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In this paper, the authors propose three low-complexity detection schemes for spatial modulation (SM) systems based on the
modified beam search (MBS) detection. +e MBS detector, which splits the search tree into some subtrees, can reduce the
computational complexity by decreasing the nodes retained in each layer. However, the MBS detector does not take into account
the effect of subtree search order on computational complexity, and it does not consider the effect of layers search order on the bit-
error-rate (BER) performance.+e ost-MBS detector starts the search from the subtree where the optimal solution is most likely to
be located, which can reduce total searches of nodes in the subsequent subtrees. +us, it can decrease the computational
complexity. When the number of the retained nodes is fixed, which nodes are retained is very important. +at is, the different
search orders of layers have a direct influence on BER. Based on this, we propose the oy-MBS detector. +e ost-oy-MBS detector
combines the detection order of ost-MBS and oy-MBS together. +e algorithm analysis and experimental results show that the
proposed detectors outstrip MBS with respect to the BER performance and the computational complexity.

1. Introduction

To meet the demand of wireless communication systems for
higher data transmission rate, multiple-input multiple-
output (MIMO) technology has been adopted in mobile
terminals. MIMO technology improves data throughput
without increasing additional bandwidth and transmit
power. Spatial modulation (SM) [1–3] is an emerging
transmission scheme for MIMO systems. +e main char-
acteristic of SM is that only one transmit antenna is activated
at one time slot, but simultaneously, the SM systems can use
the original signal domain (signal constellation) and the
transmit antenna (TA) indices (spatial constellation) to
convey information. Compared to MIMO systems, SM
systems can only equip one radio frequency (RF) chain,
avoid interchannel interference (ICI) and interantenna
synchronization (IAS), and also reduce the complexity of
demodulation.

For the detection of SM signals, maximum ratio com-
bining (MRC) algorithm was proposed in [4], in which the
active-antenna index and the transmit symbol are separately
estimated. +e MRC detector has a low computational
complexity and only performs well on the constrained
channels. +is detector was improved in [5], and it further
can be applied in conventional channel conditions. +e
optimum maximum likelihood (ML) detector which in-
volves joint detection of the TA index and of the transmit
symbol was proposed in [6]. However, the computational
complexity linearly grows as the number of TA (NT), the
number of receive antennas (NR), and the size of the
modulation scheme (NM). In order to obtain the near-
optimal solution with a lower computational complexity,
several low-complexity detectors have been put forward
[7–17]. In [7, 8], two low-complexity hard-limiter-based ML
(HL-ML) detectors which have the same BER performance
as the ML detector were proposed forM-PSK and square- or
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rectangular-QAM modulation. +e computational com-
plexity has nothing to do with the constellation size. In
[9–11], sphere-decoding (SD) algorithms were put forward
for SM systems, which are capable of achieving near-optimal
performance with a lower computational complexity on
average. At worst, the computational complexity is equiv-
alent to that of the ML detector. However, its detection
performance depends mainly on the initial search radius and
the transmit parameters. Compared with SD detectors, SD
aided by the ordering strategy proposed in [12] can greatly
reduce the computational complexity. Two matched filter-
(MF-) based detectors were proposed in [13]. In [14], Wang
et al. proposed a novel signal vector-based detection (SVD)
scheme. Tang et al. [15] presented a distanced-based ordered
detection (DBD) algorithm to reduce the receiver com-
plexity and achieve a near-maximum likelihood perfor-
mance. To reduce the detection complexity of ML detection,
Xu [16] presented simplified ML-based optimal detection
(OD) and simplified multistage detection (MD). In the
simplified ML-based detection and multistage detection
schemes, the signal set is firstly partitioned into four “level-
one subsets”. Each level-one subset is further partitioned
into four “level-two subsets” if each subset contains more
than four signals. +e simple low-complexity detection
(SLCD) and adaptive simple low-complexity detection
(ASLCD) were proposed in [17].

In [18, 19], the M-algorithm to maximum likelihood
(MML) detector with prioritized tree-search structure was
presented. +e detection is considered as a breadth-first
search tree with NTNM branches and NR layers, in which
the ith layer corresponds to the ith receive antenna (RA).
+e MML detector only examines partial nodes in the tree,
whereas the ML detector traverses all nodes. Compared
with the ML detector, the MML detector can achieve
a lower computational complexity. In [20], a low-
complexity symbol detection based on modified beam
search (MBS) was proposed. +e detection process of the
MBS algorithm can be represented by constructing a tree
with NT subtrees and 2NR layers, where each subtree has
NM complete paths from the root node to the leaf nodes,
and each of the paths stands for a candidate solution. +e
solution is found by performing modified beam search.
Compared with the MML algorithm, the MBS algorithm
reduces the computational complexity by discarding un-
promising candidate solutions.

In the MBS detector, the detection sequence of different
subtrees is confined to the ascending order of the subtree
indices, whereas it ignores the influence of different search
orders on the computational complexity. Moreover, the
detection of all layers is confined to the ascending order of
the layer indices, whereas it ignores the influence of different
search orders on its bit-error-rate (BER) performance. +at
is to say, the influence of different search orders on the BER
performance and the computational complexity is not
considered in the MBS detector. In recent years, the sorting
strategy has attracted more and more attention. To some
degree, the sorting strategy can improve the algorithm
detection performance. In [12, 21], different ordering
strategies were proposed to improve the detection

performance. In this paper, we proposed three MBS-based
detectors with novel ordering strategies: (1) the ost-MBS
detector rearranges the search order of subtrees; (2) the oy-
MBS detector performs SM signal detection in a descending
order of the received signal amplitude; (3) the detection
orders of the abovementioned two detectors were jointly
considered in the ost-oy-MBS detector.

+e rest of this paper is organized as follows. In Section
2, the system model of SM systems is introduced. Section 3
gives a brief overview of the MBS detector. +e ordering
strategy is introduced to the MBS detector. Section 4
demonstrates ost-MBS, oy-MBS, and ost-oy-MBS detectors.
Section 5 illustrates the simulation results. Finally, we
conclude the paper with a summary in Section 5.

Notations. Boldface upper/lower case symbols denote ma-
trices and column vectors; ‖ · ‖F is the Frobenius norm of
a vector or a matrix; | · | is the amplitude of a complex
quantity or the cardinality of a set;R(·) andI(·) are the real
and imaginary parts of a complex-valued quantity; (·)H is the
conjugate transpose of a vector or a matrix; CN(μ, σ2)
denotes a complex Gaussian random variable with mean μ
and variance σ2.

2. System Model

Consider an NT × NR SM system with constellation
S � s1, s2, . . . , sNM

􏽮 􏽯. In each time slot, the incoming data
bits are rearranged into blocks of log2 NTNM bits, in which
log2 NT bits are used to select the activated TA and log2 NM
bits are used to select the transmit symbol sm ∈ S,
m ∈ 1, 2, . . . , NM􏼈 􏼉. Hence, the system model for SM sys-
tems can be represented by

r � G · s + w, (1)

where r ∈ CNR is the received signal vector; s ∈ CNT is the
transmit symbol vector, whose element is sm at the lth
position and zero at the other positions; G ∈ CNR×NT and
w ∈ CNR are the channel matrix and the noise vector, whose
elements follow the circularly symmetric complex Gaussian
distributions with CN(0, 1) and CN(0, σ2), respectively.
+e system model expressed in (1) can be reshaped as

y �
R(G) −I(G)

I(G) R(G)
􏼢 􏼣 ·

R(s)

I(s)
􏼢 􏼣 +

R(w)

I(w)
􏼢 􏼣 � H · x + n,

(2)

where H ∈ R2NR×2NT , x ∈ R2NT , and n ∈ R2NR . Since only
one TA is activated in each time slot, the system model
expressed in (2) can be simplified as

y � hl hl+NT􏽨 􏽩 ·
R sm( 􏼁

I sm( 􏼁
􏼢 􏼣 + n, (3)

where hl is the lth column of H.
It follows from (3) that the optimal ML-based de-

modulator can be formulated as
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l̂, ŝm( ) � arg min
l,sm( )∈Λ

y − hl hl+NT[ ] ·
R sm( )
I sm( )

[ ]
���������

���������

2

F

� arg min
l,sm∈Λ

A l,sm( ),
(4)

where Λ denotes the set containing all possible transmit an-
tenna indices and complex constellation points, Λ �
(l, sm)|l ∈ 1, 2, . . . , NT{ }, sm ∈ s1, s2, . . . , sNM

{ }{ }, A(l,sm) �
∑2NR
k�1 |yk − hk,l ·R(sm)− hk,l+NT

·I(sm)|
2, and hk,l is the

(k, l)th entry of matrix H.

3. MBS Detector

According to Kim and Yi [20], the detection of the SM signal
can be regarded as a tree with NT subtrees and 2NR layers,
where each subtree has NM complete paths from the root
node to the leaf nodes. For ease of understanding, we give an
illustration (Figure 1) for the idea of the MBS detector.
Suppose we have a 2 × 2 SM system with 4QAMmodulation;
thus the search tree has 4 layers and 8 branches. 4 branches
of each subtree (TA) correspond to 4 symbols from the
4QAM constellation. We de�ne the branch metric of node
(l, sm) at the kth layer as the squared Euclidean distance
between the received and the transmit signals, which can be
denoted as B(l,sm)k � |yk − hk,l ·R(sm)− hk,l+NT

·I(sm)|2.�e
accumulated metric of node (l, sm) at the kth layer is
the summation of the branch metric at the kth layer and
the accumulated metric at (k− 1)th layer, which can be
expressed as A(l,sm)k � B(l,sm)k + A(l,sm)k− 1 .

In the �rst subtree, theMk nodes in the kth layer with the
smallest accumulated metrics are kept as the candidate
nodes for the next layer. At the last layer, the node with the
smallest accumulated metric is considered as the solution in
the �rst subtree. �e smallest accumulated metric and its
corresponding TA index and the transmit symbol are rep-
resented by ρΩ and Ω � l̂, ŝm{ }, respectively. In the sub-
sequent subtrees, ρΩ andΩ are gradually updated. In the kth
layer, at most Mk nodes with the accumulated metrics
smaller than the threshold value, ρΩ are selected as the
survival branches for the next layer. If the accumulated
metric is not less than ρΩ, the search of the current branch is
terminated. Otherwise, we should continue to search the
next branch. If the accumulated metric is smaller than ρΩ at
the last layer, ρΩ and Ω are updated. Repeat the search
process until all subtrees are checked. �e cross symbol in
Figure 1 shows that the branch with the accumulated metric
not less than the threshold value ρΩ is pruned.

4. Proposed Ordering MBS-Based Detectors

In MBS detector, the detection of the SM signal is in the
ascending order of the subtree indices and the RA indices.
Essentially, the MBS detector is used to calculate (4) and
select partial reserved nodes. When the number of the re-
served nodes is a constant, it is of great importance to choose
which nodes. In other words, the computation order of (4)
can directly a�ect the BER performance and the

computational complexity. In this section, in order to in-
vestigate the in�uence of di�erent detection orders on the
BER performance and computational complexity, we pro-
pose three ordering MBS-based detectors by adjusting the
search orders.

4.1.Ost-MBSDetector. �e computational complexity of the
MBS detector is reduced by pruning the branches, whose
accumulated metric is larger than or equal to ρΩ. However,
the MBS algorithm does not take into account the in�uence
of subtree search order on the computational complexity. If
the optimal solution stands in the �rst subtree, only fewer
nodes are searched in the subsequent subtrees. But, if the
optimal solution exists in the last subtree, we need to search
more nodes in the top NT − 1 subtrees. In other words,
searching �rstly from the subtree where the optimal solution
most probably belongs to can reduce total searches of nodes
in the subsequent subtrees. �us, it can decrease the com-
putational complexity. �at is, the searching order of sub-
trees directly a�ects the computational complexity. We
propose the ost-MBS detector, which estimates the optimal
solution by rearranging the order of subtrees. In the �rst
stage, we order the TA indices based on the suboptimal
antenna detection algorithm. In the second stage, we �rst
search from the most probable TA index, the estimated
solution is obtained by searching all NT subtrees. �e
proposed ost-MBS detector works as follows.

Stage 1. Reorder the TA indices in descending order using
the suboptimal modi�ed maximum ratio combining
(MMRC) algorithm proposed in [5]. �e MMRC �lter
outputs are obtained by

tj �
hHj y
∣∣∣∣∣

∣∣∣∣∣
hj
�����
�����F
, j � 1, . . . , NT. (5)

�e higher the value of tj, the more likely it is that the jth
TA was the one activated. �e TA indices are sorted in
descending order by tj. �e set of ordered TA indices is
denoted by u. Suppose T � [t1, t2, . . . , tNT

]T, the ordered TA
indices can be obtained as

1st subtree 2nd subtree

1st layer

2nd layer

3th layer

4th layer
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(l,sm)
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(l,sm)
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Figure 1: �e tree structure of 2×2 SM with 4QAM and
M � [3, 2, 2, 1].
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u � u1, u2, . . . , uNT
􏼐 􏼑 � argsort(T), (6)

where sort(·) denotes a descending order function and u1
and uNT

are the indices of the maximum and minimum
elements of T, respectively. In other words, u1 and uNT

are
the most likely and the least likely estimates of the TA index,
respectively.

Stage 2. Determine the TA index and the transmit symbol
using the MBS detector.

4.2. Oy-MBSDetector. Since only one TA is activated at one
time slot, assuming that the lth antenna sends symbol sm, the
received signal can be expressed as

ri � gl,i · sm + wi, i � 1, . . . , NR. (7)

Each signal at the receiver is related to the channel gain,
the transmit symbol, and the white Gaussian noise. Due to
the difference of the channel gain and noise in each channel,
the channel gain and noise together determine the amplitude
of the received signal. Generally speaking, a strong received
signal contributes to the demodulation. In theMBS detector,
the TA index and the transmit symbol are estimated in
ascending order of the RA index from the root node to the
leaf nodes. However, the effect of search order on the BER is
not taken into account. For this reason, we propose the oy-
MBS detector, which detects in descending order of the
amplitude of the received signal. +e oy-MBS detector is
described in detail as follows.

Stage 1. Sort the RA indices in descending order by |ri|. Let
Z � [z1, z2, . . . , zNR

]T, where zi � |ri|, and the set of the
ordered RA indices can be obtained as

􏽥v � 􏽥v1, 􏽥v2, . . . , 􏽥vNR
􏼐 􏼑 � argsort(Z), (8)

where 􏽥v1 and 􏽥vNR
are the indices of the maximum and

minimum values in Z. +e layer search order set v can be
obtained as

v2i−1 � 􏽥vi,

v2i � NR + 􏽥vi, i � 1, . . . , NR.
(9)

+e new search tree, whose (2i− 1)th and (2i)th layers
correspond to the 􏽥vth

i RA, can be built by exchanging the
layers of Figure 1.

Stage 2. Determine the TA index and the transmit symbol
using the MBS detector.

4.3. Ost-Oy-MBS Detector. In ost-MBS detector, all NT
subtrees are searched in descending order of |hH

j y|/||hj||F.
+at is to say, we first detect the most probable subtree and
then detect the most impossible subtree at last. To some
extent, the computational complexity can be reduced. +e
oy-MBS detector performs the MBS detection in descending
order of the received signals amplitude, which can improve
the BER performance. In this subsection, we combine the
detection orders of ost-MBS and oy-MBS detectors together.
We propose the ost-oy-MBS detector whose detection order

is based on the subtrees and the received signals. We detect
all subtrees in descending order of |hH

j y|/‖hj‖F and detect
each layer of subtrees in descending order of |ri|.

+e detection process of the proposed ordering MBS-
based detectors is summarized in Algorithm 1. In Algorithm
1, lines 2–6 and 7–11 correspond to subtree-ordering and
receiver-ordering strategies, respectively, whereas lines
12–28 describe the detection process of the MBS detector.

5. Simulation Results

In this section, the computational complexity and the BER
performance of the proposed detectors and the MML, MBS,
ML, simplfied OD, simplified MD, SLCD, and ASLCD
detectors are compared.+e label, (N1, N2) OD, denotes the
simplified OD detector with N1 level-one subsets and N2
level-two subsets. +e label, (N, N1, and N2) MD, stands for
the simplified MD detector with N estimated transmit an-
tennas, N1 level-one subsets, and N2 level-two subsets. +e
label, (N) SLCD, denotes the simplified low-complexity
detection with N most probable estimates. +e label,
(N, α) ASLCD, stands for the adaptive low-complexity de-
tection with N most probable estimates and threshold co-
efficient α. +e ideal channel state information (CSI) is
assumed available at the receiver. In the simulation, the
signal-to-noise ratio (SNR) is the ratio of the signal power to
the noise power, i.e., ρ � (􏽐

NM
m�1s

2
m/NM)/σ2.

To validate the BER performance of the abovementioned
detectors, the theoretical bound [17] is drawn in BER
simulation figures. Figures 2–3 compare the BER perfor-
mance and the computational complexity of the proposed
detectors and existing detectors for 4 × 4 64QAM SM sys-
tems with M � [64, 26, 26, 8, 8, 2, 2, 1] in MBS and the
proposed detectors and M � [256, 104, 104, 32, 32, 8, 8, 1] in
the MML detector. +e BER performance and computa-
tional complexity of the proposed detectors are shown in
Figures 4–5 with M � [16, 10, 8, 4, 4, 2, 1, 1] in MBS and the
proposed detectors and M � [128, 80, 64, 32, 32, 16, 8, 1] in
the MML detector for 8 × 4 16QAM SM systems. Since each
level-two subset must contain more than four signals
(i.e., the modulation order NM > 16) in OD and MD de-
tectors, the simulation curves of OD and MD detectors are
not listed in Figures 4–5.

To estimate the computational complexity of an algo-
rithm, we define the computational complexity as the total
number of the real-valuedmultiplications/divisions required
in the detection process.

In the MML algorithm, we need to compute the accu-
mulated metrics of all NTNM nodes in the first layer and
compute the accumulated metrics of Mk−1 nodes in the kth
(2≤ k≤ 2NR) layer. Since computing the accumulated
metrics of one node needs 3 real multiplications, the
computational complexity of the MML detector is
3NTNM + 􏽐

2NR−1
i�1 3Mi.

Since the ML detector computes the accumulated
metrics of all nodes in the tree, the computational com-
plexity of the ML detector is 6NTNRNM.

According to Section 3.2 and 3.3 in [16], we can obtain
the computational complexity of OD and MD. +e
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computational complexity of the (N1, N2) OD detector and
(N,N1, N2) MD detector is 10NR(4NT + 4N1 +NMN2/16)
and 10NR(NT + 4N + 4N1 +NMN2/16), respectively.

According to Section 3.5 and 3.6 in [17], the computational
complexity of SLCD and ASLCD depends on the parameter
N and the size of estimated transmit symbol set. Since the size
of estimated transmit symbol set is not constant, the com-
putational complexity can only be obtained by simulation.

0 5 10 15 20 25
10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

BE
R

�eory
ML
(2)SLCD
(2,0.5)ASLCD

MML
(4,4)OD
(2,4,5)MD
MBS

Ost−MBS
Oy−MBS
Ost−oy−MBS

Figure 2: �e BER performance of the proposed detectors with
NT � 4, NR � 4, and 64QAM modulation.
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Figure 3: �e computational complexity of the proposed detectors
with NT � 4, NR � 4, and 64QAM modulation.

(1) Initialization: Λl � (l, sm)|sm ∈ s1, · · · , sNM
{ }{ }, for each l ∈ 1, · · · , NT{ }.

(2) if subtree-ordering is used then
(3) u � (u1, . . . , uNT

) � argsort(|hHj y|/||hj||F)
(4) else
(5) u � (1, · · · , NT)
(6) end if
(7) if receiver-ordering is used then
(8) ṽ � (ṽ1, . . . , ṽNR

) � argsort(|ri|), obtain layer search order v by Equation (9).
(9) else
(10) ṽ � (1, · · · , NR), obtain layer search order v by Equation (9).
(11) end if
(12) ρΩ � 0,Ω � ϕ.
(13) for i � 1NT
(14) Ψ � Λui, [(p, q), value] � search subtree(Ψv)
(15) Ω � (p, q) and ρΩ � value, if (p, q) is not null and value< ρΩ.
(16) end for
(17) End the algorithm by returning Ω corresponding to ρΩ.
(18) function search subtree(Ψ, v)
(19) For each (p, q) ∈ Ψ, A(p,q) � 0.
(20) for i � 12NR
(21) k � vi, for each (p, q ∈ Ψ), A(p,q) � A(p,q) + B(p,q)k .
(22) while i< 2NR and |Ψ|>Mi
(23) Ψ � Ψ− (p, q){ }, where (p, q) � argmax

(p,q)∈Ψ
A(p,q).

(24) end while
(25) For each (p, q) ∈ Ψ, Ψ � Ψ− (p, q){ }, if A(p,q) ≥ ρΩ.
(26) end for
(27) return [(p, q), value] � argmin

(p,q)∈Ψ
A(p,q), if Ψ not empty; otherwise return null.

(28) end function

ALGORITHM 1: Ordering-aided MBS-based detectors.
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From the above analysis, we can conclude that the
computational complexity of MML, OD, and MD detectors
is lower than that of the ML detector but with a BER
performance loss. Meanwhile, the complexity of MML, OD,
MD, SLCD, and ASLCD depends on the preset parameters.

�e computational complexity of the proposed MBS-
based detectors includes the number of real-valued multi-
plications of computing |hHj y|/||hj||F and |ri| in stage 1, and
the number of real-valued multiplications of MBS detector
in stage 2. �e computational complexity of stage 1 can be
easily obtained by calculation. �e computational com-
plexity of stage 2 depends on the number of retained nodes.

In MBS and the proposed MBS-based detectors, the pa-
rameterMk is at most the number of retained nodes in each
layer. �at is, the number of retained nodes is not �xed.
�erefore, the computational complexity of proposed MBS-
based detectors can only be obtained by simulation.

From the above simulation curves, we can draw the
following conclusions:

(1) �e computational complexity of MBS, OD, MD,
SLCD, ASLCD, MML, and the proposed detectors is
lower than that of theMLdetector. Since the number of
retained nodes ofMML,OD, andMDdetectors is �xed
under di�erent SNRs, the computational complexity
does not change with the SNR. �e computational
complexity of SLCD, ASLCD,MBS, ost-MBS, oy-MBS,
and ost-oy-MBS detectors changes with the SNR.

(2) �e BER performance of ost-MBS detector is the
same as that of the MBS detector, and the complexity
is lower than that of the MBS detector. �e ost-MBS
detector only changes the search order of subtrees
and does not a�ect the detection performance.
�erefore, the ost-MBS and MBS detectors have the
same BER performance. �e ost-MBS detector
searches the subtrees in the descending order of
|hHj y|/‖hj‖F, which increases the probability of the
optimal solution in the �rst subtree. Since the ac-
cumulated metric of the optimal solution is minimal,
the number of retained nodes can be reduced in the
subsequent subtrees, thus reducing the total com-
putational complexity.

(3) �e BER performance of the oy-MBS detector is
superior to that of the MBS detector. �e oy-MBS
detector estimates the solution in the descending
order of the received signals amplitude. To some
degree, the strong received signal contributes to the
demodulation. �erefore, compared with the MBS
detector, the oy-MBS detector has better BER per-
formance. Meanwhile, we also notice that the sorting
strategy of oy-MBS also reduces the computational
complexity.

(4) �e ost-oy-MBS detector and oy-MBS detector have
the same BER performance, which is superior to the
MBS detector. �e ost-oy-MBS detector has the
advantages of both ost-MBS and oy-MBS detectors.
�at is, the ost-oy-MBS detector has the best BER
performance and the lowest computational com-
plexity among the proposed MBS-based detectors.

(5) Under the current simulation conditions, the BER
performance of OD, MD, SLCD, ASLCD, MML, and
ost-oy-MBS detectors is almost the same as the ML
detector. Compared to OD and MD detectors, MBS-
based detectors have a lower computational com-
plexity in moderate-to-high SNRs.

6. Conclusion

In this paper, novel ordering MBS-based detectors for SM
systems are proposed to improve the BER performance and
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Figure 4: �e BER performance of the proposed detectors with
NT � 8, NR � 4, and 16QAM modulation.
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Figure 5: �e computational complexity of the proposed detectors
with NT � 8, NR � 4, and 16QAM modulation.
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reduce the computational complexity. +e ost-MBS detector
first searches each subtree from the most probable TA.
Compared to the MBS detector, it has the lower compu-
tational complexity. +e oy-MBS algorithm detects each
subtree in the descending order of the received signal am-
plitude. +e BER performance of the oy-MBS detector is
superior to that of the MBS detector. +e ost-oy-MBS de-
tector combined the orders of ost-MBS and oy-MBS de-
tectors. Among all proposed MBS-based methods, the ost-
oy-MBS detector has the best BER performance and the
lowest computational complexity. Meanwhile, we notice that
the computational complexity and the BER performance of
OD, MD, SCLD, ASLCD, MML, and MBS-based detectors
depend on the preset parameters. Regrettably, how to select
the parameters in the proposed MBS-based detectors can
only be obtained by simulation. Next, we will study how to
select parameters and try to give a theoretical derivation.
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