, based
on research contents, the discretization of the variable with
standardized normal distribution is presented in details.
Subsequently, multistate models for output power of PV
power and output power of wind power..e composite state
for PV power and a load are given.

Here, multistate models of a standardized normal
random variable are investigated, and then others can be
extended to the demanded range. For a standardized
normal random variable, the probability in interval [−3, 3]
is over 9.7%. So, the upper and lower bounds are specified
as 3 and −3. When interval number is equal to 10, the
schematic diagram is shown in Figure 4, which is obtained
in accordance with the relationship between standardized
normal distribution and general normal distribution. .e
multistate models corresponding to general normal dis-
tribution are obtained. Setting random variable L1∼Nl1
(0.5, 2), the state value and its probability is shown in
Table 1.

Multistate models of wind power, whether its wind speed
is taken as Weibull distribution or interval variable, are
similar with that of load because they are all treated as
stochastic variable here. In addition, WTGs has a re-
quirement of cut-in wind speed, rated wind speed, and cut-
out wind speed, so the lower and upper of wind dis-
cretization is confirmed in cut-in wind speed and cut-out
wind speed. Supposing that Vi � 4 (m/s), Vr � 14 (m/s), and
Vo � 25 (m/s), the shape parameter and the scale parameter
of wind are 2 and 8m/s, interval number is 10, the rated
power Pr is 45 kW, and then the binary state of wind power
are {{0, 0.2213}, {4.725, 0.2197}, {12.175, 0.2094}, {23.625,
0.1591}, {33.075, 0.1001}, {42.525, 0.0531}, {45, 0.0374}}.

Different from wind power, output of PVs is concerned
to fuzzy variable η1..e parameter of fuzzy variable η1 refers
to Equation (5). Integrated with previously proposed
method, the mean and variance of the equivalent normal
distribution transformed from fuzzy variable are 0.4537 and
0.104. Binary sequences of fuzzy variable η1 are {{0.1729,
0.0069}, {0.2353, 0.0278}, {0.2977, 0.0794}, {0.3601, 0.1596},
{0.4225, 0.2264}, {0.4849, 0.2264}, {0.5473, 0.1596}, {0.6097,
0.0794}, {0.6721, 0.0278}, {0.7345, 0.0069}}.
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Figure 1: Schematic of island division.
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In order to obtain proper composite state for PV power
and wind power, plenty of simulation has been carried out
provided that small probability event refers to less than
0.001 and con�dence level is no less than 95%. �e peak
power Pmax of PV is 44 kW. �e load obeys a truncated
Gaussian distribution, of which, lower and upper bounds
are 28 kW and 35 kW and the mean and variance are 30
and 2. �e parameters for wind are as above. �e simu-
lation results under di�erent interval number are listed in
Table 2.

Plenty of simulation shows a fact that the expected value
for output power of PV, wind, and the load are a�ected by
interval number. With the increase of interval number, the
expected value gradually turns to be stable. However,
another fact that should not be overlooked is that small
probability events will go up sharply as interval number
increases, e.g., in Table 2, there is 24 small probability
events in interval number (5, 5, 5), while there exist 668
small probability events in (10, 10, 10) and even it amounts
to 42561 in (35, 35, 35) which is far beyond e�ective joint-
state 314. Too much small probability not only complicates
calculation but also results in mass of invalid computation,
which greatly decreases computational e�ciency. �ere-
fore, the moderate selection of interval number is very
important. In this example, the interval number (5, 5, 5),
(5, 5, 10), and (5, 5, 15) are recommended values because
their small probability events are small and the expected
value for PV, wind, and the load are at an acceptable level.

5.2. Simulation Parameters for Multiobjective Optimization
Based on NSGA. To demonstrate the performance of the

proposed optimization method, simulation is carried out on
IEEE 37-bus system, whose topological structure is shown in
Figure 5.

�e branch, base load parameters can be found in
[4, 9]. Meanwhile, assuming that load on bus 16 is un-
certain variable which obeys normal distribution with
mean U16 � 0.06 (p.u.) and standard deviation σ � 0.01.
Buses 32 and 28 are taken as interval variables, whose
values are orderly [0.4, 0.425], [0.205, 0.220], and others
are taken as constant power load. �e parameters for
uncertain loads and information for single DG unit are
listed in Tables 3 and 4. �e parameters and probability
distribution for uncertain loads are listed in Table 3. For
DGs, detailed information is listed in Table 4. �e power

–2.4 –1.8 –1.2 –0.6 0 0.6 1.2 1.8 2.4

0.2

0.4

3.0

xi xi + 1

ΔX

–3.0

Figure 4: Schematic diagram for discretization of standardized normal distribution.

Table 1: State variables and probability ofN(0, 1) andNl1(0.5, 2).

State for
N(0, 1)

State for
Nl1(0.5, 2)

Probability Corrected
probability

−2.7 −4.9 0.0068 0.0068
−2.1 −3.7 0.0277 0.0278
−1.5 −2.5 0.0791 0.0794
−0.9 −1.3 0.1592 0.1596
−0.3 −0.1 0.2257 0.2264
0.3 1.1 0.2257 0.2264
0.9 2.3 0.1592 0.1596
1.5 3.5 0.0791 0.0794
2.1 4.7 0.0277 0.0278
2.7 5.9 0.0068 0.0068

Table 2: �e simulation results of di�erent interval number.

Interval number
of load, PV,
wind

E�ective
joint-state
number

Small
probability
events

Expected value of
Pload, PPV, Pwind

(kW)
(5, 5, 5) 101 24 30.56, 19.96, 47.99
(10, 10, 10) 332 668 30.54, 19.96, 47.85
(15, 15, 15) 237 3138 30.54, 19.96, 47.83
(20, 20, 20) 198 7802 30.54, 19.96, 47.82
(25, 25, 25) 254 15371 30.54, 19.96, 47.82
(30, 30, 30) 296 26704 30.54, 19.96, 47.82
(35, 35, 35) 314 42561 30.54, 19.96, 47.81
(5, 5, 10) 167 83 30.56, 19.96, 47.85
(5, 5, 15) 217 158 30.56, 19.96, 47.83
(5, 5, 20) 264 236 30.56, 19.96, 47.82
(5, 5, 30) 343 407 30.56, 19.96, 47.82
(10, 20, 30) 170 5830 30.54, 19.96, 47.82

32

31
30

0 1 2 3 4 5 6 7 8 9 10
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18 17 16 15 14

1311 12

19202134
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36 37
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A2

28 29
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33

Figure 5: IEEE 37-bus system.
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base is 10MVA and convergence accuracy is 10−4.
Maximum and minimum limits of the nodal voltage are
positive and negative 7% of the nominal voltage. .e
maximum penetration of DG is 10% of total base load,
while the maximum number of DG installation Nmax

DG is
four. .e fault rate on distribution feeder is 0.05 time per
year, and average interruption duration each time is 5
hours. .e parameters of NSGA are orderly 0.9 for select
rate, 0.9 for crossover rate, 0.05 for mutation rate, 50 for
chromosome numbers, and 30 for maximum iterations.

5.3. Simulation Results for Multiobjective Optimization
BasedonNSGA. .e simulation is carried onMatlab 2008 rb.

Based on the topological structure and the maximum Nmax
DG ,

four areas are shown in Figure 4. DG candidate locations
based on nodal electric distances are {181617191514 201213
21 29 27 28 9 11 10 26 25 8 24 37 33 32 7}. DG candidate
locations based on the nodal load moment are {32 28 31 26 17
27 13 7 16 25 15 14 12 6 29 9 11 37}. Assuming that load bus of
high-reliability requirements are {36 35 2816}..erefore, four
candidate location sets are {16 17 15 14 13 12 11 9}, {28 27 25
26 24}, {33 32 31}, and {37 36 35}. Table 5 lists some Pareto
front solutions at the 30th iterations. By analyzing simulations
results, some conclusions are listed as following:

(i) .e proposed multistate model and application of
confidence level not only ensure the accuracy of

Table 3: .e parameters and probability distribution for uncertain loads.

Bus State/interval (p.u.) Probability distribution

16

0.036 0.0347
0.048 0.2390
0.06 0.4527
0.072 0.2390
0.084 0.0347

32
[0.400, 0.410] 0.1
[0.410, 0.420] 0.5
[0.420, 0.425] 0.4

28
[0.205, 0.210] 0.3
[0.210, 0.215] 0.4
[0.215, 0.220] 0.3

Table 4: Informations for different DG units.

DG Bus type/base capacity Failure rate (time/year) Average interruption duration (hour/time) Binary state {power, probability}

T1 PQ/100 5 50

{0, 0.2213}
{15, 0.3138}
{45, 0.2554}
{75, 0.1383}
{100, 0.0713}

T2 PQ/200 1 10
{180, 0.4}
{190, 0.4}
{200, 0.2}

T3 PV/44 2 25

{0.0818, 0.7359}
{0.9086, 0.1432}
{1.3844, 0.0659}
{2.3743, 0.0347}
{3.6179, 0.0202}

T4 PV/60 1 10 60
Note. Power factor of PQ DG is 0.8 and voltage magnitude of PV DG is 1.0.

Table 5: .e objective function values for some Pareto front solutions.

No. DG type DG location DG size IPloss IVenha IRimp IEimp

1 T2, T2, T1 14, 27, 37 200, 200, 100 0.0878 0.0009 0.9979 0.0523
2 T2, T3, T3, T2 13, 26, 31, 35 200, 44, 44, 200 0.3188 0.0011 0.9546 0.0721
3 T4, T3, T4, T1 9, 27, 35 360, 44, 100 0.3700 0.0007 0.9648 0.0742
4 T4 37 480 0.1579 0.0013 0.9450 0.0201
5 T1, T4 17, 24 400, 120 0.2546 0.0013 0.9345 0.0220
6 T2, T2, T4 13, 24, 32 200, 60, 180 0.2596 0.0012 0.9566 0.0238
7 T3, T4, T1, T3 14, 27, 32, 36 44, 300, 100, 44 0.3275 0.0006 0.9660 0.0732
8 T4, T3, T3 11, 28, 32 300, 176, 44 0.3606 0.0007 0.9458 0.0721
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results, but also reduces search space notably on the
premise that the result is hardly affected.

(ii) If anyone of DG type, location, and size changes,
four objective function values will all change. It is
extremely difficult that four objective function
values simultaneously arrive at the optimal at one
solution. .erefore, when installing DG, policy-
makers has to combine themain object of individual
decision to choose appropriates solution from the
Pareto front solutions.

(iii) .e application of DG candidate location set and
genetic operators can reduce greatly search space of
GA and improve computational efficiency of
algorithm.

.e proposed modified NSGA can solve efficiently
constrained, nonlinear multiobjective optimization problem
with multisource uncertainty. And the solution approach
presented here is simple, reliable, and efficient.

6. Conclusion

From the view of DISOPER, this study presented a multi-
objective optimization for DG planning considering with
multisource uncertainty. .e employment of information
entropy and interval analysis can resolve the multisource
uncertainty problems effectively. .e constructed multi-
objective formulations can not only reflect DG different
influences on distributed network but also take care of the
multisource uncertainty. Applications of small probability
event and confidence level decreased greatly search space
without affecting the accuracy of results. In optimizing
processes, the developed DG candidate location set and
genetic operators avoided redundant calculation to improve
the efficiency. Furthermore, introduction of multiobjective
optimization based on modified NSGA can get a compara-
tive satisfying result as well as coordinate the conflict be-
tween various objects. Plenty of simulations also showed the
proposed methodology is simple and reliable. And it is
suitable for allocation of multisources and multitype DG in
a given distribution networks under multisource
uncertainty.
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